1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
|
/*
* Copyright (C) 2010 Freescale Semiconductor, Inc.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
/* addtogroup ddi_power */
/* @{ */
/* */
/* Copyright(C) 2005 SigmaTel, Inc. */
/* */
/* file ddi_power_battery.c */
/* brief Implementation file for the power driver battery charger. */
/* */
/* Includes and external references */
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <asm/processor.h> /* cpu_relax */
#include <mach/hardware.h>
#include <mach/ddi_bc.h>
#include <mach/lradc.h>
#include <mach/regs-power.h>
#include <mach/regs-lradc.h>
#include <mach/lradc.h>
#include "ddi_bc_internal.h"
/* brief Base voltage to start battery calculations for LiIon */
#define BATT_BRWNOUT_LIION_BASE_MV 2800
/* brief Constant to help with determining whether to round up or */
/* not during calculation */
#define BATT_BRWNOUT_LIION_CEILING_OFFSET_MV 39
/* brief Number of mV to add if rounding up in LiIon mode */
#define BATT_BRWNOUT_LIION_LEVEL_STEP_MV 40
/* brief Constant value to be calculated by preprocessing */
#define BATT_BRWNOUT_LIION_EQN_CONST \
(BATT_BRWNOUT_LIION_BASE_MV - BATT_BRWNOUT_LIION_CEILING_OFFSET_MV)
/* brief Base voltage to start battery calculations for Alkaline/NiMH */
#define BATT_BRWNOUT_ALKAL_BASE_MV 800
/* brief Constant to help with determining whether to round up or */
/* not during calculation */
#define BATT_BRWNOUT_ALKAL_CEILING_OFFSET_MV 19
/* brief Number of mV to add if rounding up in Alkaline/NiMH mode */
#define BATT_BRWNOUT_ALKAL_LEVEL_STEP_MV 20
/* brief Constant value to be calculated by preprocessing */
#define BATT_BRWNOUT_ALKAL_EQN_CONST \
(BATT_BRWNOUT_ALKAL_BASE_MV - BATT_BRWNOUT_ALKAL_CEILING_OFFSET_MV)
#define GAIN_CORRECTION 1012 /* 1.012 */
#define VBUSVALID_THRESH_2_90V 0x0
#define VBUSVALID_THRESH_4_00V 0x1
#define VBUSVALID_THRESH_4_10V 0x2
#define VBUSVALID_THRESH_4_20V 0x3
#define VBUSVALID_THRESH_4_30V 0x4
#define VBUSVALID_THRESH_4_40V 0x5
#define VBUSVALID_THRESH_4_50V 0x6
#define VBUSVALID_THRESH_4_60V 0x7
#define LINREG_OFFSET_STEP_BELOW 0x2
#define BP_POWER_BATTMONITOR_BATT_VAL 16
#define BP_POWER_CHARGE_BATTCHRG_I 0
#define BP_POWER_CHARGE_STOP_ILIMIT 8
#define VDD4P2_ENABLED
#define DDI_POWER_BATTERY_XFER_THRESHOLD_MV 3200
#ifndef BATTERY_VOLTAGE_CMPTRIP100_THRESHOLD_MV
#define BATTERY_VOLTAGE_CMPTRIP100_THRESHOLD_MV 4000
#endif
#ifndef BATTERY_VOLTAGE_CMPTRIP105_THRESHOLD_MV
#define BATTERY_VOLTAGE_CMPTRIP105_THRESHOLD_MV 3800
#endif
/* #define DEBUG_IRQS */
/* to be re-enabled once FIQ functionality is added */
#define DISABLE_VDDIO_BO_PROTECTION
/* Globals & Variables */
/* Select your 5V Detection method */
/* static ddi_power_5vDetection_t DetectionMethod =
DDI_POWER_5V_VDD5V_GT_VDDIO; */
static ddi_power_5vDetection_t DetectionMethod = DDI_POWER_5V_VBUSVALID;
/* Code */
#if 0
static void dump_regs(void)
{
printk("HW_POWER_CHARGE 0x%08x\n", __raw_readl(REGS_POWER_BASE + HW_POWER_CHARGE));
printk("HW_POWER_STS 0x%08x\n", __raw_readl(REGS_POWER_BASE + HW_POWER_STS));
printk("HW_POWER_BATTMONITOR 0x%08x\n", __raw_readl(REGS_POWER_BASE + HW_POWER_BATTMONITOR));
}
#endif
/* This array maps bit numbers to current increments, as used in the register */
/* fields HW_POWER_CHARGE.STOP_ILIMIT and HW_POWER_CHARGE.BATTCHRG_I. */
static const uint16_t currentPerBit[] = { 10, 20, 50, 100, 200, 400 };
uint16_t ddi_power_convert_current_to_setting(uint16_t u16Current)
{
int i;
uint16_t u16Mask;
uint16_t u16Setting = 0;
/* Scan across the bit field, adding in current increments. */
u16Mask = (0x1 << 5);
for (i = 5; (i >= 0) && (u16Current > 0); i--, u16Mask >>= 1) {
if (u16Current >= currentPerBit[i]) {
u16Current -= currentPerBit[i];
u16Setting |= u16Mask;
}
}
/* Return the result. */
return u16Setting;
}
/* See hw_power.h for details. */
uint16_t ddi_power_convert_setting_to_current(uint16_t u16Setting)
{
int i;
uint16_t u16Mask;
uint16_t u16Current = 0;
/* Scan across the bit field, adding in current increments. */
u16Mask = (0x1 << 5);
for (i = 5; i >= 0; i--, u16Mask >>= 1) {
if (u16Setting & u16Mask)
u16Current += currentPerBit[i];
}
/* Return the result. */
return u16Current;
}
void ddi_power_Enable5vDetection(void)
{
u32 val;
/* Disable hardware power down when 5V is inserted or removed */
__raw_writel(BM_POWER_5VCTRL_PWDN_5VBRNOUT,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
/* Enabling VBUSVALID hardware detection even if VDD5V_GT_VDDIO
* is the detection method being used for 5V status (hardware
* or software). This is in case any other drivers (such as
* USB) are specifically monitoring VBUSVALID status
*/
__raw_writel(BM_POWER_5VCTRL_VBUSVALID_5VDETECT,
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
/* Set 5V detection threshold to 4.3V for VBUSVALID. */
__raw_writel(
BF_POWER_5VCTRL_VBUSVALID_TRSH(VBUSVALID_THRESH_4_30V),
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
/* gotta set LINREG_OFFSET to STEP_BELOW according to manual */
val = __raw_readl(REGS_POWER_BASE + HW_POWER_VDDIOCTRL);
val &= ~(BM_POWER_VDDIOCTRL_LINREG_OFFSET);
val |= BF_POWER_VDDIOCTRL_LINREG_OFFSET(LINREG_OFFSET_STEP_BELOW);
__raw_writel(val, REGS_POWER_BASE + HW_POWER_VDDIOCTRL);
val = __raw_readl(REGS_POWER_BASE + HW_POWER_VDDACTRL);
val &= ~(BM_POWER_VDDACTRL_LINREG_OFFSET);
val |= BF_POWER_VDDACTRL_LINREG_OFFSET(LINREG_OFFSET_STEP_BELOW);
__raw_writel(val, REGS_POWER_BASE + HW_POWER_VDDACTRL);
val = __raw_readl(REGS_POWER_BASE + HW_POWER_VDDDCTRL);
val &= ~(BM_POWER_VDDDCTRL_LINREG_OFFSET);
val |= BF_POWER_VDDDCTRL_LINREG_OFFSET(LINREG_OFFSET_STEP_BELOW);
__raw_writel(val, REGS_POWER_BASE + HW_POWER_VDDDCTRL);
/* Clear vbusvalid interrupt flag */
__raw_writel(BM_POWER_CTRL_VBUSVALID_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
__raw_writel(BM_POWER_CTRL_VDD5V_GT_VDDIO_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
/* enable vbusvalid irq */
/* enable 5V Detection interrupt vbusvalid irq */
switch (DetectionMethod) {
case DDI_POWER_5V_VBUSVALID:
/* Check VBUSVALID for 5V present */
__raw_writel(BM_POWER_CTRL_ENIRQ_VBUS_VALID,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
break;
case DDI_POWER_5V_VDD5V_GT_VDDIO:
/* Check VDD5V_GT_VDDIO for 5V present */
__raw_writel(BM_POWER_CTRL_ENIRQ_VDD5V_GT_VDDIO,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
break;
}
}
/*
* This function prepares the hardware for a 5V-to-battery handoff. It assumes
* the current configuration is using 5V as the power source. The 5V
* interrupt will be set up for a 5V removal.
