summaryrefslogtreecommitdiff
path: root/fs/udf/ialloc.c
blob: 84360315aca2083001727f1defc0d453b4c07779 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*
 * ialloc.c
 *
 * PURPOSE
 *	Inode allocation handling routines for the OSTA-UDF(tm) filesystem.
 *
 * COPYRIGHT
 *	This file is distributed under the terms of the GNU General Public
 *	License (GPL). Copies of the GPL can be obtained from:
 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 *	Each contributing author retains all rights to their own work.
 *
 *  (C) 1998-2001 Ben Fennema
 *
 * HISTORY
 *
 *  02/24/99 blf  Created.
 *
 */

#include "udfdecl.h"
#include <linux/fs.h>
#include <linux/quotaops.h>
#include <linux/udf_fs.h>
#include <linux/sched.h>
#include <linux/slab.h>

#include "udf_i.h"
#include "udf_sb.h"

void udf_free_inode(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	struct udf_sb_info *sbi = UDF_SB(sb);

	/*
	 * Note: we must free any quota before locking the superblock,
	 * as writing the quota to disk may need the lock as well.
	 */
	DQUOT_FREE_INODE(inode);
	DQUOT_DROP(inode);

	clear_inode(inode);

	mutex_lock(&sbi->s_alloc_mutex);
	if (sbi->s_lvid_bh) {
		struct logicalVolIntegrityDescImpUse *lvidiu =
							udf_sb_lvidiu(sbi);
		if (S_ISDIR(inode->i_mode))
			lvidiu->numDirs =
				cpu_to_le32(le32_to_cpu(lvidiu->numDirs) - 1);
		else
			lvidiu->numFiles =
				cpu_to_le32(le32_to_cpu(lvidiu->numFiles) - 1);

		mark_buffer_dirty(sbi->s_lvid_bh);
	}
	mutex_unlock(&sbi->s_alloc_mutex);

	udf_free_blocks(sb, NULL, UDF_I(inode)->i_location, 0, 1);
}

struct inode *udf_new_inode(struct inode *dir, int mode, int *err)
{
	struct super_block *sb = dir->i_sb;
	struct udf_sb_info *sbi = UDF_SB(sb);
	struct inode *inode;
	int block;
	uint32_t start = UDF_I(dir)->i_location.logicalBlockNum;
	struct udf_inode_info *iinfo;
	struct udf_inode_info *dinfo = UDF_I(dir);

	inode = new_inode(sb);

	if (!inode) {
		*err = -ENOMEM;
		return NULL;
	}
	*err = -ENOSPC;

	iinfo = UDF_I(inode);
	iinfo->i_unique = 0;
	iinfo->i_lenExtents = 0;
	iinfo->i_next_alloc_block = 0;
	iinfo->i_next_alloc_goal = 0;
	iinfo->i_strat4096 = 0;

	block = udf_new_block(dir->i_sb, NULL,
			      dinfo->i_location.partitionReferenceNum,
			      start, err);
	if (*err) {
		iput(inode);
		return NULL;
	}

	mutex_lock(&sbi->s_alloc_mutex);
	if (sbi->s_lvid_bh) {
		struct logicalVolIntegrityDesc *lvid =
			(struct logicalVolIntegrityDesc *)
			sbi->s_lvid_bh->b_data;
		struct logicalVolIntegrityDescImpUse *lvidiu =
							udf_sb_lvidiu(sbi);
		struct logicalVolHeaderDesc *lvhd;
		uint64_t uniqueID;
		lvhd = (struct logicalVolHeaderDesc *)
				(lvid->logicalVolContentsUse);
		if (S_ISDIR(mode))
			lvidiu->numDirs =
				cpu_to_le32(le32_to_cpu(lvidiu->numDirs) + 1);
		else
			lvidiu->numFiles =
				cpu_to_le32(le32_to_cpu(lvidiu->numFiles) + 1);
		iinfo->i_unique = uniqueID = le64_to_cpu(lvhd->uniqueID);
		if (!(++uniqueID & 0x00000000FFFFFFFFUL))
			uniqueID += 16;
		lvhd->uniqueID = cpu_to_le64(uniqueID);
		mark_buffer_dirty(sbi->s_lvid_bh);
	}
	inode->i_mode = mode;
	inode->i_uid = current->fsuid;
	if (dir->i_mode & S_ISGID) {
		inode->i_gid = dir->i_gid;
		if (S_ISDIR(mode))
			mode |= S_ISGID;
	} else {
		inode->i_gid = current->fsgid;
	}

	iinfo->i_location.logicalBlockNum = block;
	iinfo->i_location.partitionReferenceNum =
				dinfo->i_location.partitionReferenceNum;
	inode->i_ino = udf_get_lb_pblock(sb, iinfo->i_location, 0);
	inode->i_blocks = 0;
	iinfo->i_lenEAttr = 0;
	iinfo->i_lenAlloc = 0;
	iinfo->i_use = 0;
	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_EXTENDED_FE)) {
		iinfo->i_efe = 1;
		if (UDF_VERS_USE_EXTENDED_FE > sbi->s_udfrev)
			sbi->s_udfrev = UDF_VERS_USE_EXTENDED_FE;
		iinfo->i_ext.i_data = kzalloc(inode->i_sb->s_blocksize -
					    sizeof(struct extendedFileEntry),
					    GFP_KERNEL);
	} else {
		iinfo->i_efe = 0;
		iinfo->i_ext.i_data = kzalloc(inode->i_sb->s_blocksize -
					    sizeof(struct fileEntry),
					    GFP_KERNEL);
	}
	if (!iinfo->i_ext.i_data) {
		iput(inode);
		*err = -ENOMEM;
		mutex_unlock(&sbi->s_alloc_mutex);
		return NULL;
	}
	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_AD_IN_ICB))
		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
	else if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
	else
		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
	inode->i_mtime = inode->i_atime = inode->i_ctime =
		iinfo->i_crtime = current_fs_time(inode->i_sb);
	insert_inode_hash(inode);
	mark_inode_dirty(inode);
	mutex_unlock(&sbi->s_alloc_mutex);

	if (DQUOT_ALLOC_INODE(inode)) {
		DQUOT_DROP(inode);
		inode->i_flags |= S_NOQUOTA;
		inode->i_nlink = 0;
		iput(inode);
		*err = -EDQUOT;
		return NULL;
	}

	*err = 0;
	return inode;
}