summaryrefslogtreecommitdiff
path: root/mm/slab_common.c
blob: d6deae9108cdc23ef507fee1b18a2ec07c4faf1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>

#include "slab.h"

enum slab_state slab_state;
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
struct kmem_cache *kmem_cache;

#ifdef CONFIG_DEBUG_VM
static int kmem_cache_sanity_check(const char *name, size_t size)
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
	}

	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
			pr_err("Slab cache with size %d has lost its name\n",
			       s->object_size);
			continue;
		}

		if (!strcmp(s->name, name)) {
			pr_err("%s (%s): Cache name already exists.\n",
			       __func__, name);
			dump_stack();
			s = NULL;
			return -EINVAL;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	return 0;
}
#else
static inline int kmem_cache_sanity_check(const char *name, size_t size)
{
	return 0;
}
#endif

/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */

struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align,
		unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *s = NULL;
	int err = 0;

	get_online_cpus();
	mutex_lock(&slab_mutex);

	if (!kmem_cache_sanity_check(name, size) == 0)
		goto out_locked;


	s = __kmem_cache_create(name, size, align, flags, ctor);
	if (!s)
		err = -ENOSYS; /* Until __kmem_cache_create returns code */

	/*
	 * Check if the slab has actually been created and if it was a
	 * real instatiation. Aliases do not belong on the list
	 */
	if (s && s->refcount == 1)
		list_add(&s->list, &slab_caches);

out_locked:
	mutex_unlock(&slab_mutex);
	put_online_cpus();

	if (err) {

		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}

		return NULL;
	}

	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

void kmem_cache_destroy(struct kmem_cache *s)
{
	get_online_cpus();
	mutex_lock(&slab_mutex);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);

		if (!__kmem_cache_shutdown(s)) {
			if (s->flags & SLAB_DESTROY_BY_RCU)
				rcu_barrier();

			__kmem_cache_destroy(s);
			kmem_cache_free(kmem_cache, s);
		} else {
			list_add(&s->list, &slab_caches);
			printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
				s->name);
			dump_stack();
		}
	}
	mutex_unlock(&slab_mutex);
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

int slab_is_available(void)
{
	return slab_state >= UP;
}