*/
void ddi_power_enable_5v_to_battery_handoff(void)
{
/* Clear vbusvalid interrupt flag */
__raw_writel(BM_POWER_CTRL_VBUSVALID_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
__raw_writel(BM_POWER_CTRL_VDD5V_GT_VDDIO_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
/* detect 5v unplug */
__raw_writel(BM_POWER_CTRL_POLARITY_VBUSVALID,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
__raw_writel(BM_POWER_CTRL_POLARITY_VDD5V_GT_VDDIO,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
#ifndef VDD4P2_ENABLED
/* Enable automatic transition to DCDC */
__raw_writel(BM_POWER_5VCTRL_DCDC_XFER,
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
#endif
}
/*
* This function will handle all the power rail transitions necesarry to power
* the chip from the battery when it was previously powered from the 5V power
* source.
*/
void ddi_power_execute_5v_to_battery_handoff(void)
{
int val;
#ifdef VDD4P2_ENABLED
val = __raw_readl(REGS_POWER_BASE + HW_POWER_DCDC4P2);
val &= ~(BM_POWER_DCDC4P2_ENABLE_DCDC | BM_POWER_DCDC4P2_ENABLE_4P2);
__raw_writel(val, REGS_POWER_BASE + HW_POWER_DCDC4P2);
__raw_writel(BM_POWER_5VCTRL_PWD_CHARGE_4P2,
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
/* make VBUSVALID_TRSH 4400mV and set PWD_CHARGE_4P2 */
__raw_writel(BM_POWER_5VCTRL_VBUSVALID_TRSH,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
__raw_writel(BF_POWER_5VCTRL_VBUSVALID_TRSH(VBUSVALID_THRESH_4_40V),
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
#else
/* VDDD has different configurations depending on the battery type */
/* and battery level. */
/* For LiIon battery, we will use the DCDC to power VDDD. */
/* Use LinReg offset for DCDC mode. */
__raw_writel(BF_POWER_VDDDCTRL_LINREG_OFFSET(LINREG_OFFSET_STEP_BELOW),
HW_POWER_BASE + HW_POWER_VDDDCTRL_SET);
/* Turn on the VDDD DCDC output and turn off the VDDD LinReg output. */
__raw_writel(BM_POWER_VDDDCTRL_DISABLE_FET,
HW_POWER_BASE + HW_POWER_VDDDCTRL_CLR);
__raw_writel(BM_POWER_VDDDCTRL_ENABLE_LINREG,
HW_POWER_BASE + HW_POWER_VDDDCTRL_CLR);
/* Make sure stepping is enabled when using DCDC. */
__raw_writel(BM_POWER_VDDDCTRL_DISABLE_STEPPING,
HW_POWER_BASE + HW_POWER_VDDDCTRL_CLR);
/* Power VDDA and VDDIO from the DCDC. */
/* Use LinReg offset for DCDC mode. */
__raw_writel(BF_POWER_VDDACTRL_LINREG_OFFSET(LINREG_OFFSET_STEP_BELOW),
HW_POWER_BASE + HW_POWER_VDDACTRL_SET);
/* Turn on the VDDA DCDC converter output and turn off LinReg output. */
__raw_writel(BM_POWER_VDDACTRL_DISABLE_FET,
HW_POWER_BASE + HW_POWER_VDDACTRL_CLR);
__raw_writel(BM_POWER_VDDACTRL_ENABLE_LINREG,
HW_POWER_BASE + HW_POWER_VDDACTRL_CLR);
/* Make sure stepping is enabled when using DCDC. */
__raw_writel(BM_POWER_VDDACTRL_DISABLE_STEPPING,
HW_POWER_BASE + HW_POWER_VDDACTRL_CLR);
/* Use LinReg offset for DCDC mode. */
__raw_writel(BF_POWER_VDDIOCTRL_LINREG_OFFSET(
LINREG_OFFSET_STEP_BELOW
),
HW_POWER_BASE + HW_POWER_VDDIOCTRL_SET);
/* Turn on the VDDIO DCDC output and turn on the LinReg output.*/
__raw_writel(BM_POWER_VDDIOCTRL_DISABLE_FET,
HW_POWER_BASE + HW_POWER_VDDIOCTRL_CLR);
__raw_writel(BM_POWER_5VCTRL_ILIMIT_EQ_ZERO,
HW_POWER_BASE + HW_POWER_5VCTRL_CLR_CLR);
/* Make sure stepping is enabled when using DCDC. */
__raw_writel(BM_POWER_VDDIOCTRL_DISABLE_STEPPING,
HW_POWER_BASE + HW_POWER_VDDIOCTRL_CLR);
#endif
}
/*
* This function sets up battery-to-5V handoff. The power switch from
* battery to 5V is automatic. This funtion enables the 5V present detection
* such that the 5V interrupt can be generated if it is enabled. (The interrupt
* handler can inform software the 5V present event.) To deal with noise or
* a high current, this function enables DCDC1/2 based on the battery mode.
*/
void ddi_power_enable_battery_to_5v_handoff(void)
{
/* Clear vbusvalid interrupt flag */
__raw_writel(BM_POWER_CTRL_VBUSVALID_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
__raw_writel(BM_POWER_CTRL_VDD5V_GT_VDDIO_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
/* detect 5v plug-in */
__raw_writel(BM_POWER_CTRL_POLARITY_VBUSVALID,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
__raw_writel(BM_POWER_CTRL_POLARITY_VDD5V_GT_VDDIO,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
#ifndef VDD4P2_ENABLED
/* Force current from 5V to be zero by disabling its entry source. */
__raw_writel(BM_POWER_5VCTRL_ILIMIT_EQ_ZERO,
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
#endif
/* Allow DCDC be to active when 5V is present. */
__raw_writel(BM_POWER_5VCTRL_ENABLE_DCDC,
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
}
/* This function handles the transitions on each of theVDD5V_GT_VDDIO power
* rails necessary to power the chip from the 5V power supply when it was
* previously powered from the battery power supply.
