summaryrefslogtreecommitdiff
path: root/include/asm-x86/pgtable_32.h
blob: 0aaefdda5158476ff9d23870b83cb6816bc44415 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#ifndef _I386_PGTABLE_H
#define _I386_PGTABLE_H


/*
 * The Linux memory management assumes a three-level page table setup. On
 * the i386, we use that, but "fold" the mid level into the top-level page
 * table, so that we physically have the same two-level page table as the
 * i386 mmu expects.
 *
 * This file contains the functions and defines necessary to modify and use
 * the i386 page table tree.
 */
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <asm/fixmap.h>
#include <linux/threads.h>
#include <asm/paravirt.h>

#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>

struct mm_struct;
struct vm_area_struct;

/*
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
extern unsigned long empty_zero_page[1024];
extern pgd_t swapper_pg_dir[1024];
extern struct kmem_cache *pmd_cache;
extern spinlock_t pgd_lock;
extern struct page *pgd_list;
void check_pgt_cache(void);

void pmd_ctor(struct kmem_cache *, void *);
void pgtable_cache_init(void);
void paging_init(void);


/*
 * The Linux x86 paging architecture is 'compile-time dual-mode', it
 * implements both the traditional 2-level x86 page tables and the
 * newer 3-level PAE-mode page tables.
 */
#ifdef CONFIG_X86_PAE
# include <asm/pgtable-3level-defs.h>
# define PMD_SIZE	(1UL << PMD_SHIFT)
# define PMD_MASK	(~(PMD_SIZE-1))
#else
# include <asm/pgtable-2level-defs.h>
#endif

#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)

#define TWOLEVEL_PGDIR_SHIFT	22
#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)

/* Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 */
#define VMALLOC_OFFSET	(8*1024*1024)
#define VMALLOC_START	(((unsigned long) high_memory + \
			2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
#ifdef CONFIG_HIGHMEM
# define VMALLOC_END	(PKMAP_BASE-2*PAGE_SIZE)
#else
# define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)
#endif

/*
 * Define this if things work differently on an i386 and an i486:
 * it will (on an i486) warn about kernel memory accesses that are
 * done without a 'access_ok(VERIFY_WRITE,..)'
 */
#undef TEST_ACCESS_OK

/* The boot page tables (all created as a single array) */
extern unsigned long pg0[];

#define pte_present(x)	((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))

/* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
#define pmd_none(x)	(!(unsigned long)pmd_val(x))
#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)


#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))

#ifdef CONFIG_X86_PAE
# include <asm/pgtable-3level.h>
#else
# include <asm/pgtable-2level.h>
#endif

#ifndef CONFIG_PARAVIRT
/*
 * Rules for using pte_update - it must be called after any PTE update which
 * has not been done using the set_pte / clear_pte interfaces.  It is used by
 * shadow mode hypervisors to resynchronize the shadow page tables.  Kernel PTE
 * updates should either be sets, clears, or set_pte_atomic for P->P
 * transitions, which means this hook should only be called for user PTEs.
 * This hook implies a P->P protection or access change has taken place, which
 * requires a subsequent TLB flush.  The notification can optionally be delayed
 * until the TLB flush event by using the pte_update_defer form of the
 * interface, but care must be taken to assure that the flush happens while
 * still holding the same page table lock so that the shadow and primary pages
 * do not become out of sync on SMP.
 */
#define pte_update(mm, addr, ptep)		do { } while (0)
#define pte_update_defer(mm, addr, ptep)	do { } while (0)
#endif

/* local pte updates need not use xchg for locking */
static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
{
	pte_t res = *ptep;

	/* Pure native function needs no input for mm, addr */
	native_pte_clear(NULL, 0, ptep);
	return res;
}

/*
 * We only update the dirty/accessed state if we set
 * the dirty bit by hand in the kernel, since the hardware
 * will do the accessed bit for us, and we don't want to
 * race with other CPU's that might be updating the dirty
 * bit at the same time.
 */
#define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
#define ptep_set_access_flags(vma, address, ptep, entry, dirty)		\
({									\
	int __changed = !pte_same(*(ptep), entry);			\
	if (__changed && dirty) {					\
		(ptep)->pte_low = (entry).pte_low;			\
		pte_update_defer((vma)->vm_mm, (address), (ptep));	\
		flush_tlb_page(vma, address);				\
	}								\
	__changed;							\
})

#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(vma, addr, ptep) ({			\
	int __ret = 0;							\
	if (pte_young(*(ptep)))						\
		__ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,		\
						&(ptep)->pte_low);	\
	if (__ret)							\
		pte_update((vma)->vm_mm, addr, ptep);			\
	__ret;								\
})

