1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
|
/*
* SLUB: A slab allocator that limits cache line use instead of queuing
* objects in per cpu and per node lists.
*
* The allocator synchronizes using per slab locks and only
* uses a centralized lock to manage a pool of partial slabs.
*
* (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
*/
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>
#include <linux/memory.h>
/*
* Lock order:
* 1. slab_lock(page)
* 2. slab->list_lock
*
* The slab_lock protects operations on the object of a particular
* slab and its metadata in the page struct. If the slab lock
* has been taken then no allocations nor frees can be performed
* on the objects in the slab nor can the slab be added or removed
* from the partial or full lists since this would mean modifying
* the page_struct of the slab.
*
* The list_lock protects the partial and full list on each node and
* the partial slab counter. If taken then no new slabs may be added or
* removed from the lists nor make the number of partial slabs be modified.
* (Note that the total number of slabs is an atomic value that may be
* modified without taking the list lock).
*
* The list_lock is a centralized lock and thus we avoid taking it as
* much as possible. As long as SLUB does not have to handle partial
* slabs, operations can continue without any centralized lock. F.e.
* allocating a long series of objects that fill up slabs does not require
* the list lock.
*
* The lock order is sometimes inverted when we are trying to get a slab
* off a list. We take the list_lock and then look for a page on the list
* to use. While we do that objects in the slabs may be freed. We can
* only operate on the slab if we have also taken the slab_lock. So we use
* a slab_trylock() on the slab. If trylock was successful then no frees
* can occur anymore and we can use the slab for allocations etc. If the
* slab_trylock() does not succeed then frees are in progress in the slab and
* we must stay away from it for a while since we may cause a bouncing
* cacheline if we try to acquire the lock. So go onto the next slab.
* If all pages are busy then we may allocate a new slab instead of reusing
* a partial slab. A new slab has noone operating on it and thus there is
* no danger of cacheline contention.
*
* Interrupts are disabled during allocation and deallocation in order to
* make the slab allocator safe to use in the context of an irq. In addition
* interrupts are disabled to ensure that the processor does not change
* while handling per_cpu slabs, due to kernel preemption.
*
* SLUB assigns one slab for allocation to each processor.
* Allocations only occur from these slabs called cpu slabs.
*
* Slabs with free elements are kept on a partial list and during regular
* operations no list for full slabs is used. If an object in a full slab is
* freed then the slab will show up again on the partial lists.
* We track full slabs for debugging purposes though because otherwise we
* cannot scan all objects.
*
* Slabs are freed when they become empty. Teardown and setup is
* minimal so we rely on the page allocators per cpu caches for
* fast frees and allocs.
*
* Overloading of page flags that are otherwise used for LRU management.
*
* PageActive The slab is frozen and exempt from list processing.
* This means that the slab is dedicated to a purpose
* such as satisfying allocations for a specific
* processor. Objects may be freed in the slab while
* it is frozen but slab_free will then skip the usual
* list operations. It is up to the processor holding
* the slab to integrate the slab into the slab lists
* when the slab is no longer needed.
*
* One use of this flag is to mark slabs that are
* used for allocations. Then such a slab becomes a cpu
* slab. The cpu slab may be equipped with an additional
* freelist that allows lockless access to
* free objects in addition to the regular freelist
* that requires the slab lock.
*
* PageError Slab requires special handling due to debug
* options set. This moves slab handling out of
* the fast path and disables lockless freelists.
*/
#define FROZEN (1 << PG_active)
#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif
static inline int SlabFrozen(struct page *page)
{
return page->flags & FROZEN;
}
static inline void SetSlabFrozen(struct page *page)
{
page->flags |= FROZEN;
}
static inline void ClearSlabFrozen(struct page *page)
{
page->flags &= ~FROZEN;
}
static inline int SlabDebug(struct page *page)
{
return page->flags & SLABDEBUG;
}
static inline void SetSlabDebug(struct page *page)
{
page->flags |= SLABDEBUG;
}
static inline void ClearSlabDebug(struct page *page)
{
page->flags &= ~SLABDEBUG;
}
/*
* Issues still to be resolved:
*
* - Support PAGE_ALLOC_DEBUG. Should be easy to do.
*
* - Variable sizing of the per node arrays
*/
/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST
#if PAGE_SHIFT <= 12
/*
* Small page size. Make sure that we do not fragment memory
*/
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4
#else
/*
* Large page machines are customarily able to handle larger
* page orders.
*/
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8
#endif
/*
* Mininum number of partial slabs. These will be left on the partial
* lists even if they are empty. kmem_cache_shrink may reclaim them.
*/
#define MIN_PARTIAL 5
/*
* Maximum number of desirable partial slabs.
* The existence of more partial slabs makes kmem_cache_shrink
* sort the partial list by the number of objects in the.
*/
#define MAX_PARTIAL 10
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
SLAB_POISON | SLAB_STORE_USER)
/*
* Set of flags that will prevent slab merging
*/
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
SLAB_TRACE | SLAB_DESTROY_BY_RCU)
#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
SLAB_CACHE_DMA)
#ifndef ARCH_KMALLOC_MINALIGN
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif
#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif
/* Internal SLUB flags */
#define __OBJECT_POISON 0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
#define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
#define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size() L1_CACHE_BYTES
#endif
static int kmem_size = sizeof(struct kmem_cache);
#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif
static enum {
DOWN, /* No slab functionality available */
PARTIAL, /* kmem_cache_open() works but kmalloc does not */
UP, /* Everything works but does not show up in sysfs */
SYSFS /* Sysfs up */
} slab_state = DOWN;
/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
static LIST_HEAD(slab_caches);
/*
* Tracking user of a slab.
*/
struct track {
void *addr; /* Called from address */
int cpu; /* Was running on cpu */
int pid; /* Pid context */
unsigned long when; /* When did the operation occur */
};
enum track_item { TRACK_ALLOC, TRACK_FREE };
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
#else
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
{ return 0; }
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
kfree(s);
}
#endif
static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
c->stat[si]++;
#endif
}
/********************************************************************
* Core slab cache functions
*******************************************************************/
int slab_is_available(void)
{
return slab_state >= UP;
}
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
return s->node[node];
#else
return &s->local_node;
#endif
}
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
#ifdef CONFIG_SMP
return s->cpu_slab[cpu];
#else
return &s->cpu_slab;
#endif
}
/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
struct page *page, const void *object)
{
void *base;
if (!object)
return 1;
base = page_address(page);
if (object < base || object >= base + s->objects * s->size ||
(object - base) % s->size) {
return 0;
}
return 1;
}
/*
* Slow version of get and set free pointer.
*
* This version requires touching the cache lines of kmem_cache which
* we avoid to do in the fast alloc free paths. There we obtain the offset
* from the page struct.