*/
void ddi_power_execute_battery_to_5v_handoff(void)
{
#ifdef VDD4P2_ENABLED
ddi_power_Enable4p2(450);
#else
/* Disable the DCDC during 5V connections. */
__raw_writel(BM_POWER_5VCTRL_ENABLE_DCDC,
HW_POWER_BAE + HW_POWER_5VCTRL_CLR);
/* Power the VDDD/VDDA/VDDIO rail from the linear regulator. The DCDC */
/* is ready to automatically power the chip when 5V is removed. */
/* Use this configuration when powering from 5V */
/* Use LinReg offset for LinReg mode */
__raw_writel(BF_POWER_VDDDCTRL_LINREG_OFFSET(LINREG_OFFSET_STEP_BELOW),
HW_POWER_BAE + HW_POWER_VDDDCTRL_SET);
/* Turn on the VDDD LinReg and turn on the VDDD DCDC output. The */
/* ENABLE_DCDC must be cleared to avoid LinReg and DCDC conflict. */
__raw_writel(BM_POWER_VDDDCTRL_ENABLE_LINREG,
HW_POWER_BAE + HW_POWER_VDDDCTRL_SET);
__raw_writel(BM_POWER_VDDDCTRL_DISABLE_FET,
HW_POWER_BAE + HW_POWER_VDDDCTRL_CLR);
/* Make sure stepping is disabled when using linear regulators */
__raw_writel(BM_POWER_VDDDCTRL_DISABLE_STEPPING,
HW_POWER_BAE + HW_POWER_VDDDCTRL_SET);
/* Use LinReg offset for LinReg mode */
__raw_writel(BM_POWER_VDDACTRL_LINREG_OFFSET(LINREG_OFFSET_STEP_BELOW),
HW_POWER_BAE + HW_POWER_VDDACTRL_SET);
/* Turn on the VDDA LinReg output and prepare the DCDC for transfer. */
/* ENABLE_DCDC must be clear to avoid DCDC and LinReg conflict. */
stmp3xxx_set(BM_POWER_VDDACTRL_ENABLE_LINREG,
HW_POWER_BASE + HW_POWER_VDDACTRL_SET);
__raw_writel(BM_POWER_VDDACTRL_DISABLE_FET,
HW_POWER_BASE + HW_POWER_VDDACTRL_CLR);
/* Make sure stepping is disabled when using linear regulators */
__raw_writel(BM_POWER_VDDACTRL_DISABLE_STEPPING,
HW_POWER_BASE + HW_POWER_VDDACTRL_SET);
/* Use LinReg offset for LinReg mode. */
__raw_writel(BF_POWER_VDDIOCTRL_LINREG_OFFSET(
LINREG_OFFSET_STEP_BELOW),
HW_POWER_BASE + HW_POWER_VDDIOCTRL_SET);
/* Turn on the VDDIO LinReg output and prepare the VDDIO DCDC output. */
/* ENABLE_DCDC must be cleared to prevent DCDC and LinReg conflict. */
__raw_writel(BM_POWER_VDDIOCTRL_DISABLE_FET,
HW_POWER_BASE + HW_POWER_VDDIOCTRL_CLR);
__raw_writel(BM_POWER_5VCTRL_ILIMIT_EQ_ZERO,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
/* Make sure stepping is disabled when using DCDC. */
__raw_writel(BM_POWER_VDDIOCTRL_DISABLE_STEPPING,
REGS_POWER_BASE + HW_POWER_VDDIOCTRL_SET);
#endif
}
void ddi_power_Start4p2Dcdc(bool battery_ready)
{
uint32_t temp_reg, old_values;
#ifndef CONFIG_ARCH_MX28
/* set vbusvalid threshold to 2.9V because of errata */
__raw_writel(BM_POWER_5VCTRL_VBUSVALID_TRSH,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
#endif
#if 0
if (battery_ready)
ddi_power_EnableBatteryIrq();
else
enable_4p2_fiq_shutdown();
#endif
/* enable hardware shutdown on battery brownout */
__raw_writel(
BM_POWER_BATTMONITOR_PWDN_BATTBRNOUT |
__raw_readl(REGS_POWER_BASE + HW_POWER_BATTMONITOR),
REGS_POWER_BASE + HW_POWER_BATTMONITOR);
/* set VBUS DROOP threshold to 4.3V */
__raw_writel(BM_POWER_5VCTRL_VBUSDROOP_TRSH,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
/* turn of vbus valid detection. Part of errate
* workaround. */
__raw_writel(BM_POWER_5VCTRL_PWRUP_VBUS_CMPS,
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
__raw_writel(BM_POWER_5VCTRL_VBUSVALID_5VDETECT,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
temp_reg = (BM_POWER_CTRL_ENIRQ_VDDD_BO |
BM_POWER_CTRL_ENIRQ_VDDA_BO |
BM_POWER_CTRL_ENIRQ_VDDIO_BO |
BM_POWER_CTRL_ENIRQ_VDD5V_DROOP |
BM_POWER_CTRL_ENIRQ_VBUS_VALID);
/* save off old brownout enable values */
old_values = __raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) &
temp_reg;
/* disable irqs affected by errata */
__raw_writel(temp_reg, REGS_POWER_BASE + HW_POWER_CTRL_CLR);
/* Enable DCDC from 4P2 */
__raw_writel(__raw_readl(REGS_POWER_BASE + HW_POWER_DCDC4P2) |
BM_POWER_DCDC4P2_ENABLE_DCDC,
REGS_POWER_BASE + HW_POWER_DCDC4P2);
/* give a delay to check for errate noise problem */
mdelay(1);
temp_reg = (BM_POWER_CTRL_VDDD_BO_IRQ |
BM_POWER_CTRL_VDDA_BO_IRQ |
BM_POWER_CTRL_VDDIO_BO_IRQ |
BM_POWER_CTRL_VDD5V_DROOP_IRQ |
BM_POWER_CTRL_VBUSVALID_IRQ);
/* stay in this loop until the false brownout indciations
* no longer occur or until 5V actually goes away
*/
while ((__raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) & temp_reg) &&
!(__raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) &
BM_POWER_CTRL_VDD5V_GT_VDDIO_IRQ)) {
__raw_writel(temp_reg, REGS_POWER_BASE + HW_POWER_CTRL_CLR);
mdelay(1);
}
/* revert to previous enable irq values */
__raw_writel(old_values, REGS_POWER_BASE + HW_POWER_CTRL_SET);
if (DetectionMethod == DDI_POWER_5V_VBUSVALID)
__raw_writel(BM_POWER_5VCTRL_VBUSVALID_5VDETECT,
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
}
/* set the optimal CMPTRIP for the best possible 5V
* disconnection handling but without drawing power
* from the power on a stable 4p2 rails (at 4.2V).
*/
void ddi_power_handle_cmptrip(void)
{
enum ddi_power_5v_status pmu_5v_status;
uint32_t temp = __raw_readl(REGS_POWER_BASE + HW_POWER_DCDC4P2);
temp &= ~(BM_POWER_DCDC4P2_CMPTRIP);
pmu_5v_status = ddi_power_GetPmu5vStatus();
/* CMPTRIP should remain at 31 when 5v is disconnected
* or 5v is connected but hasn't been handled yet
*/
if (pmu_5v_status != existing_5v_connection)
temp |= (31 << BP_POWER_DCDC4P2_CMPTRIP);
else if (ddi_power_GetBattery() >
BATTERY_VOLTAGE_CMPTRIP100_THRESHOLD_MV)
temp |= (1 << BP_POWER_DCDC4P2_CMPTRIP);
else if (ddi_power_GetBattery() >
BATTERY_VOLTAGE_CMPTRIP105_THRESHOLD_MV)
temp |= (24 << BP_POWER_DCDC4P2_CMPTRIP);
else
temp |= (31 << BP_POWER_DCDC4P2_CMPTRIP);
__raw_writel(temp, REGS_POWER_BASE + HW_POWER_DCDC4P2);
}
void ddi_power_Init4p2Params(void)
{
uint32_t temp;
ddi_power_handle_cmptrip();
temp = __raw_readl(REGS_POWER_BASE + HW_POWER_DCDC4P2);
/* DROPOUT CTRL to 10, TRG to 0 */
temp &= ~(BM_POWER_DCDC4P2_TRG | BM_POWER_DCDC4P2_DROPOUT_CTRL);
temp |= (0xa << BP_POWER_DCDC4P2_DROPOUT_CTRL);
__raw_writel(temp, REGS_POWER_BASE + HW_POWER_DCDC4P2);
temp = __raw_readl(REGS_POWER_BASE + HW_POWER_5VCTRL);
/* HEADROOM_ADJ to 4, CHARGE_4P2_ILIMIT to 0 */
temp &= ~(BM_POWER_5VCTRL_HEADROOM_ADJ |
BM_POWER_5VCTRL_CHARGE_4P2_ILIMIT);
temp |= (4 << BP_POWER_5VCTRL_HEADROOM_ADJ);
}
bool ddi_power_IsBattRdyForXfer(void)
{
uint16_t u16BatteryVoltage = ddi_power_GetBattery();
if (u16BatteryVoltage > DDI_POWER_BATTERY_XFER_THRESHOLD_MV)
return true;
else
return false;
}
void ddi_power_EnableVbusDroopIrq(void)
{
__raw_writel(BM_POWER_CTRL_VDD5V_DROOP_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
__raw_writel(BM_POWER_CTRL_ENIRQ_VDD5V_DROOP,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
}
void ddi_power_Enable4p2(uint16_t target_current_limit_ma)
{
uint16_t u16BatteryVoltage;
uint32_t temp_reg;
ddi_power_Init4p2Params();
/* disable 4p2 rail brownouts for now. (they
* should have already been off at this point) */
__raw_writel(BM_POWER_CTRL_ENIRQ_DCDC4P2_BO,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
u16BatteryVoltage = ddi_power_GetBattery();
if (ddi_power_IsBattRdyForXfer()) {
/* PWD_CHARGE_4P2 should already be set but just in case... */
__raw_writel(BM_POWER_5VCTRL_PWD_CHARGE_4P2,
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
/* set CMPTRIP to DCDC_4P2 pin >= BATTERY pin */
temp_reg = __raw_readl(REGS_POWER_BASE + HW_POWER_DCDC4P2);
temp_reg &= ~(BM_POWER_DCDC4P2_CMPTRIP);
temp_reg |= (31 << BP_POWER_DCDC4P2_CMPTRIP);
__raw_writel(temp_reg, REGS_POWER_BASE + HW_POWER_DCDC4P2);
/* since we have a good battery, we can go ahead
* and turn on the Dcdcing from the 4p2 source.