#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
#define ptep_clear_flush_young(vma, address, ptep)			\
({									\
	int __young;							\
	__young = ptep_test_and_clear_young((vma), (address), (ptep));	\
	if (__young)							\
		flush_tlb_page(vma, address);				\
	__young;							\
})

#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
	pte_t pte = native_ptep_get_and_clear(ptep);
	pte_update(mm, addr, ptep);
	return pte;
}

#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
{
	pte_t pte;
	if (full) {
		/*
		 * Full address destruction in progress; paravirt does not
		 * care about updates and native needs no locking
		 */
		pte = native_local_ptep_get_and_clear(ptep);
	} else {
		pte = ptep_get_and_clear(mm, addr, ptep);
	}
	return pte;
}

#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
	clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
	pte_update(mm, addr, ptep);
}

/*
 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
 *
 *  dst - pointer to pgd range anwhere on a pgd page
 *  src - ""
 *  count - the number of pgds to copy.
 *
 * dst and src can be on the same page, but the range must not overlap,
 * and must not cross a page boundary.
 */
static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
{
       memcpy(dst, src, count * sizeof(pgd_t));
}

/*
 * Macro to mark a page protection value as "uncacheable".  On processors which do not support
 * it, this is a no-op.
 */
#define pgprot_noncached(prot)	((boot_cpu_data.x86 > 3)					  \
				 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */

#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))

static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	pte.pte_low &= _PAGE_CHG_MASK;
	pte.pte_low |= pgprot_val(newprot);
#ifdef CONFIG_X86_PAE
	/*
	 * Chop off the NX bit (if present), and add the NX portion of
	 * the newprot (if present):
	 */
	pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
	pte.pte_high |= (pgprot_val(newprot) >> 32) & \
					(__supported_pte_mask >> 32);
#endif
	return pte;
}

/*
 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
 *
 * this macro returns the index of the entry in the pgd page which would
 * control the given virtual address
 */
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define pgd_index_k(addr) pgd_index(addr)

/*
 * pgd_offset() returns a (pgd_t *)
 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
 */
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))

/*
 * a shortcut which implies the use of the kernel's pgd, instead
 * of a process's
 */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

/*
 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
 *
 * this macro returns the index of the entry in the pmd page which would
 * control the given virtual address
 */
#define pmd_index(address) \
		(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))

/*
 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
 *
 * this macro returns the index of the entry in the pte page which would
 * control the given virtual address
 */
#define pte_index(address) \
		(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, address) \
	((pte_t *) pmd_page_vaddr(*(dir)) +  pte_index(address))

#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))

#define pmd_page_vaddr(pmd) \
		((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))

/*
 * Helper function that returns the kernel pagetable entry controlling
 * the virtual address 'address'. NULL means no pagetable entry present.
 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
 * as a pte too.
 */
extern pte_t *lookup_address(unsigned long address);

/*
 * Make a given kernel text page executable/non-executable.
 * Returns the previous executability setting of that page (which
 * is used to restore the previous state). Used by the SMP bootup code.
 * NOTE: this is an __init function for security reasons.
 */
#ifdef CONFIG_X86_PAE
 extern int set_kernel_exec(unsigned long vaddr, int enable);
#else
 static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
#endif

#if defined(CONFIG_HIGHPTE)
#define pte_offset_map(dir, address) \
	((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
#define pte_offset_map_nested(dir, address) \
	((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
#else
#define pte_offset_map(dir, address) \
	((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
#endif

/* Clear a kernel PTE and flush it from the TLB */
#define kpte_clear_flush(ptep, vaddr)					\
do {									\
	pte_clear(&init_mm, vaddr, ptep);				\
	__flush_tlb_one(vaddr);						\
} while (0)

/*
 * The i386 doesn't have any external MMU info: the kernel page
 * tables contain all the necessary information.
 */
#define update_mmu_cache(vma,address,pte) do { } while (0)

void native_pagetable_setup_start(pgd_t *base);
void native_pagetable_setup_done(pgd_t *base);

#ifndef CONFIG_PARAVIRT
static inline void paravirt_pagetable_setup_start(pgd_t *base)
{
	native_pagetable_setup_start(base);
}

static inline void paravirt_pagetable_setup_done(pgd_t *base)
{
	native_pagetable_setup_done(base);
}
#endif	/* !CONFIG_PARAVIRT */

#endif /* !__ASSEMBLY__ */

/*
 * kern_addr_valid() is (1) for FLATMEM and (0) for
 * SPARSEMEM and DISCONTIGMEM
 */
#ifdef CONFIG_FLATMEM
#define kern_addr_valid(addr)	(1)
#else
#define kern_addr_valid(kaddr)	(0)
#endif

#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
		remap_pfn_range(vma, vaddr, pfn, size, prot)

#include <asm-generic/pgtable.h>

#endif /* _I386_PGTABLE_H */