*/
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
return *(void **)(object + s->offset);
}
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
*(void **)(object + s->offset) = fp;
}
/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
__p += (__s)->size)
/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
for (__p = (__free); __p; __p = get_freepointer((__s), __p))
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
return (p - addr) / s->size;
}
#ifdef CONFIG_SLUB_DEBUG
/*
* Debug settings:
*/
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
static int slub_debug;
#endif
static char *slub_debug_slabs;
/*
* Object debugging
*/
static void print_section(char *text, u8 *addr, unsigned int length)
{
int i, offset;
int newline = 1;
char ascii[17];
ascii[16] = 0;
for (i = 0; i < length; i++) {
if (newline) {
printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
newline = 0;
}
printk(KERN_CONT " %02x", addr[i]);
offset = i % 16;
ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
if (offset == 15) {
printk(KERN_CONT " %s\n", ascii);
newline = 1;
}
}
if (!newline) {
i %= 16;
while (i < 16) {
printk(KERN_CONT " ");
ascii[i] = ' ';
i++;
}
printk(KERN_CONT " %s\n", ascii);
}
}
static struct track *get_track(struct kmem_cache *s, void *object,
enum track_item alloc)
{
struct track *p;
if (s->offset)
p = object + s->offset + sizeof(void *);
else
p = object + s->inuse;
return p + alloc;
}
static void set_track(struct kmem_cache *s, void *object,
enum track_item alloc, void *addr)
{
struct track *p;
if (s->offset)
p = object + s->offset + sizeof(void *);
else
p = object + s->inuse;
p += alloc;
if (addr) {
p->addr = addr;
p->cpu = smp_processor_id();
p->pid = current ? current->pid : -1;
p->when = jiffies;
} else
memset(p, 0, sizeof(struct track));
}
static void init_tracking(struct kmem_cache *s, void *object)
{
if (!(s->flags & SLAB_STORE_USER))
return;
set_track(s, object, TRACK_FREE, NULL);
set_track(s, object, TRACK_ALLOC, NULL);
}
static void print_track(const char *s, struct track *t)
{
if (!t->addr)
return;
printk(KERN_ERR "INFO: %s in ", s);
__print_symbol("%s", (unsigned long)t->addr);
printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}
static void print_tracking(struct kmem_cache *s, void *object)
{
if (!(s->flags & SLAB_STORE_USER))
return;
print_track("Allocated", get_track(s, object, TRACK_ALLOC));
print_track("Freed", get_track(s, object, TRACK_FREE));
}
static void print_page_info(struct page *page)
{
printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
page, page->inuse, page->freelist, page->flags);
}
static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
va_list args;
char buf[100];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
printk(KERN_ERR "========================================"
"=====================================\n");
printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
printk(KERN_ERR "----------------------------------------"
"-------------------------------------\n\n");
}
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
va_list args;
char buf[100];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}
static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
{
unsigned int off; /* Offset of last byte */
u8 *addr = page_address(page);
print_tracking(s, p);
print_page_info(page);
printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
p, p - addr, get_freepointer(s, p));
if (p > addr + 16)
print_section("Bytes b4", p - 16, 16);
print_section("Object", p, min(s->objsize, 128));
if (s->flags & SLAB_RED_ZONE)
print_section("Redzone", p + s->objsize,
s->inuse - s->objsize);
if (s->offset)
off = s->offset + sizeof(void *);
else
off = s->inuse;
if (s->flags & SLAB_STORE_USER)
off += 2 * sizeof(struct track);
if (off != s->size)
/* Beginning of the filler is the free pointer */
print_section("Padding", p + off, s->size - off);
dump_stack();
}
static void object_err(struct kmem_cache *s, struct page *page,
u8 *object, char *reason)
{
slab_bug(s, reason);
print_trailer(s, page, object);
}
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
{
va_list args;
char buf[100];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
slab_bug(s, fmt);
print_page_info(page);
dump_stack();
}
static void init_object(struct kmem_cache *s, void *object, int active)
{
u8 *p = object;
if (s->flags & __OBJECT_POISON) {
memset(p, POISON_FREE, s->objsize - 1);
p[s->objsize - 1] = POISON_END;
}
if (s->flags & SLAB_RED_ZONE)
memset(p + s->objsize,
active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
s->inuse - s->objsize);
}
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
{
while (bytes) {
if (*start != (u8)value)
return start;
start++;
bytes--;
}
return NULL;
}
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
void *from, void *to)
{
slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
memset(from, data, to - from);
}
static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
u8 *object, char *what,
u8 *start, unsigned int value, unsigned int bytes)
{
u8 *fault;
u8 *end;
fault = check_bytes(start, value, bytes);
if (!fault)
return 1;
end = start + bytes;
while (end > fault && end[-1] == value)
end--;
slab_bug(s, "%s overwritten", what);
printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
fault, end - 1, fault[0], value);
print_trailer(s, page, object);
restore_bytes(s, what, value, fault, end);
return 0;
}
/*
* Object layout:
*
* object address
* Bytes of the object to be managed.
* If the freepointer may overlay the object then the free
* pointer is the first word of the object.
*
* Poisoning uses 0x6b (POISON_FREE) and the last byte is
* 0xa5 (POISON_END)
*
* object + s->objsize
* Padding to reach word boundary. This is also used for Redzoning.
* Padding is extended by another word if Redzoning is enabled and
* objsize == inuse.
*
* We fill with 0xbb (RED_INACTIVE) for inactive objects and with
* 0xcc (RED_ACTIVE) for objects in use.
*
* object + s->inuse
* Meta data starts here.
*
* A. Free pointer (if we cannot overwrite object on free)
* B. Tracking data for SLAB_STORE_USER
* C. Padding to reach required alignment boundary or at mininum
* one word if debugging is on to be able to detect writes
* before the word boundary.
*
* Padding is done using 0x5a (POISON_INUSE)
*
* object + s->size
* Nothing is used beyond s->size.
*
* If slabcaches are merged then the objsize and inuse boundaries are mostly
* ignored. And therefore no slab options that rely on these boundaries
* may be used with merged slabcaches.