* This is helpful in working around the chip
* errata.
*/
ddi_power_Start4p2Dcdc(true);
/* Enable VbusDroopIrq to handle errata */
/* set vbus droop detection level to 4.3V */
__raw_writel(BM_POWER_5VCTRL_VBUSDROOP_TRSH,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
ddi_power_EnableVbusDroopIrq();
/* now that the DCDC4P2 problems are cleared,
* turn on and ramp up the 4p2 regulator
*/
temp_reg = ddi_power_BringUp4p2Regulator(
target_current_limit_ma, true);
/* if we still have our 5V connection, we can disable
* battery brownout interrupt. This is because the
* VDD5V DROOP IRQ handler will also shutdown if battery
* is browned out and it will enable the battery brownout
* and bring VBUSVALID_TRSH level back to a normal level
* which caused the hardware battery brownout shutdown
* to be enabled. The benefit of this is that device
* that have detachable batteries (or devices going through
* the assembly line and running this firmware to test
* with) can avoid shutting down if 5V is present and
* battery voltage goes away.
*/
if (!(__raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) &
(BM_POWER_CTRL_VBUSVALID_IRQ |
BM_POWER_CTRL_VDD5V_DROOP_IRQ))) {
ddi_power_EnableBatteryBoInterrupt(false);
}
printk(KERN_INFO "4P2 rail started. 5V current limit\
set to %dmA\n", temp_reg);
} else {
printk(KERN_ERR "4P2 rail was attempted to be started \
from a system\
with a very low battery voltage. This is not\
yet handled by the kernel driver, only by the\
bootlets. Remaining on battery power.\n");
if ((__raw_readl(REGS_POWER_BASE + HW_POWER_5VCTRL) &&
BM_POWER_5VCTRL_ENABLE_DCDC))
ddi_power_EnableBatteryBoInterrupt(true);
#if 0
/* enable hardware shutdown (if 5v disconnected)
* on battery brownout */
__raw_writel(
BM_POWER_BATTMONITOR_PWDN_BATTBRNOUT |
__raw_readl(REGS_POWER_BASE + HW_POWER_BATTMONITOR),
REGS_POWER_BASE + HW_POWER_BATTMONITOR);
/* turn on and ramp up the 4p2 regulator */
temp_reg = ddi_power_BringUp4p2Regulator(
target_current_limit_ma, false);
Configure4p2FiqShutdown();
SetVbusValidThresh(0);
#endif
}
}
/* enable and ramp up 4p2 regulator */
uint16_t ddi_power_BringUp4p2Regulator(
uint16_t target_current_limit_ma,
bool b4p2_dcdc_enabled)
{
uint32_t temp_reg;
uint16_t charge_4p2_ilimit = 0;
/* initial current limit to 0 */
__raw_writel(BM_POWER_5VCTRL_CHARGE_4P2_ILIMIT,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
__raw_writel(__raw_readl(REGS_POWER_BASE + HW_POWER_DCDC4P2) |
BM_POWER_DCDC4P2_ENABLE_4P2,
REGS_POWER_BASE + HW_POWER_DCDC4P2);
/* set 4p2 target voltage to zero */
temp_reg = __raw_readl(REGS_POWER_BASE + HW_POWER_DCDC4P2);
temp_reg &= (~BM_POWER_DCDC4P2_TRG);
__raw_writel(temp_reg, REGS_POWER_BASE + HW_POWER_DCDC4P2);
/* Enable 4P2 regulator*/
__raw_writel(BM_POWER_5VCTRL_PWD_CHARGE_4P2,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
if (target_current_limit_ma > 780)
target_current_limit_ma = 780;
ddi_power_Set4p2BoLevel(4150);
/* possibly not necessary but recommended for unloaded
* 4p2 rail
*/
__raw_writel(BM_POWER_CHARGE_ENABLE_LOAD,
REGS_POWER_BASE + HW_POWER_CHARGE_SET);
while (charge_4p2_ilimit < target_current_limit_ma) {
if (__raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) &
(BM_POWER_CTRL_VBUSVALID_IRQ |
BM_POWER_CTRL_VDD5V_DROOP_IRQ))
break;
charge_4p2_ilimit += 100;
if (charge_4p2_ilimit > target_current_limit_ma)
charge_4p2_ilimit = target_current_limit_ma;
ddi_power_set_4p2_ilimit(charge_4p2_ilimit);
/* dcdc4p2 enable_dcdc must be enabled for
* 4p2 bo indication to function. If not enabled,
* skip using bo level detection
*/
if (!(b4p2_dcdc_enabled))
msleep(1);
else if (__raw_readl(REGS_POWER_BASE + HW_POWER_STS) &
BM_POWER_STS_DCDC_4P2_BO)
msleep(1);
else {
charge_4p2_ilimit = target_current_limit_ma;
ddi_power_set_4p2_ilimit(charge_4p2_ilimit);
}
}
ddi_power_Set4p2BoLevel(3600);
__raw_writel(BM_POWER_CTRL_DCDC4P2_BO_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
/* rail should now be up and loaded. Extra
* internal load is not necessary.
*/
__raw_writel(BM_POWER_CHARGE_ENABLE_LOAD,
REGS_POWER_BASE + HW_POWER_CHARGE_CLR);
return charge_4p2_ilimit;
}
void ddi_power_Set4p2BoLevel(uint16_t bo_voltage_mv)
{
uint16_t bo_reg_value;
uint32_t temp;
if (bo_voltage_mv < 3600)
bo_voltage_mv = 3600;
else if (bo_voltage_mv > 4375)
bo_voltage_mv = 4375;
bo_reg_value = (bo_voltage_mv - 3600) / 25;
temp = __raw_readl(REGS_POWER_BASE + HW_POWER_DCDC4P2);
temp &= (~BM_POWER_DCDC4P2_BO);
temp |= (bo_reg_value << BP_POWER_DCDC4P2_BO);
__raw_writel(temp, REGS_POWER_BASE + HW_POWER_DCDC4P2);
}
void ddi_power_init_handoff(void)
{
int val;
/* The following settings give optimal power supply capability */
/* enable 5v presence detection */
ddi_power_Enable5vDetection();
if (ddi_power_Get5vPresentFlag())
/* It's 5V mode, enable 5V-to-battery handoff */
ddi_power_enable_5v_to_battery_handoff();
else
/* It's battery mode, enable battery-to-5V handoff */
ddi_power_enable_battery_to_5v_handoff();
/* Finally enable the battery adjust */
val = __raw_readl(REGS_POWER_BASE + HW_POWER_BATTMONITOR);
val |= BM_POWER_BATTMONITOR_EN_BATADJ;
__raw_writel(val, REGS_POWER_BASE + HW_POWER_BATTMONITOR);
}
void ddi_power_EnableBatteryInterrupt(bool enable)
{
__raw_writel(BM_POWER_CTRL_BATT_BO_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
__raw_writel(BM_POWER_CTRL_ENIRQBATT_BO,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
}
#define REGS_LRADC_BASE IO_ADDRESS(LRADC_PHYS_ADDR)
int ddi_power_init_battery(void)
{
int ret = 0;
if (!(__raw_readl(REGS_POWER_BASE + HW_POWER_5VCTRL) &&
BM_POWER_5VCTRL_ENABLE_DCDC)) {
printk(KERN_ERR "WARNING: Power Supply not\
initialized correctly by \
pre-kernel bootlets. HW_POWER_5VCTRL \
ENABLE_DCDC should already be set. Kernel \
power driver behavior may not be reliable \n");
ret = 1;
}
/* the following code to enable automatic battery measurement
* should have already been enabled in the boot prep files. Not
* sure if this is necessary or possibly susceptible to
* mis-coordination
*/
ret = !hw_lradc_present(BATTERY_VOLTAGE_CH);
if (ret) {
printk(KERN_ERR "%s: hw_lradc_present failed\n", __func__);
return -ENODEV;
} else {
uint16_t wait_time = 0;
hw_lradc_configure_channel(BATTERY_VOLTAGE_CH, 0 /* div2 */ ,
0 /* acc */ ,
0 /* num_samples */);
/* Setup the trigger loop forever */
hw_lradc_set_delay_trigger(LRADC_DELAY_TRIGGER_BATTERY,
1 << BATTERY_VOLTAGE_CH,
1 << LRADC_DELAY_TRIGGER_BATTERY,
0, 200);
/* Clear the accumulator & NUM_SAMPLES */
__raw_writel(0xFFFFFFFF,
REGS_LRADC_BASE + HW_LRADC_CHn_CLR(BATTERY_VOLTAGE_CH));
/* clear previous "measurement performed" status */
__raw_writel(1 << BATTERY_VOLTAGE_CH,
REGS_LRADC_BASE + HW_LRADC_CTRL1_CLR);
/* set to LiIon scale factor */
__raw_writel(BM_LRADC_CONVERSION_SCALE_FACTOR,
REGS_LRADC_BASE + HW_LRADC_CONVERSION_SET);
/* kick off the trigger */
hw_lradc_set_delay_trigger_kick(
LRADC_DELAY_TRIGGER_BATTERY, 1);
/* wait for 1st converstion to be complete before
* enabling automatic copy to power supply
* peripheral
*/
while (!(__raw_readl(REGS_LRADC_BASE + HW_LRADC_CTRL1) &
1 << BATTERY_VOLTAGE_CH) &&
(wait_time < 10)) {
wait_time++;
mdelay(1);
}
__raw_writel(BM_LRADC_CONVERSION_AUTOMATIC,
REGS_LRADC_BASE + HW_LRADC_CONVERSION_SET);
#ifdef CONFIG_ARCH_MX28
/* workaround for mx28 lradc result incorrect in the
first several ms */
for (wait_time = 0; wait_time < 20; wait_time++)
if (ddi_bc_hwGetBatteryVoltage() < 1000) {
pr_info("ddi_bc_hwGetBatteryVoltage=%u\n",
ddi_bc_hwGetBatteryVoltage());
mdelay(100);
} else
break;
#endif
}
#ifndef VDD4P2_ENABLED
/* prepare handoff */
ddi_power_init_handoff();
#endif
return ret;
}
/*
* Use the the lradc1 channel
* get the die temperature from on-chip sensor.
