summaryrefslogtreecommitdiff
path: root/include/linux/capability.h
blob: 15f90929fb51b615c7a778bc33045cea0363b099 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
 * This is <linux/capability.h>
 *
 * Andrew G. Morgan <morgan@kernel.org>
 * Alexander Kjeldaas <astor@guardian.no>
 * with help from Aleph1, Roland Buresund and Andrew Main.
 *
 * See here for the libcap library ("POSIX draft" compliance):
 *
 * ftp://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.6/
 */
#ifndef _LINUX_CAPABILITY_H
#define _LINUX_CAPABILITY_H

#include <uapi/linux/capability.h>


#define _KERNEL_CAPABILITY_VERSION _LINUX_CAPABILITY_VERSION_3
#define _KERNEL_CAPABILITY_U32S    _LINUX_CAPABILITY_U32S_3

extern int file_caps_enabled;

typedef struct kernel_cap_struct {
	__u32 cap[_KERNEL_CAPABILITY_U32S];
} kernel_cap_t;

/* exact same as vfs_cap_data but in cpu endian and always filled completely */
struct cpu_vfs_cap_data {
	__u32 magic_etc;
	kernel_cap_t permitted;
	kernel_cap_t inheritable;
};

#define _USER_CAP_HEADER_SIZE  (sizeof(struct __user_cap_header_struct))
#define _KERNEL_CAP_T_SIZE     (sizeof(kernel_cap_t))


struct file;
struct inode;
struct dentry;
struct user_namespace;

struct user_namespace *current_user_ns(void);

extern const kernel_cap_t __cap_empty_set;
extern const kernel_cap_t __cap_init_eff_set;

/*
 * Internal kernel functions only
 */

#define CAP_FOR_EACH_U32(__capi)  \
	for (__capi = 0; __capi < _KERNEL_CAPABILITY_U32S; ++__capi)

/*
 * CAP_FS_MASK and CAP_NFSD_MASKS:
 *
 * The fs mask is all the privileges that fsuid==0 historically meant.
 * At one time in the past, that included CAP_MKNOD and CAP_LINUX_IMMUTABLE.
 *
 * It has never meant setting security.* and trusted.* xattrs.
 *
 * We could also define fsmask as follows:
 *   1. CAP_FS_MASK is the privilege to bypass all fs-related DAC permissions
 *   2. The security.* and trusted.* xattrs are fs-related MAC permissions
 */

# define CAP_FS_MASK_B0     (CAP_TO_MASK(CAP_CHOWN)		\
			    | CAP_TO_MASK(CAP_MKNOD)		\
			    | CAP_TO_MASK(CAP_DAC_OVERRIDE)	\
			    | CAP_TO_MASK(CAP_DAC_READ_SEARCH)	\
			    | CAP_TO_MASK(CAP_FOWNER)		\
			    | CAP_TO_MASK(CAP_FSETID))

# define CAP_FS_MASK_B1     (CAP_TO_MASK(CAP_MAC_OVERRIDE))

#if _KERNEL_CAPABILITY_U32S != 2
# error Fix up hand-coded capability macro initializers
#else /* HAND-CODED capability initializers */

# define CAP_EMPTY_SET    ((kernel_cap_t){{ 0, 0 }})
# define CAP_FULL_SET     ((kernel_cap_t){{ ~0, ~0 }})
# define CAP_FS_SET       ((kernel_cap_t){{ CAP_FS_MASK_B0 \
				    | CAP_TO_MASK(CAP_LINUX_IMMUTABLE), \
				    CAP_FS_MASK_B1 } })
# define CAP_NFSD_SET     ((kernel_cap_t){{ CAP_FS_MASK_B0 \
				    | CAP_TO_MASK(CAP_SYS_RESOURCE), \
				    CAP_FS_MASK_B1 } })

#endif /* _KERNEL_CAPABILITY_U32S != 2 */

# define cap_clear(c)         do { (c) = __cap_empty_set; } while (0)

#define cap_raise(c, flag)  ((c).cap[CAP_TO_INDEX(flag)] |= CAP_TO_MASK(flag))
#define cap_lower(c, flag)  ((c).cap[CAP_TO_INDEX(flag)] &= ~CAP_TO_MASK(flag))
#define cap_raised(c, flag) ((c).cap[CAP_TO_INDEX(flag)] & CAP_TO_MASK(flag))