*/
static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
unsigned long off = s->inuse; /* The end of info */
if (s->offset)
/* Freepointer is placed after the object. */
off += sizeof(void *);
if (s->flags & SLAB_STORE_USER)
/* We also have user information there */
off += 2 * sizeof(struct track);
if (s->size == off)
return 1;
return check_bytes_and_report(s, page, p, "Object padding",
p + off, POISON_INUSE, s->size - off);
}
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
u8 *start;
u8 *fault;
u8 *end;
int length;
int remainder;
if (!(s->flags & SLAB_POISON))
return 1;
start = page_address(page);
end = start + (PAGE_SIZE << s->order);
length = s->objects * s->size;
remainder = end - (start + length);
if (!remainder)
return 1;
fault = check_bytes(start + length, POISON_INUSE, remainder);
if (!fault)
return 1;
while (end > fault && end[-1] == POISON_INUSE)
end--;
slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
print_section("Padding", start, length);
restore_bytes(s, "slab padding", POISON_INUSE, start, end);
return 0;
}
static int check_object(struct kmem_cache *s, struct page *page,
void *object, int active)
{
u8 *p = object;
u8 *endobject = object + s->objsize;
if (s->flags & SLAB_RED_ZONE) {
unsigned int red =
active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
if (!check_bytes_and_report(s, page, object, "Redzone",
endobject, red, s->inuse - s->objsize))
return 0;
} else {
if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
check_bytes_and_report(s, page, p, "Alignment padding",
endobject, POISON_INUSE, s->inuse - s->objsize);
}
}
if (s->flags & SLAB_POISON) {
if (!active && (s->flags & __OBJECT_POISON) &&
(!check_bytes_and_report(s, page, p, "Poison", p,
POISON_FREE, s->objsize - 1) ||
!check_bytes_and_report(s, page, p, "Poison",
p + s->objsize - 1, POISON_END, 1)))
return 0;
/*
* check_pad_bytes cleans up on its own.
*/
check_pad_bytes(s, page, p);
}
if (!s->offset && active)
/*
* Object and freepointer overlap. Cannot check
* freepointer while object is allocated.
*/
return 1;
/* Check free pointer validity */
if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
object_err(s, page, p, "Freepointer corrupt");
/*
* No choice but to zap it and thus loose the remainder
* of the free objects in this slab. May cause
* another error because the object count is now wrong.
*/
set_freepointer(s, p, NULL);
return 0;
}
return 1;
}
static int check_slab(struct kmem_cache *s, struct page *page)
{
VM_BUG_ON(!irqs_disabled());
if (!PageSlab(page)) {
slab_err(s, page, "Not a valid slab page");
return 0;
}
if (page->inuse > s->objects) {
slab_err(s, page, "inuse %u > max %u",
s->name, page->inuse, s->objects);
return 0;
}
/* Slab_pad_check fixes things up after itself */
slab_pad_check(s, page);
return 1;
}
/*
* Determine if a certain object on a page is on the freelist. Must hold the
* slab lock to guarantee that the chains are in a consistent state.
*/
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
int nr = 0;
void *fp = page->freelist;
void *object = NULL;
while (fp && nr <= s->objects) {
if (fp == search)
return 1;
if (!check_valid_pointer(s, page, fp)) {
if (object) {
object_err(s, page, object,
"Freechain corrupt");
set_freepointer(s, object, NULL);
break;
} else {
slab_err(s, page, "Freepointer corrupt");
page->freelist = NULL;
page->inuse = s->objects;
slab_fix(s, "Freelist cleared");
return 0;
}
break;
}
object = fp;
fp = get_freepointer(s, object);
nr++;
}
if (page->inuse != s->objects - nr) {
slab_err(s, page, "Wrong object count. Counter is %d but "
"counted were %d", page->inuse, s->objects - nr);
page->inuse = s->objects - nr;
slab_fix(s, "Object count adjusted.");
}
return search == NULL;
}
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
if (s->flags & SLAB_TRACE) {
printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
s->name,
alloc ? "alloc" : "free",
object, page->inuse,
page->freelist);
if (!alloc)
print_section("Object", (void *)object, s->objsize);
dump_stack();
}
}
/*
* Tracking of fully allocated slabs for debugging purposes.
*/
static void add_full(struct kmem_cache_node *n, struct page *page)
{
spin_lock(&n->list_lock);
list_add(&page->lru, &n->full);
spin_unlock(&n->list_lock);
}
static void remove_full(struct kmem_cache *s, struct page *page)
{
struct kmem_cache_node *n;
if (!(s->flags & SLAB_STORE_USER))
return;
n = get_node(s, page_to_nid(page));
spin_lock(&n->list_lock);
list_del(&page->lru);
spin_unlock(&n->list_lock);
}
static void setup_object_debug(struct kmem_cache *s, struct page *page,
void *object)
{
if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
return;
init_object(s, object, 0);
init_tracking(s, object);
}
static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
void *object, void *addr)
{
if (!check_slab(s, page))
goto bad;
if (!on_freelist(s, page, object)) {
object_err(s, page, object, "Object already allocated");
goto bad;
}
if (!check_valid_pointer(s, page, object)) {
object_err(s, page, object, "Freelist Pointer check fails");
goto bad;
}
if (!check_object(s, page, object, 0))
goto bad;
/* Success perform special debug activities for allocs */
if (s->flags & SLAB_STORE_USER)
set_track(s, object, TRACK_ALLOC, addr);
trace(s, page, object, 1);
init_object(s, object, 1);
return 1;
bad:
if (PageSlab(page)) {
/*
* If this is a slab page then lets do the best we can
* to avoid issues in the future. Marking all objects
* as used avoids touching the remaining objects.
*/
slab_fix(s, "Marking all objects used");
page->inuse = s->objects;
page->freelist = NULL;
}
return 0;
}
static int free_debug_processing(struct kmem_cache *s, struct page *page,
void *object, void *addr)
{
if (!check_slab(s, page))
goto fail;
if (!check_valid_pointer(s, page, object)) {
slab_err(s, page, "Invalid object pointer 0x%p", object);
goto fail;
}
if (on_freelist(s, page, object)) {
object_err(s, page, object, "Object already free");
goto fail;
}
if (!check_object(s, page, object, 1))
return 0;
if (unlikely(s != page->slab)) {
if (!PageSlab(page)) {
slab_err(s, page, "Attempt to free object(0x%p) "
"outside of slab", object);
} else if (!page->slab) {
printk(KERN_ERR
"SLUB <none>: no slab for object 0x%p.\n",
object);
dump_stack();
} else
object_err(s, page, object,
"page slab pointer corrupt.");
goto fail;
}
/* Special debug activities for freeing objects */
if (!SlabFrozen(page) && !page->freelist)
remove_full(s, page);
if (s->flags & SLAB_STORE_USER)
set_track(s, object, TRACK_FREE, addr);
trace(s, page, object, 0);
init_object(s, object, 0);
return 1;
fail:
slab_fix(s, "Object at 0x%p not freed", object);
return 0;
}
static int __init setup_slub_debug(char *str)
{
slub_debug = DEBUG_DEFAULT_FLAGS;
if (*str++ != '=' || !*str)
/*
* No options specified. Switch on full debugging.
*/
goto out;
if (*str == ',')
/*
* No options but restriction on slabs. This means full
* debugging for slabs matching a pattern.
*/
goto check_slabs;
slub_debug = 0;
if (*str == '-')
/*
* Switch off all debugging measures.