*/
uint16_t MeasureInternalDieTemperature(void)
{
uint32_t ch8Value, ch9Value;
/* power up internal tep sensor block */
__raw_writel(BM_LRADC_CTRL2_TEMPSENSE_PWD,
REGS_LRADC_BASE + HW_LRADC_CTRL2_CLR);
/* mux to the lradc 8th temp channel */
__raw_writel(BF_LRADC_CTRL4_LRADC1SELECT(0xF),
REGS_LRADC_BASE + HW_LRADC_CTRL4_CLR);
__raw_writel(BF_LRADC_CTRL4_LRADC1SELECT(8),
REGS_LRADC_BASE + HW_LRADC_CTRL4_SET);
/* Clear the interrupt flag */
__raw_writel(BM_LRADC_CTRL1_LRADC1_IRQ,
REGS_LRADC_BASE + HW_LRADC_CTRL1_CLR);
__raw_writel(BF_LRADC_CTRL0_SCHEDULE(1 << LRADC_CH1),
REGS_LRADC_BASE + HW_LRADC_CTRL0_SET);
/* Wait for conversion complete*/
while (!(__raw_readl(REGS_LRADC_BASE + HW_LRADC_CTRL1)
& BM_LRADC_CTRL1_LRADC1_IRQ))
cpu_relax();
/* Clear the interrupt flag again */
__raw_writel(BM_LRADC_CTRL1_LRADC1_IRQ,
REGS_LRADC_BASE + HW_LRADC_CTRL1_CLR);
/* read temperature value and clr lradc */
ch8Value = __raw_readl(REGS_LRADC_BASE +
HW_LRADC_CHn(LRADC_CH1)) & BM_LRADC_CHn_VALUE;
__raw_writel(BM_LRADC_CHn_VALUE,
REGS_LRADC_BASE + HW_LRADC_CHn_CLR(LRADC_CH1));
/* mux to the lradc 9th temp channel */
__raw_writel(BF_LRADC_CTRL4_LRADC1SELECT(0xF),
REGS_LRADC_BASE + HW_LRADC_CTRL4_CLR);
__raw_writel(BF_LRADC_CTRL4_LRADC1SELECT(9),
REGS_LRADC_BASE + HW_LRADC_CTRL4_SET);
/* Clear the interrupt flag */
__raw_writel(BM_LRADC_CTRL1_LRADC1_IRQ,
REGS_LRADC_BASE + HW_LRADC_CTRL1_CLR);
__raw_writel(BF_LRADC_CTRL0_SCHEDULE(1 << LRADC_CH1),
REGS_LRADC_BASE + HW_LRADC_CTRL0_SET);
/* Wait for conversion complete */
while (!(__raw_readl(REGS_LRADC_BASE + HW_LRADC_CTRL1)
& BM_LRADC_CTRL1_LRADC1_IRQ))
cpu_relax();
/* Clear the interrupt flag */
__raw_writel(BM_LRADC_CTRL1_LRADC1_IRQ,
REGS_LRADC_BASE + HW_LRADC_CTRL1_CLR);
/* read temperature value */
ch9Value = __raw_readl(
REGS_LRADC_BASE + HW_LRADC_CHn(LRADC_CH1))
& BM_LRADC_CHn_VALUE;
__raw_writel(BM_LRADC_CHn_VALUE,
REGS_LRADC_BASE + HW_LRADC_CHn_CLR(LRADC_CH1));
/* power down temp sensor block */
__raw_writel(BM_LRADC_CTRL2_TEMPSENSE_PWD,
REGS_LRADC_BASE + HW_LRADC_CTRL2_SET);
return (uint16_t)((ch9Value-ch8Value)*GAIN_CORRECTION/4000);
}
/* Name: ddi_power_GetBatteryMode */
/* */
/* brief */
ddi_power_BatteryMode_t ddi_power_GetBatteryMode(void)
{
return DDI_POWER_BATT_MODE_LIION;
}
/* Name: ddi_power_GetBatteryChargerEnabled */
/* */
/* brief */
bool ddi_power_GetBatteryChargerEnabled(void)
{
#if 0
return (__raw_readl(REGS_POWER_BASE + HW_POWER_STS) & BM_POWER_STS_BATT_CHRG_PRESENT) ? 1 : 0;
#endif
return 1;
}
/* */
/* brief Report if the charger hardware power is on. */
/* */
/* fntype Function */
/* */
/* This function reports if the charger hardware power is on. */
/* */
/* retval Zero if the charger hardware is not powered. Non-zero otherwise. */
/* */
/* Note that the bit we're looking at is named PWD_BATTCHRG. The "PWD" */
/* stands for "power down". Thus, when the bit is set, the battery charger */
/* hardware is POWERED DOWN. */
bool ddi_power_GetChargerPowered(void)
{
return (__raw_readl(REGS_POWER_BASE + HW_POWER_CHARGE) & BM_POWER_CHARGE_PWD_BATTCHRG) ? 0 : 1;
}
/* */
/* brief Turn the charging hardware on or off. */
/* */
/* fntype Function */
/* */
/* This function turns the charging hardware on or off. */
/* */
/* param[in] on Indicates whether the charging hardware should be on or off. */
/* */
/* Note that the bit we're looking at is named PWD_BATTCHRG. The "PWD" */
/* stands for "power down". Thus, when the bit is set, the battery charger */
/* hardware is POWERED DOWN. */
void ddi_power_SetChargerPowered(bool bPowerOn)
{
/* Hit the battery charge power switch. */
if (bPowerOn) {
__raw_writel(BM_POWER_CHARGE_PWD_BATTCHRG,
REGS_POWER_BASE + HW_POWER_CHARGE_CLR);
__raw_writel(BM_POWER_5VCTRL_PWD_CHARGE_4P2,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
} else {
__raw_writel(BM_POWER_CHARGE_PWD_BATTCHRG,
REGS_POWER_BASE + HW_POWER_CHARGE_SET);
#ifndef VDD4P2_ENABLED
__raw_writel(BM_POWER_5VCTRL_PWD_CHARGE_4P2,
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
#endif
}
/* #ifdef CONFIG_POWER_SUPPLY_DEBUG */
#if 0
printk("Battery charger: charger %s\n", bPowerOn ? "ON!" : "OFF");
dump_regs();
#endif
}
/* */
/* brief Reports if the charging current has fallen below the threshold. */
/* */
/* fntype Function */
/* */
/* This function reports if the charging current that the battery is accepting */
/* has fallen below the threshold. */
/* */
/* Note that this bit is regarded by the hardware guys as very slightly */
/* unreliable. They recommend that you don't believe a value of zero until */
/* you've sampled it twice. */
/* */
/* retval Zero if the battery is accepting less current than indicated by the */
/* charging threshold. Non-zero otherwise. */
/* */
int ddi_power_GetChargeStatus(void)
{
return (__raw_readl(REGS_POWER_BASE + HW_POWER_STS) & BM_POWER_STS_CHRGSTS) ? 1 : 0;
}
/* Battery Voltage */
/* */
/* brief Report the voltage across the battery. */
/* */
/* fntype Function */
/* */
/* This function reports the voltage across the battery. Should return a */
/* value in range ~3000 - 4200 mV. */
/* */
/* retval The voltage across the battery, in mV. */
/* */
/* brief Constant value for 8mV steps used in battery translation */
#define BATT_VOLTAGE_8_MV 8
uint16_t ddi_power_GetBattery(void)
{
uint32_t u16BattVolt;
/* Get the raw result of battery measurement */
u16BattVolt = __raw_readl(REGS_POWER_BASE + HW_POWER_BATTMONITOR);
u16BattVolt &= BM_POWER_BATTMONITOR_BATT_VAL;
u16BattVolt >>= BP_POWER_BATTMONITOR_BATT_VAL;
/* Adjust for 8-mV LSB resolution and return */
u16BattVolt *= BATT_VOLTAGE_8_MV;
/* #ifdef CONFIG_POWER_SUPPLY_DEBUG */
#if 0
printk("Battery charger: %u mV\n", u16BattVolt);
#endif
return u16BattVolt;
}
#if 0
/* */
/* brief Report the voltage across the battery. */
/* */
/* fntype Function */
/* */
/* This function reports the voltage across the battery. */