#define CAP_BOP_ALL(c, a, b, OP)                                    \
do {                                                                \
	unsigned __capi;                                            \
	CAP_FOR_EACH_U32(__capi) {                                  \
		c.cap[__capi] = a.cap[__capi] OP b.cap[__capi];     \
	}                                                           \
} while (0)

#define CAP_UOP_ALL(c, a, OP)                                       \
do {                                                                \
	unsigned __capi;                                            \
	CAP_FOR_EACH_U32(__capi) {                                  \
		c.cap[__capi] = OP a.cap[__capi];                   \
	}                                                           \
} while (0)

static inline kernel_cap_t cap_combine(const kernel_cap_t a,
				       const kernel_cap_t b)
{
	kernel_cap_t dest;
	CAP_BOP_ALL(dest, a, b, |);
	return dest;
}

static inline kernel_cap_t cap_intersect(const kernel_cap_t a,
					 const kernel_cap_t b)
{
	kernel_cap_t dest;
	CAP_BOP_ALL(dest, a, b, &);
	return dest;
}

static inline kernel_cap_t cap_drop(const kernel_cap_t a,
				    const kernel_cap_t drop)
{
	kernel_cap_t dest;
	CAP_BOP_ALL(dest, a, drop, &~);
	return dest;
}

static inline kernel_cap_t cap_invert(const kernel_cap_t c)
{
	kernel_cap_t dest;
	CAP_UOP_ALL(dest, c, ~);
	return dest;
}

static inline int cap_isclear(const kernel_cap_t a)
{
	unsigned __capi;
	CAP_FOR_EACH_U32(__capi) {
		if (a.cap[__capi] != 0)
			return 0;
	}
	return 1;
}

/*
 * Check if "a" is a subset of "set".
 * return 1 if ALL of the capabilities in "a" are also in "set"
 *	cap_issubset(0101, 1111) will return 1
 * return 0 if ANY of the capabilities in "a" are not in "set"
 *	cap_issubset(1111, 0101) will return 0
 */
static inline int cap_issubset(const kernel_cap_t a, const kernel_cap_t set)
{
	kernel_cap_t dest;
	dest = cap_drop(a, set);
	return cap_isclear(dest);
}

/* Used to decide between falling back on the old suser() or fsuser(). */

static inline int cap_is_fs_cap(int cap)
{
	const kernel_cap_t __cap_fs_set = CAP_FS_SET;
	return !!(CAP_TO_MASK(cap) & __cap_fs_set.cap[CAP_TO_INDEX(cap)]);
}

static inline kernel_cap_t cap_drop_fs_set(const kernel_cap_t a)
{
	const kernel_cap_t __cap_fs_set = CAP_FS_SET;
	return cap_drop(a, __cap_fs_set);
}

static inline kernel_cap_t cap_raise_fs_set(const kernel_cap_t a,
					    const kernel_cap_t permitted)
{
	const kernel_cap_t __cap_fs_set = CAP_FS_SET;
	return cap_combine(a,
			   cap_intersect(permitted, __cap_fs_set));
}

static inline kernel_cap_t cap_drop_nfsd_set(const kernel_cap_t a)
{
	const kernel_cap_t __cap_fs_set = CAP_NFSD_SET;
	return cap_drop(a, __cap_fs_set);
}

static inline kernel_cap_t cap_raise_nfsd_set(const kernel_cap_t a,
					      const kernel_cap_t permitted)
{
	const kernel_cap_t __cap_nfsd_set = CAP_NFSD_SET;
	return cap_combine(a,
			   cap_intersect(permitted, __cap_nfsd_set));
}

extern bool has_capability(struct task_struct *t, int cap);
extern bool has_ns_capability(struct task_struct *t,
			      struct user_namespace *ns, int cap);
extern bool has_capability_noaudit(struct task_struct *t, int cap);
extern bool has_ns_capability_noaudit(struct task_struct *t,
				      struct user_namespace *ns, int cap);
extern bool capable(int cap);
extern bool ns_capable(struct user_namespace *ns, int cap);
extern bool nsown_capable(int cap);
extern bool capable_wrt_inode_uidgid(const struct inode *inode, int cap);
extern bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap);

/* audit system wants to get cap info from files as well */
extern int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps);

#endif /* !_LINUX_CAPABILITY_H */