*/
goto out;
/*
* Determine which debug features should be switched on
*/
for (; *str && *str != ','; str++) {
switch (tolower(*str)) {
case 'f':
slub_debug |= SLAB_DEBUG_FREE;
break;
case 'z':
slub_debug |= SLAB_RED_ZONE;
break;
case 'p':
slub_debug |= SLAB_POISON;
break;
case 'u':
slub_debug |= SLAB_STORE_USER;
break;
case 't':
slub_debug |= SLAB_TRACE;
break;
default:
printk(KERN_ERR "slub_debug option '%c' "
"unknown. skipped\n", *str);
}
}
check_slabs:
if (*str == ',')
slub_debug_slabs = str + 1;
out:
return 1;
}
__setup("slub_debug", setup_slub_debug);
static unsigned long kmem_cache_flags(unsigned long objsize,
unsigned long flags, const char *name,
void (*ctor)(struct kmem_cache *, void *))
{
/*
* Enable debugging if selected on the kernel commandline.
*/
if (slub_debug && (!slub_debug_slabs ||
strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
flags |= slub_debug;
return flags;
}
#else
static inline void setup_object_debug(struct kmem_cache *s,
struct page *page, void *object) {}
static inline int alloc_debug_processing(struct kmem_cache *s,
struct page *page, void *object, void *addr) { return 0; }
static inline int free_debug_processing(struct kmem_cache *s,
struct page *page, void *object, void *addr) { return 0; }
static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
void *object, int active) { return 1; }
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
static inline unsigned long kmem_cache_flags(unsigned long objsize,
unsigned long flags, const char *name,
void (*ctor)(struct kmem_cache *, void *))
{
return flags;
}
#define slub_debug 0
#endif
/*
* Slab allocation and freeing
*/
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
struct page *page;
int pages = 1 << s->order;
flags |= s->allocflags;
if (node == -1)
page = alloc_pages(flags, s->order);
else
page = alloc_pages_node(node, flags, s->order);
if (!page)
return NULL;
mod_zone_page_state(page_zone(page),
(s->flags & SLAB_RECLAIM_ACCOUNT) ?
NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
pages);
return page;
}
static void setup_object(struct kmem_cache *s, struct page *page,
void *object)
{
setup_object_debug(s, page, object);
if (unlikely(s->ctor))
s->ctor(s, object);
}
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
struct page *page;
struct kmem_cache_node *n;
void *start;
void *last;
void *p;
BUG_ON(flags & GFP_SLAB_BUG_MASK);
page = allocate_slab(s,
flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
if (!page)
goto out;
n = get_node(s, page_to_nid(page));
if (n)
atomic_long_inc(&n->nr_slabs);
page->slab = s;
page->flags |= 1 << PG_slab;
if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
SLAB_STORE_USER | SLAB_TRACE))
SetSlabDebug(page);
start = page_address(page);
if (unlikely(s->flags & SLAB_POISON))
memset(start, POISON_INUSE, PAGE_SIZE << s->order);
last = start;
for_each_object(p, s, start) {
setup_object(s, page, last);
set_freepointer(s, last, p);
last = p;
}
setup_object(s, page, last);
set_freepointer(s, last, NULL);
page->freelist = start;
page->inuse = 0;
out:
return page;
}
static void __free_slab(struct kmem_cache *s, struct page *page)
{
int pages = 1 << s->order;
if (unlikely(SlabDebug(page))) {
void *p;
slab_pad_check(s, page);
for_each_object(p, s, page_address(page))
check_object(s, page, p, 0);
ClearSlabDebug(page);
}
mod_zone_page_state(page_zone(page),
(s->flags & SLAB_RECLAIM_ACCOUNT) ?
NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
-pages);
__free_pages(page, s->order);
}
static void rcu_free_slab(struct rcu_head *h)
{
struct page *page;
page = container_of((struct list_head *)h, struct page, lru);
__free_slab(page->slab, page);
}
static void free_slab(struct kmem_cache *s, struct page *page)
{
if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
/*
* RCU free overloads the RCU head over the LRU
*/
struct rcu_head *head = (void *)&page->lru;
call_rcu(head, rcu_free_slab);
} else
__free_slab(s, page);
}
static void discard_slab(struct kmem_cache *s, struct page *page)
{
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
atomic_long_dec(&n->nr_slabs);
reset_page_mapcount(page);
__ClearPageSlab(page);
free_slab(s, page);
}
/*
* Per slab locking using the pagelock
*/
static __always_inline void slab_lock(struct page *page)
{
bit_spin_lock(PG_locked, &page->flags);
}
static __always_inline void slab_unlock(struct page *page)
{
__bit_spin_unlock(PG_locked, &page->flags);
}
static __always_inline int slab_trylock(struct page *page)
{
int rc = 1;
rc = bit_spin_trylock(PG_locked, &page->flags);
return rc;
}
/*
* Management of partially allocated slabs
*/
static void add_partial(struct kmem_cache_node *n,
struct page *page, int tail)
{
spin_lock(&n->list_lock);
n->nr_partial++;
if (tail)
list_add_tail(&page->lru, &n->partial);
else
list_add(&page->lru, &n->partial);
spin_unlock(&n->list_lock);
}
static void remove_partial(struct kmem_cache *s,
struct page *page)
{
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
spin_lock(&n->list_lock);
list_del(&page->lru);
n->nr_partial--;
spin_unlock(&n->list_lock);
}
/*
* Lock slab and remove from the partial list.
*
* Must hold list_lock.
*/
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
{
if (slab_trylock(page)) {
list_del(&page->lru);
n->nr_partial--;
SetSlabFrozen(page);
return 1;
}
return 0;
}
/*
* Try to allocate a partial slab from a specific node.
*/
static struct page *get_partial_node(struct kmem_cache_node *n)
{
struct page *page;
/*
* Racy check. If we mistakenly see no partial slabs then we
* just allocate an empty slab. If we mistakenly try to get a
* partial slab and there is none available then get_partials()
* will return NULL.
*/
if (!n || !n->nr_partial)
return NULL;
spin_lock(&n->list_lock);
list_for_each_entry(page, &n->partial, lru)
if (lock_and_freeze_slab(n, page))
goto out;
page = NULL;
out:
spin_unlock(&n->list_lock);
return page;
}
/*
* Get a page from somewhere. Search in increasing NUMA distances.
*/
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
struct zonelist *zonelist;
struct zone **z;
struct page *page;
/*
* The defrag ratio allows a configuration of the tradeoffs between
* inter node defragmentation and node local allocations. A lower
* defrag_ratio increases the tendency to do local allocations
* instead of attempting to obtain partial slabs from other nodes.
*
* If the defrag_ratio is set to 0 then kmalloc() always
* returns node local objects. If the ratio is higher then kmalloc()
* may return off node objects because partial slabs are obtained
* from other nodes and filled up.