/* */
/* retval The voltage across the battery, in mV. */
/* */
uint16_t ddi_power_GetBatteryBrownout(void)
{
uint32_t u16BatteryBrownoutLevel;
/* Get battery brownout level */
u16BatteryBrownoutLevel = __raw_readl(REGS_POWER_BASE + HW_POWER_BATTMONITOR);
u16BatteryBrownoutLevel &= BM_POWER_BATTMONITOR_BRWNOUT_LVL;
u16BatteryBrownoutLevel >>= BP_POWER_BATTMONITOR_BRWNOUT_LVL;
/* Calculate battery brownout level */
switch (ddi_power_GetBatteryMode()) {
case DDI_POWER_BATT_MODE_LIION:
u16BatteryBrownoutLevel *= BATT_BRWNOUT_LIION_LEVEL_STEP_MV;
u16BatteryBrownoutLevel += BATT_BRWNOUT_LIION_BASE_MV;
break;
case DDI_POWER_BATT_MODE_ALKALINE_NIMH:
u16BatteryBrownoutLevel *= BATT_BRWNOUT_ALKAL_LEVEL_STEP_MV;
u16BatteryBrownoutLevel += BATT_BRWNOUT_ALKAL_BASE_MV;
break;
default:
u16BatteryBrownoutLevel = 0;
break;
}
return u16BatteryBrownoutLevel;
}
/* */
/* brief Set battery brownout level */
/* */
/* fntype Reentrant Function */
/* */
/* This function sets the battery brownout level in millivolt. It transforms the */
/* input brownout value from millivolts to the hardware register bit field value */
/* taking the ceiling value in the calculation. */
/* */
/* param[in] u16BattBrownout_mV Battery battery brownout level in mV */
/* */
/* return SUCCESS */
/* */
int ddi_power_SetBatteryBrownout(uint16_t u16BattBrownout_mV)
{
int16_t i16BrownoutLevel;
int ret = 0;
/* Calculate battery brownout level */
switch (ddi_power_GetBatteryMode()) {
case DDI_POWER_BATT_MODE_LIION:
i16BrownoutLevel = u16BattBrownout_mV -
BATT_BRWNOUT_LIION_EQN_CONST;
i16BrownoutLevel /= BATT_BRWNOUT_LIION_LEVEL_STEP_MV;
break;
case DDI_POWER_BATT_MODE_ALKALINE_NIMH:
i16BrownoutLevel = u16BattBrownout_mV -
BATT_BRWNOUT_ALKAL_EQN_CONST;
i16BrownoutLevel /= BATT_BRWNOUT_ALKAL_LEVEL_STEP_MV;
break;
default:
return -EINVAL;
}
/* Do a check to make sure nothing went wrong. */
if (i16BrownoutLevel <= 0x0f) {
/* Write the battery brownout level */
__raw_writel(
BF_POWER_BATTMONITOR_BRWNOUT_LVL(i16BrownoutLevel),
REGS_POWER_BASE + HW_POWER_BATTMONITOR_SET);
} else
ret = -EINVAL;
return ret;
}
#endif
/* Currents */
/* Name: ddi_power_SetMaxBatteryChargeCurrent */
/* */
/* brief */
uint16_t ddi_power_SetMaxBatteryChargeCurrent(uint16_t u16MaxCur)
{
uint32_t u16OldSetting;
uint32_t u16NewSetting;
uint32_t u16ToggleMask;
/* Get the old setting. */
u16OldSetting = (__raw_readl(REGS_POWER_BASE + HW_POWER_CHARGE) & BM_POWER_CHARGE_BATTCHRG_I) >>
BP_POWER_CHARGE_BATTCHRG_I;
/* Convert the new threshold into a setting. */
u16NewSetting = ddi_power_convert_current_to_setting(u16MaxCur);
/* Compute the toggle mask. */
u16ToggleMask = u16OldSetting ^ u16NewSetting;
/* Write to the toggle register.*/
__raw_writel(u16ToggleMask << BP_POWER_CHARGE_BATTCHRG_I,
REGS_POWER_BASE + HW_POWER_CHARGE_TOG);
/* Tell the caller what current we're set at now. */
return ddi_power_convert_setting_to_current(u16NewSetting);
}
/* Name: ddi_power_GetMaxBatteryChargeCurrent */
/* */
/* brief */
uint16_t ddi_power_GetMaxBatteryChargeCurrent(void)
{
uint32_t u8Bits;
/* Get the raw data from register */
u8Bits = (__raw_readl(REGS_POWER_BASE + HW_POWER_CHARGE) & BM_POWER_CHARGE_BATTCHRG_I) >>
BP_POWER_CHARGE_BATTCHRG_I;
/* Translate raw data to current (in mA) and return it */
return ddi_power_convert_setting_to_current(u8Bits);
}
/* Name: ddi_power_GetMaxChargeCurrent */
/* */
/* brief */
uint16_t ddi_power_SetBatteryChargeCurrentThreshold(uint16_t u16Thresh)
{
uint32_t u16OldSetting;
uint32_t u16NewSetting;
uint32_t u16ToggleMask;
/* ------------------------------------------------------------------- */
/* See ddi_power_SetMaxBatteryChargeCurrent for an explanation of */
/* why we're using the toggle register here. */
/* */
/* Since this function doesn't have any major hardware effect, */
/* we could use the usual macros for writing to this bit field. But, */
/* for the sake of parallel construction and any potentially odd */
/* effects on the status bit, we use the toggle register in the same */
/* way as ddi_bc_hwSetMaxCurrent. */
/* ------------------------------------------------------------------- */
/* ------------------------------------------------------------------- */
/* The threshold hardware can't express as large a range as the max */
/* current setting, but we can use the same functions as long as we */
/* add an extra check here. */
/* */
/* Thresholds larger than 180mA can't be expressed. */
/* ------------------------------------------------------------------- */
if (u16Thresh > 180)
u16Thresh = 180;
/* Create the mask */
/* Get the old setting. */
u16OldSetting = (__raw_readl(REGS_POWER_BASE + HW_POWER_CHARGE) & BM_POWER_CHARGE_STOP_ILIMIT) >>
BP_POWER_CHARGE_STOP_ILIMIT;
/* Convert the new threshold into a setting. */
u16NewSetting = ddi_power_convert_current_to_setting(u16Thresh);
/* Compute the toggle mask. */
u16ToggleMask = u16OldSetting ^ u16NewSetting;
/* Write to the register */
/* Write to the toggle register. */
__raw_writel(BF_POWER_CHARGE_STOP_ILIMIT(u16ToggleMask),
REGS_POWER_BASE + HW_POWER_CHARGE_TOG);
/* Tell the caller what current we're set at now. */
return ddi_power_convert_setting_to_current(u16NewSetting);
}
/* Name: ddi_power_GetBatteryChargeCurrentThreshold */
/* */
/* brief */
uint16_t ddi_power_GetBatteryChargeCurrentThreshold(void)
{
uint32_t u16Threshold;
u16Threshold = (__raw_readl(REGS_POWER_BASE + HW_POWER_CHARGE) & BM_POWER_CHARGE_STOP_ILIMIT) >>
BP_POWER_CHARGE_STOP_ILIMIT;
return ddi_power_convert_setting_to_current(u16Threshold);
}
/* Conversion */
/* */
/* brief Compute the actual current expressible in the hardware. */
/* */
/* fntype Function */
/* */
/* Given a desired current, this function computes the actual current */
/* expressible in the hardware. */
/* */
/* Note that the hardware has a minimum resolution of 10mA and a maximum */