*
* If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
* defrag_ratio = 1000) then every (well almost) allocation will
* first attempt to defrag slab caches on other nodes. This means
* scanning over all nodes to look for partial slabs which may be
* expensive if we do it every time we are trying to find a slab
* with available objects.
*/
if (!s->remote_node_defrag_ratio ||
get_cycles() % 1024 > s->remote_node_defrag_ratio)
return NULL;
zonelist = &NODE_DATA(
slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
for (z = zonelist->zones; *z; z++) {
struct kmem_cache_node *n;
n = get_node(s, zone_to_nid(*z));
if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
n->nr_partial > MIN_PARTIAL) {
page = get_partial_node(n);
if (page)
return page;
}
}
#endif
return NULL;
}
/*
* Get a partial page, lock it and return it.
*/
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
struct page *page;
int searchnode = (node == -1) ? numa_node_id() : node;
page = get_partial_node(get_node(s, searchnode));
if (page || (flags & __GFP_THISNODE))
return page;
return get_any_partial(s, flags);
}
/*
* Move a page back to the lists.
*
* Must be called with the slab lock held.
*
* On exit the slab lock will have been dropped.
*/
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
{
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
ClearSlabFrozen(page);
if (page->inuse) {
if (page->freelist) {
add_partial(n, page, tail);
stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
} else {
stat(c, DEACTIVATE_FULL);
if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
add_full(n, page);
}
slab_unlock(page);
} else {
stat(c, DEACTIVATE_EMPTY);
if (n->nr_partial < MIN_PARTIAL) {
/*
* Adding an empty slab to the partial slabs in order
* to avoid page allocator overhead. This slab needs
* to come after the other slabs with objects in
* so that the others get filled first. That way the
* size of the partial list stays small.
*
* kmem_cache_shrink can reclaim any empty slabs from the
* partial list.
*/
add_partial(n, page, 1);
slab_unlock(page);
} else {
slab_unlock(page);
stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
discard_slab(s, page);
}
}
}
/*
* Remove the cpu slab
*/
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
struct page *page = c->page;
int tail = 1;
if (page->freelist)
stat(c, DEACTIVATE_REMOTE_FREES);
/*
* Merge cpu freelist into slab freelist. Typically we get here
* because both freelists are empty. So this is unlikely
* to occur.
*/
while (unlikely(c->freelist)) {
void **object;
tail = 0; /* Hot objects. Put the slab first */
/* Retrieve object from cpu_freelist */
object = c->freelist;
c->freelist = c->freelist[c->offset];
/* And put onto the regular freelist */
object[c->offset] = page->freelist;
page->freelist = object;
page->inuse--;
}
c->page = NULL;
unfreeze_slab(s, page, tail);
}
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
stat(c, CPUSLAB_FLUSH);
slab_lock(c->page);
deactivate_slab(s, c);
}
/*
* Flush cpu slab.
*
* Called from IPI handler with interrupts disabled.
*/
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
{
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
if (likely(c && c->page))
flush_slab(s, c);
}
static void flush_cpu_slab(void *d)
{
struct kmem_cache *s = d;
__flush_cpu_slab(s, smp_processor_id());
}
static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
unsigned long flags;
local_irq_save(flags);
flush_cpu_slab(s);
local_irq_restore(flags);
#endif
}
/*
* Check if the objects in a per cpu structure fit numa
* locality expectations.
*/
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
if (node != -1 && c->node != node)
return 0;
#endif
return 1;
}
/*
* Slow path. The lockless freelist is empty or we need to perform
* debugging duties.
*
* Interrupts are disabled.
*
* Processing is still very fast if new objects have been freed to the
* regular freelist. In that case we simply take over the regular freelist
* as the lockless freelist and zap the regular freelist.
*
* If that is not working then we fall back to the partial lists. We take the
* first element of the freelist as the object to allocate now and move the
* rest of the freelist to the lockless freelist.
*
* And if we were unable to get a new slab from the partial slab lists then
* we need to allocate a new slab. This is the slowest path since it involves
* a call to the page allocator and the setup of a new slab.
*/
static void *__slab_alloc(struct kmem_cache *s,
gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
{
void **object;
struct page *new;
if (!c->page)
goto new_slab;
slab_lock(c->page);
if (unlikely(!node_match(c, node)))
goto another_slab;
stat(c, ALLOC_REFILL);
load_freelist:
object = c->page->freelist;
if (unlikely(!object))
goto another_slab;
if (unlikely(SlabDebug(c->page)))
goto debug;
c->freelist = object[c->offset];
c->page->inuse = s->objects;
c->page->freelist = NULL;
c->node = page_to_nid(c->page);
unlock_out:
slab_unlock(c->page);
stat(c, ALLOC_SLOWPATH);
return object;
another_slab:
deactivate_slab(s, c);
new_slab:
new = get_partial(s, gfpflags, node);
if (new) {
c->page = new;
stat(c, ALLOC_FROM_PARTIAL);
goto load_freelist;
}
if (gfpflags & __GFP_WAIT)
local_irq_enable();
new = new_slab(s, gfpflags, node);
if (gfpflags & __GFP_WAIT)
local_irq_disable();
if (new) {
c = get_cpu_slab(s, smp_processor_id());
stat(c, ALLOC_SLAB);
if (c->page)
flush_slab(s, c);
slab_lock(new);
SetSlabFrozen(new);
c->page = new;
goto load_freelist;
}
/*
* No memory available.
*
* If the slab uses higher order allocs but the object is
* smaller than a page size then we can fallback in emergencies
* to the page allocator via kmalloc_large. The page allocator may
* have failed to obtain a higher order page and we can try to
* allocate a single page if the object fits into a single page.
* That is only possible if certain conditions are met that are being
* checked when a slab is created.
*/
if (!(gfpflags & __GFP_NORETRY) &&
(s->flags & __PAGE_ALLOC_FALLBACK)) {
if (gfpflags & __GFP_WAIT)
local_irq_enable();
object = kmalloc_large(s->objsize, gfpflags);
if (gfpflags & __GFP_WAIT)
local_irq_disable();
return object;
}
return NULL;
debug:
if (!alloc_debug_processing(s, c->page, object, addr))
goto another_slab;
c->page->inuse++;
c->page->freelist = object[c->offset];
c->node = -1;
goto unlock_out;
}
/*
* Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
* have the fastpath folded into their functions. So no function call
* overhead for requests that can be satisfied on the fastpath.
*
* The fastpath works by first checking if the lockless freelist can be used.
* If not then __slab_alloc is called for slow processing.
*
* Otherwise we can simply pick the next object from the lockless free list.