/* expressible value of 780mA (see the data sheet for details). If the given */
/* current cannot be expressed exactly, then the largest expressible smaller */
/* value will be used. */
/* */
/* param[in] u16Current The current of interest. */
/* */
/* retval The corresponding current in mA. */
/* */
uint16_t ddi_power_ExpressibleCurrent(uint16_t u16Current)
{
return ddi_power_convert_setting_to_current(
ddi_power_convert_current_to_setting(u16Current));
}
/* Name: ddi_power_Get5VPresent */
/* */
/* brief */
bool ddi_power_Get5vPresentFlag(void)
{
switch (DetectionMethod) {
case DDI_POWER_5V_VBUSVALID:
/* Check VBUSVALID for 5V present */
return ((__raw_readl(REGS_POWER_BASE + HW_POWER_STS) &
BM_POWER_STS_VBUSVALID0) != 0);
case DDI_POWER_5V_VDD5V_GT_VDDIO:
/* Check VDD5V_GT_VDDIO for 5V present */
return ((__raw_readl(REGS_POWER_BASE + HW_POWER_STS) &
BM_POWER_STS_VDD5V_GT_VDDIO) != 0);
default:
break;
}
return 0;
}
/* */
/* brief Report on the die temperature. */
/* */
/* fntype Function */
/* */
/* This function reports on the die temperature. */
/* */
/* param[out] pLow The low end of the temperature range. */
/* param[out] pHigh The high end of the temperature range. */
/* */
/* Temperature constant */
#define TEMP_READING_ERROR_MARGIN 5
#define KELVIN_TO_CELSIUS_CONST 273
void ddi_power_GetDieTemp(int16_t *pLow, int16_t *pHigh)
{
int16_t i16High, i16Low;
uint16_t u16Reading;
/* Get the reading in Kelvins */
u16Reading = MeasureInternalDieTemperature();
/* Adjust for error margin */
i16High = u16Reading + TEMP_READING_ERROR_MARGIN;
i16Low = u16Reading - TEMP_READING_ERROR_MARGIN;
/* Convert to Celsius */
i16High -= KELVIN_TO_CELSIUS_CONST;
i16Low -= KELVIN_TO_CELSIUS_CONST;
/* #ifdef CONFIG_POWER_SUPPLY_DEBUG */
#if 0
printk("Battery charger: Die temp %d to %d C\n", i16Low, i16High);
#endif
/* Return the results */
*pHigh = i16High;
*pLow = i16Low;
}
/* */
/* brief Checks to see if the DCDC has been manually enabled */
/* */
/* fntype Function */
/* */
/* retval true if DCDC is ON, false if DCDC is OFF. */
/* */
bool ddi_power_IsDcdcOn(void)
{
return (__raw_readl(REGS_POWER_BASE + HW_POWER_5VCTRL) & BM_POWER_5VCTRL_ENABLE_DCDC) ? 1 : 0;
}
/* See hw_power.h for details. */
void ddi_power_SetPowerClkGate(bool bGate)
{
/* Gate/Ungate the clock to the power block */
#ifndef CONFIG_ARCH_MX28
if (bGate) {
__raw_writel(BM_POWER_CTRL_CLKGATE,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
} else {
__raw_writel(BM_POWER_CTRL_CLKGATE,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
}
#endif
}
/* See hw_power.h for details. */
bool ddi_power_GetPowerClkGate(void)
{
#ifdef CONFIG_ARCH_MX28
return 0;
#else
return (__raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) & BM_POWER_CTRL_CLKGATE) ? 1 : 0;
#endif
}
enum ddi_power_5v_status ddi_power_GetPmu5vStatus(void)
{
if (DetectionMethod == DDI_POWER_5V_VDD5V_GT_VDDIO) {
if (__raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) &
BM_POWER_CTRL_POLARITY_VDD5V_GT_VDDIO) {
if ((__raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) &
BM_POWER_CTRL_VDD5V_GT_VDDIO_IRQ) ||
ddi_power_Get5vPresentFlag())
return new_5v_connection;
else
return existing_5v_disconnection;
} else {
if ((__raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) &
BM_POWER_CTRL_VDD5V_GT_VDDIO_IRQ) ||
!ddi_power_Get5vPresentFlag() ||
ddi_power_Get5vDroopFlag())
return new_5v_disconnection;
else
return existing_5v_connection;
}
} else {
if (__raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) &
BM_POWER_CTRL_POLARITY_VBUSVALID) {
if ((__raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) &
BM_POWER_CTRL_VBUSVALID_IRQ) ||
ddi_power_Get5vPresentFlag())
return new_5v_connection;
else
return existing_5v_disconnection;
} else {
if ((__raw_readl(REGS_POWER_BASE + HW_POWER_CTRL) &
BM_POWER_CTRL_VBUSVALID_IRQ) ||
!ddi_power_Get5vPresentFlag() ||
ddi_power_Get5vDroopFlag())
return new_5v_disconnection;
else
return existing_5v_connection;
}
}
}
void ddi_power_disable_5v_connection_irq(void)
{
__raw_writel((BM_POWER_CTRL_ENIRQ_VBUS_VALID |
BM_POWER_CTRL_ENIRQ_VDD5V_GT_VDDIO),
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
}
void ddi_power_enable_5v_disconnect_detection(void)
{
__raw_writel(BM_POWER_CTRL_POLARITY_VDD5V_GT_VDDIO |
BM_POWER_CTRL_POLARITY_VBUSVALID,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
__raw_writel(BM_POWER_CTRL_VDD5V_GT_VDDIO_IRQ |
BM_POWER_CTRL_VBUSVALID_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
if (DetectionMethod == DDI_POWER_5V_VDD5V_GT_VDDIO) {
__raw_writel(BM_POWER_CTRL_ENIRQ_VDD5V_GT_VDDIO,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
} else {
__raw_writel(BM_POWER_CTRL_ENIRQ_VBUS_VALID,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
}
}
void ddi_power_enable_5v_connect_detection(void)
{
__raw_writel(BM_POWER_CTRL_POLARITY_VDD5V_GT_VDDIO |
BM_POWER_CTRL_POLARITY_VBUSVALID,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
__raw_writel(BM_POWER_CTRL_VDD5V_GT_VDDIO_IRQ |
BM_POWER_CTRL_VBUSVALID_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
if (DetectionMethod == DDI_POWER_5V_VDD5V_GT_VDDIO) {
__raw_writel(BM_POWER_CTRL_ENIRQ_VDD5V_GT_VDDIO,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
} else {
__raw_writel(BM_POWER_CTRL_ENIRQ_VBUS_VALID,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
}
}
void ddi_power_EnableBatteryBoInterrupt(bool bEnable)
{
if (bEnable) {
__raw_writel(BM_POWER_CTRL_BATT_BO_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
__raw_writel(BM_POWER_CTRL_ENIRQBATT_BO,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
/* todo: make sure the battery brownout comparator
* is enabled in HW_POWER_BATTMONITOR
*/
} else {
__raw_writel(BM_POWER_CTRL_ENIRQBATT_BO,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
}
}
void ddi_power_EnableDcdc4p2BoInterrupt(bool bEnable)
{
if (bEnable) {