*/
static __always_inline void *slab_alloc(struct kmem_cache *s,
gfp_t gfpflags, int node, void *addr)
{
void **object;
struct kmem_cache_cpu *c;
unsigned long flags;
local_irq_save(flags);
c = get_cpu_slab(s, smp_processor_id());
if (unlikely(!c->freelist || !node_match(c, node)))
object = __slab_alloc(s, gfpflags, node, addr, c);
else {
object = c->freelist;
c->freelist = object[c->offset];
stat(c, ALLOC_FASTPATH);
}
local_irq_restore(flags);
if (unlikely((gfpflags & __GFP_ZERO) && object))
memset(object, 0, c->objsize);
return object;
}
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc);
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif
/*
* Slow patch handling. This may still be called frequently since objects
* have a longer lifetime than the cpu slabs in most processing loads.
*
* So we still attempt to reduce cache line usage. Just take the slab
* lock and free the item. If there is no additional partial page
* handling required then we can return immediately.
*/
static void __slab_free(struct kmem_cache *s, struct page *page,
void *x, void *addr, unsigned int offset)
{
void *prior;
void **object = (void *)x;
struct kmem_cache_cpu *c;
c = get_cpu_slab(s, raw_smp_processor_id());
stat(c, FREE_SLOWPATH);
slab_lock(page);
if (unlikely(SlabDebug(page)))
goto debug;
checks_ok:
prior = object[offset] = page->freelist;
page->freelist = object;
page->inuse--;
if (unlikely(SlabFrozen(page))) {
stat(c, FREE_FROZEN);
goto out_unlock;
}
if (unlikely(!page->inuse))
goto slab_empty;
/*
* Objects left in the slab. If it was not on the partial list before
* then add it.
*/
if (unlikely(!prior)) {
add_partial(get_node(s, page_to_nid(page)), page, 1);
stat(c, FREE_ADD_PARTIAL);
}
out_unlock:
slab_unlock(page);
return;
slab_empty:
if (prior) {
/*
* Slab still on the partial list.
*/
remove_partial(s, page);
stat(c, FREE_REMOVE_PARTIAL);
}
slab_unlock(page);
stat(c, FREE_SLAB);
discard_slab(s, page);
return;
debug:
if (!free_debug_processing(s, page, x, addr))
goto out_unlock;
goto checks_ok;
}
/*
* Fastpath with forced inlining to produce a kfree and kmem_cache_free that
* can perform fastpath freeing without additional function calls.
*
* The fastpath is only possible if we are freeing to the current cpu slab
* of this processor. This typically the case if we have just allocated
* the item before.
*
* If fastpath is not possible then fall back to __slab_free where we deal
* with all sorts of special processing.
*/
static __always_inline void slab_free(struct kmem_cache *s,
struct page *page, void *x, void *addr)
{
void **object = (void *)x;
struct kmem_cache_cpu *c;
unsigned long flags;
local_irq_save(flags);
c = get_cpu_slab(s, smp_processor_id());
debug_check_no_locks_freed(object, c->objsize);
if (likely(page == c->page && c->node >= 0)) {
object[c->offset] = c->freelist;
c->freelist = object;
stat(c, FREE_FASTPATH);
} else
__slab_free(s, page, x, addr, c->offset);
local_irq_restore(flags);
}
void kmem_cache_free(struct kmem_cache *s, void *x)
{
struct page *page;
page = virt_to_head_page(x);
slab_free(s, page, x, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_free);
/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
struct page *page = virt_to_head_page(x);
if (!PageSlab(page))
return NULL;
return page;
}
/*
* Object placement in a slab is made very easy because we always start at
* offset 0. If we tune the size of the object to the alignment then we can
* get the required alignment by putting one properly sized object after
* another.
*
* Notice that the allocation order determines the sizes of the per cpu
* caches. Each processor has always one slab available for allocations.
* Increasing the allocation order reduces the number of times that slabs
* must be moved on and off the partial lists and is therefore a factor in
* locking overhead.
*/
/*
* Mininum / Maximum order of slab pages. This influences locking overhead
* and slab fragmentation. A higher order reduces the number of partial slabs
* and increases the number of allocations possible without having to
* take the list_lock.
*/
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;
/*
* Merge control. If this is set then no merging of slab caches will occur.
* (Could be removed. This was introduced to pacify the merge skeptics.)
*/
static int slub_nomerge;
/*
* Calculate the order of allocation given an slab object size.
*
* The order of allocation has significant impact on performance and other
* system components. Generally order 0 allocations should be preferred since
* order 0 does not cause fragmentation in the page allocator. Larger objects
* be problematic to put into order 0 slabs because there may be too much
* unused space left. We go to a higher order if more than 1/8th of the slab
* would be wasted.
*
* In order to reach satisfactory performance we must ensure that a minimum
* number of objects is in one slab. Otherwise we may generate too much
* activity on the partial lists which requires taking the list_lock. This is
* less a concern for large slabs though which are rarely used.
*
* slub_max_order specifies the order where we begin to stop considering the
* number of objects in a slab as critical. If we reach slub_max_order then
* we try to keep the page order as low as possible. So we accept more waste
* of space in favor of a small page order.
*
* Higher order allocations also allow the placement of more objects in a
* slab and thereby reduce object handling overhead. If the user has
* requested a higher mininum order then we start with that one instead of
* the smallest order which will fit the object.
*/
static inline int slab_order(int size, int min_objects,
int max_order, int fract_leftover)
{
int order;
int rem;
int min_order = slub_min_order;
for (order = max(min_order,
fls(min_objects * size - 1) - PAGE_SHIFT);
order <= max_order; order++) {
unsigned long slab_size = PAGE_SIZE << order;
if (slab_size < min_objects * size)
continue;
rem = slab_size % size;
if (rem <= slab_size / fract_leftover)
break;
}
return order;
}
static inline int calculate_order(int size)
{
int order;
int min_objects;
int fraction;
/*
* Attempt to find best configuration for a slab. This
* works by first attempting to generate a layout with
* the best configuration and backing off gradually.
*
* First we reduce the acceptable waste in a slab. Then
* we reduce the minimum objects required in a slab.
*/
min_objects = slub_min_objects;
while (min_objects > 1) {
fraction = 8;
while (fraction >= 4) {
order = slab_order(size, min_objects,
slub_max_order, fraction);
if (order <= slub_max_order)
return order;
fraction /= 2;
}
min_objects /= 2;
}
/*
* We were unable to place multiple objects in a slab. Now
* lets see if we can place a single object there.
*/
order = slab_order(size, 1, slub_max_order, 1);
if (order <= slub_max_order)
return order;
/*
* Doh this slab cannot be placed using slub_max_order.
*/
order = slab_order(size, 1, MAX_ORDER, 1);
if (order <= MAX_ORDER)
return order;
return -ENOSYS;
}
/*
* Figure out what the alignment of the objects will be.
*/
static unsigned long calculate_alignment(unsigned long flags,
unsigned long align, unsigned long size)
{
/*
* If the user wants hardware cache aligned objects then follow that
* suggestion if the object is sufficiently large.
*
* The hardware cache alignment cannot override the specified
* alignment though. If that is greater then use it.
*/
if (flags & SLAB_HWCACHE_ALIGN) {
unsigned long ralign = cache_line_size();
while (size <= ralign / 2)
ralign /= 2;
align = max(align, ralign);
}
if (align < ARCH_SLAB_MINALIGN)
align = ARCH_SLAB_MINALIGN;
return ALIGN(align, sizeof(void *));
}
static void init_kmem_cache_cpu(struct kmem_cache *s,
struct kmem_cache_cpu *c)
{
c->page = NULL;
c->freelist = NULL;
c->node = 0;
c->offset = s->offset / sizeof(void *);
c->objsize = s->objsize;
}
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
n->nr_partial = 0;
atomic_long_set(&n->nr_slabs, 0);
spin_lock_init(&n->list_lock);
INIT_LIST_HEAD(&n->partial);
#ifdef CONFIG_SLUB_DEBUG
INIT_LIST_HEAD(&n->full);
#endif
}
#ifdef CONFIG_SMP
/*
* Per cpu array for per cpu structures.
*
* The per cpu array places all kmem_cache_cpu structures from one processor
* close together meaning that it becomes possible that multiple per cpu
* structures are contained in one cacheline. This may be particularly
* beneficial for the kmalloc caches.
*
* A desktop system typically has around 60-80 slabs. With 100 here we are
* likely able to get per cpu structures for all caches from the array defined
* here. We must be able to cover all kmalloc caches during bootstrap.
*
* If the per cpu array is exhausted then fall back to kmalloc
* of individual cachelines. No sharing is possible then.
*/
#define NR_KMEM_CACHE_CPU 100
static DEFINE_PER_CPU(struct kmem_cache_cpu,
kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
int cpu, gfp_t flags)
{
struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
if (c)
per_cpu(kmem_cache_cpu_free, cpu) =
(void *)c->freelist;
else {
/* Table overflow: So allocate ourselves */
c = kmalloc_node(
ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
flags, cpu_to_node(cpu));
if (!c)
return NULL;
}
init_kmem_cache_cpu(s, c);
return c;
}
static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
if (c < per_cpu(kmem_cache_cpu, cpu) ||
c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
kfree(c);
return;
}
c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
per_cpu(kmem_cache_cpu_free, cpu) = c;
}
static void free_kmem_cache_cpus(struct kmem_cache *s)
{
int cpu;
for_each_online_cpu(cpu) {
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
if (c) {
s->cpu_slab[cpu] = NULL;
free_kmem_cache_cpu(c, cpu);
}
}
}
static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
int cpu;
for_each_online_cpu(cpu) {
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
if (c)
continue;
c = alloc_kmem_cache_cpu(s, cpu, flags);
if (!c) {
free_kmem_cache_cpus(s);
return 0;
}
s->cpu_slab[cpu] = c;
}
return 1;
}
/*
* Initialize the per cpu array.
*/
static void init_alloc_cpu_cpu(int cpu)
{
int i;
if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
return;
for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
cpu_set(cpu, kmem_cach_cpu_free_init_once);
}
static void __init init_alloc_cpu(void)
{
int cpu;
for_each_online_cpu(cpu)
init_alloc_cpu_cpu(cpu);
}
#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
init_kmem_cache_cpu(s, &s->cpu_slab);
return 1;
}
#endif
#ifdef CONFIG_NUMA
/*
* No kmalloc_node yet so do it by hand. We know that this is the first
* slab on the node for this slabcache. There are no concurrent accesses
* possible.
*
* Note that this function only works on the kmalloc_node_cache
* when allocating for the kmalloc_node_cache. This is used for bootstrapping
* memory on a fresh node that has no slab structures yet.
*/
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
int node)
{
struct page *page;
struct kmem_cache_node *n;
unsigned long flags;
BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
page = new_slab(kmalloc_caches, gfpflags, node);
BUG_ON(!page);
if (page_to_nid(page) != node) {
printk(KERN_ERR "SLUB: Unable to allocate memory from "
"node %d\n", node);
printk(KERN_ERR "SLUB: Allocating a useless per node structure "
"in order to be able to continue\n");
}
n = page->freelist;
BUG_ON(!n);
page->freelist = get_freepointer(kmalloc_caches, n);
page->inuse++;
kmalloc_caches->node[node] = n;
#ifdef CONFIG_SLUB_DEBUG
init_object(kmalloc_caches, n, 1);
init_tracking(kmalloc_caches, n);
#endif
init_kmem_cache_node(n);
atomic_long_inc(&n->nr_slabs);
/*
* lockdep requires consistent irq usage for each lock
* so even though there cannot be a race this early in
* the boot sequence, we still disable irqs.
*/
local_irq_save(flags);
add_partial(n, page, 0);
local_irq_restore(flags);
return n;
}
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
int node;
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = s->node[node];
if (n && n != &s->local_node)
kmem_cache_free(kmalloc_caches, n);
s->node[node] = NULL;
}
}
static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
int node;
int local_node;
if (slab_state >= UP)
local_node = page_to_nid(virt_to_page(s));
else
local_node = 0;
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n;
if (local_node == node)
n = &s->local_node;
else {
if (slab_state == DOWN) {
n = early_kmem_cache_node_alloc(gfpflags,
node);
continue;
}
n = kmem_cache_alloc_node(kmalloc_caches,
gfpflags, node);
if (!n) {
free_kmem_cache_nodes(s);
return 0;
}
}
s->node[node] = n;
init_kmem_cache_node(n);
}
return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}
static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
init_kmem_cache_node(&s->local_node);
return 1;
}
#endif
/*
* calculate_sizes() determines the order and the distribution of data within
* a slab object.
*/
static int calculate_sizes(struct kmem_cache *s)
{
unsigned long flags = s->flags;
unsigned long size = s->objsize;
unsigned long align = s->align;
/*
* Round up object size to the next word boundary. We can only
* place the free pointer at word boundaries and this determines
* the possible location of the free pointer.
*/
size = ALIGN(size, sizeof(void *));
#ifdef CONFIG_SLUB_DEBUG
/*
* Determine if we can poison the object itself. If the user of
* the slab may touch the object after free or before allocation
* then we should never poison the object itself.
*/
if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
!s->ctor)
s->flags |= __OBJECT_POISON;
else
s->flags &= ~__OBJECT_POISON;
/*
* If we are Redzoning then check if there is some space between the
* end of the object and the free pointer. If not then add an
* additional word to have some bytes to store Redzone information.
*/
if ((flags & SLAB_RED_ZONE) && size == s->objsize)
size += sizeof(void *);
#endif
/*
* With that we have determined the number of bytes in actual use
* by the object. This is the potential offset to the free pointer.
*/
s->inuse = size;
if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
s->ctor)) {
/*
* Relocate free pointer after the object if it is not
* permitted to overwrite the first word of the object on
* kmem_cache_free.