__raw_writel(BM_POWER_CTRL_DCDC4P2_BO_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
__raw_writel(BM_POWER_CTRL_ENIRQ_DCDC4P2_BO,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
} else {
__raw_writel(BM_POWER_CTRL_ENIRQ_DCDC4P2_BO,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
}
}
void ddi_power_EnableVdd5vDroopInterrupt(bool bEnable)
{
if (bEnable) {
__raw_writel(BM_POWER_CTRL_VDD5V_DROOP_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
__raw_writel(BM_POWER_CTRL_ENIRQ_VDD5V_DROOP,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
} else {
__raw_writel(BM_POWER_CTRL_ENIRQ_VDD5V_DROOP,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
}
}
void ddi_power_Enable5vDisconnectShutdown(bool bEnable)
{
if (bEnable) {
__raw_writel(BM_POWER_5VCTRL_PWDN_5VBRNOUT,
REGS_POWER_BASE + HW_POWER_5VCTRL_SET);
} else {
__raw_writel(BM_POWER_5VCTRL_PWDN_5VBRNOUT,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
}
}
void ddi_power_enable_5v_to_battery_xfer(bool bEnable)
{
if (bEnable) {
/* order matters */
/* we can enable this in in vbus droop or 4p2 fiq handler
* ddi_power_EnableBatteryBoInterrupt(true);
*/
ddi_power_Enable5vDisconnectShutdown(false);
} else {
/* order matters */
ddi_power_Enable5vDisconnectShutdown(true);
ddi_power_EnableBatteryBoInterrupt(false);
}
}
void ddi_power_init_4p2_protection(void)
{
/* set vbus droop detection level to 4.3V */
__raw_writel(BM_POWER_5VCTRL_VBUSDROOP_TRSH,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
/* VBUSDROOP THRESHOLD to 4.3V */
__raw_writel(BM_POWER_5VCTRL_VBUSDROOP_TRSH,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
ddi_power_EnableVbusDroopIrq();
#ifndef CONFIG_ARCH_MX28
/* VBUSVALID THRESH = 2.9V */
__raw_writel(BM_POWER_5VCTRL_VBUSVALID_TRSH,
REGS_POWER_BASE + HW_POWER_5VCTRL_CLR);
#endif
}
/* determine if all the bits are in a 'DCDC 4P2 Enabled' state. */
bool ddi_power_check_4p2_bits(void)
{
uint32_t temp;
temp = __raw_readl(REGS_POWER_BASE + HW_POWER_5VCTRL) &
BM_POWER_5VCTRL_PWD_CHARGE_4P2;
/* if PWD_CHARGE_4P2 = 1, 4p2 is disabled */
if (temp)
return false;
temp = __raw_readl(REGS_POWER_BASE + HW_POWER_DCDC4P2) &
BM_POWER_DCDC4P2_ENABLE_DCDC;
if (!temp)
return false;
temp = __raw_readl(REGS_POWER_BASE + HW_POWER_DCDC4P2) &
BM_POWER_DCDC4P2_ENABLE_4P2;
if (temp)
return true;
else
return false;
}
uint16_t ddi_power_set_4p2_ilimit(uint16_t ilimit)
{
uint32_t temp_reg;
if (ilimit > 780)
ilimit = 780;
temp_reg = __raw_readl(REGS_POWER_BASE + HW_POWER_5VCTRL);
temp_reg &= (~BM_POWER_5VCTRL_CHARGE_4P2_ILIMIT);
temp_reg |= BF_POWER_5VCTRL_CHARGE_4P2_ILIMIT(
ddi_power_convert_current_to_setting(
ilimit));
__raw_writel(temp_reg, REGS_POWER_BASE + HW_POWER_5VCTRL);
return ilimit;
}
void ddi_power_shutdown(void)
{
__raw_writel(0x3e770001, REGS_POWER_BASE + HW_POWER_RESET);
}
void ddi_power_handle_dcdc4p2_bo(void)
{
ddi_power_EnableBatteryBoInterrupt(true);
ddi_power_EnableDcdc4p2BoInterrupt(false);
}
void ddi_power_enable_vddio_interrupt(bool enable)
{
if (enable) {
__raw_writel(BM_POWER_CTRL_VDDIO_BO_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
#ifndef DISABLE_VDDIO_BO_PROTECTION
__raw_writel(BM_POWER_CTRL_ENIRQ_VDDIO_BO,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
#endif
} else {
__raw_writel(BM_POWER_CTRL_ENIRQ_VDDIO_BO,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
}
}
void ddi_power_handle_vddio_brnout(void)
{
if (ddi_power_GetPmu5vStatus() == new_5v_connection) {
ddi_power_enable_vddio_interrupt(false);
} else {
#ifdef DEBUG_IRQS
ddi_power_enable_vddio_interrupt(false);
printk(KERN_ALERT "VDDIO BO TRIED TO SHUTDOWN!!!\n");
return;
#else
ddi_power_shutdown();
#endif
}
}
void ddi_power_handle_vdd5v_droop(void)
{
uint32_t temp;
/* handle errata */
temp = __raw_readl(REGS_POWER_BASE + HW_POWER_DCDC4P2);
temp |= (BF_POWER_DCDC4P2_CMPTRIP(31) | BM_POWER_DCDC4P2_TRG);
__raw_writel(temp, REGS_POWER_BASE + HW_POWER_DCDC4P2);
/* if battery is below brownout level, shutdown asap */
if (__raw_readl(REGS_POWER_BASE + HW_POWER_STS) & BM_POWER_STS_BATT_BO)
ddi_power_shutdown();
/* due to 5v connect vddio bo chip bug, we need to
* disable vddio interrupts until we reset the 5v
* detection for 5v connect detect. We want to allow
* some debounce time before enabling connect detection.
*/
ddi_power_enable_vddio_interrupt(false);
ddi_power_EnableBatteryBoInterrupt(true);
ddi_power_EnableDcdc4p2BoInterrupt(false);
ddi_power_EnableVdd5vDroopInterrupt(false);
}
void ddi_power_InitOutputBrownouts(void)
{
uint32_t temp;
__raw_writel(BM_POWER_CTRL_VDDD_BO_IRQ |
BM_POWER_CTRL_VDDA_BO_IRQ |
BM_POWER_CTRL_VDDIO_BO_IRQ,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
__raw_writel(BM_POWER_CTRL_ENIRQ_VDDD_BO |
BM_POWER_CTRL_ENIRQ_VDDA_BO |
BM_POWER_CTRL_ENIRQ_VDDIO_BO,
REGS_POWER_BASE + HW_POWER_CTRL_SET);
temp = __raw_readl(REGS_POWER_BASE + HW_POWER_VDDDCTRL);
temp &= ~BM_POWER_VDDDCTRL_PWDN_BRNOUT;
__raw_writel(temp, REGS_POWER_BASE + HW_POWER_VDDDCTRL);
temp = __raw_readl(REGS_POWER_BASE + HW_POWER_VDDACTRL);
temp &= ~BM_POWER_VDDACTRL_PWDN_BRNOUT;
__raw_writel(temp, REGS_POWER_BASE + HW_POWER_VDDACTRL);
temp = __raw_readl(REGS_POWER_BASE + HW_POWER_VDDIOCTRL);
temp &= ~BM_POWER_VDDIOCTRL_PWDN_BRNOUT;
__raw_writel(temp, REGS_POWER_BASE + HW_POWER_VDDIOCTRL);
}
/* used for debugging purposes only */
void ddi_power_disable_power_interrupts(void)
{
__raw_writel(BM_POWER_CTRL_ENIRQ_DCDC4P2_BO |
BM_POWER_CTRL_ENIRQ_VDD5V_DROOP |
BM_POWER_CTRL_ENIRQ_PSWITCH |
BM_POWER_CTRL_ENIRQ_DC_OK |
BM_POWER_CTRL_ENIRQBATT_BO |
BM_POWER_CTRL_ENIRQ_VDDIO_BO |
BM_POWER_CTRL_ENIRQ_VDDA_BO |
BM_POWER_CTRL_ENIRQ_VDDD_BO |
BM_POWER_CTRL_ENIRQ_VBUS_VALID |
BM_POWER_CTRL_ENIRQ_VDD5V_GT_VDDIO,
REGS_POWER_BASE + HW_POWER_CTRL_CLR);
}
bool ddi_power_Get5vDroopFlag(void)
{
if (__raw_readl(REGS_POWER_BASE + HW_POWER_STS) &
BM_POWER_STS_VDD5V_DROOP)
return true;
else
return false;
}
/* End of file */
/* @} */
|