*
* This is the case if we do RCU, have a constructor or
* destructor or are poisoning the objects.
*/
s->offset = size;
size += sizeof(void *);
}
#ifdef CONFIG_SLUB_DEBUG
if (flags & SLAB_STORE_USER)
/*
* Need to store information about allocs and frees after
* the object.
*/
size += 2 * sizeof(struct track);
if (flags & SLAB_RED_ZONE)
/*
* Add some empty padding so that we can catch
* overwrites from earlier objects rather than let
* tracking information or the free pointer be
* corrupted if an user writes before the start
* of the object.
*/
size += sizeof(void *);
#endif
/*
* Determine the alignment based on various parameters that the
* user specified and the dynamic determination of cache line size
* on bootup.
*/
align = calculate_alignment(flags, align, s->objsize);
/*
* SLUB stores one object immediately after another beginning from
* offset 0. In order to align the objects we have to simply size
* each object to conform to the alignment.
*/
size = ALIGN(size, align);
s->size = size;
if ((flags & __KMALLOC_CACHE) &&
PAGE_SIZE / size < slub_min_objects) {
/*
* Kmalloc cache that would not have enough objects in
* an order 0 page. Kmalloc slabs can fallback to
* page allocator order 0 allocs so take a reasonably large
* order that will allows us a good number of objects.
*/
s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
s->flags |= __PAGE_ALLOC_FALLBACK;
s->allocflags |= __GFP_NOWARN;
} else
s->order = calculate_order(size);
if (s->order < 0)
return 0;
s->allocflags = 0;
if (s->order)
s->allocflags |= __GFP_COMP;
if (s->flags & SLAB_CACHE_DMA)
s->allocflags |= SLUB_DMA;
if (s->flags & SLAB_RECLAIM_ACCOUNT)
s->allocflags |= __GFP_RECLAIMABLE;
/*
* Determine the number of objects per slab
*/
s->objects = (PAGE_SIZE << s->order) / size;
return !!s->objects;
}
static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
const char *name, size_t size,
size_t align, unsigned long flags,
void (*ctor)(struct kmem_cache *, void *))
{
memset(s, 0, kmem_size);
s->name = name;
s->ctor = ctor;
s->objsize = size;
s->align = align;
s->flags = kmem_cache_flags(size, flags, name, ctor);
if (!calculate_sizes(s))
goto error;
s->refcount = 1;
#ifdef CONFIG_NUMA
s->remote_node_defrag_ratio = 100;
#endif
if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
goto error;
if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
return 1;
free_kmem_cache_nodes(s);
error:
if (flags & SLAB_PANIC)
panic("Cannot create slab %s size=%lu realsize=%u "
"order=%u offset=%u flags=%lx\n",
s->name, (unsigned long)size, s->size, s->order,
s->offset, flags);
return 0;
}
/*
* Check if a given pointer is valid
*/
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
struct page *page;
page = get_object_page(object);
if (!page || s != page->slab)
/* No slab or wrong slab */
return 0;
if (!check_valid_pointer(s, page, object))
return 0;
/*
* We could also check if the object is on the slabs freelist.
* But this would be too expensive and it seems that the main
* purpose of kmem_ptr_valid() is to check if the object belongs
* to a certain slab.
*/
return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);
/*
* Determine the size of a slab object
*/
unsigned int kmem_cache_size(struct kmem_cache *s)
{
return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);
const char *kmem_cache_name(struct kmem_cache *s)
{
return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);
/*
* Attempt to free all slabs on a node. Return the number of slabs we
* were unable to free.
*/
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
struct list_head *list)
{
int slabs_inuse = 0;
unsigned long flags;
struct page *page, *h;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry_safe(page, h, list, lru)
if (!page->inuse) {
list_del(&page->lru);
discard_slab(s, page);
} else
slabs_inuse++;
spin_unlock_irqrestore(&n->list_lock, flags);
return slabs_inuse;
}
/*
* Release all resources used by a slab cache.
*/
static inline int kmem_cache_close(struct kmem_cache *s)
{
int node;
flush_all(s);
/* Attempt to free all objects */
free_kmem_cache_cpus(s);
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
n->nr_partial -= free_list(s, n, &n->partial);
if (atomic_long_read(&n->nr_slabs))
return 1;
}
free_kmem_cache_nodes(s);
return 0;
}
/*
* Close a cache and release the kmem_cache structure
* (must be used for caches created using kmem_cache_create)
*/
void kmem_cache_destroy(struct kmem_cache *s)
{
down_write(&slub_lock);
s->refcount--;
if (!s->refcount) {
list_del(&s->list);
up_write(&slub_lock);
if (kmem_cache_close(s))
WARN_ON(1);
sysfs_slab_remove(s);
} else
up_write(&slub_lock);
}
EXPORT_SYMBOL(kmem_cache_destroy);
/********************************************************************
* Kmalloc subsystem
*******************************************************************/
struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
EXPORT_SYMBOL(kmalloc_caches);
#ifdef CONFIG_ZONE_DMA
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
#endif
static int __init setup_slub_min_order(char *str)
{
get_option(&str, &slub_min_order);
return 1;
}
__setup("slub_min_order=", setup_slub_min_order);
static int __init setup_slub_max_order(char *str)
{
get_option(&str, &slub_max_order);
return 1;
}
__setup("slub_max_order=", setup_slub_max_order);
static int __init setup_slub_min_objects(char *str)
{
get_option(&str, &slub_min_objects);
return 1;
}
__setup("slub_min_objects=", setup_slub_min_objects);
static int __init setup_slub_nomerge(char *str)
{
slub_nomerge = 1;
return 1;
}
__setup("slub_nomerge", setup_slub_nomerge);
static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
const char *name, int size, gfp_t gfp_flags)
{
unsigned int flags = 0;
if (gfp_flags & SLUB_DMA)
flags = SLAB_CACHE_DMA;
down_write(&slub_lock);
if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
flags | __KMALLOC_CACHE, NULL))
goto panic;
list_add(&s->list, &slab_caches);
up_write(&slub_lock);
if (sysfs_slab_add(s))
goto panic;
return s;
panic:
panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}
#ifdef CONFIG_ZONE_DMA
static void sysfs_add_func(struct work_struct *w)
{
struct kmem_cache *s;
down_write(&slub_lock);
list_for_each_entry(s, &slab_caches, list) {
if (s->flags & __SYSFS_ADD_DEFERRED) {
s->flags &= ~__SYSFS_ADD_DEFERRED;
sysfs_slab_add(s);
}
}
up_write(&slub_lock);
}
static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
struct kmem_cache *s;
char *text;
size_t realsize;
s = kmalloc_caches_dma[index];
if (s)
return s;
/* Dynamically create dma cache */
if (flags & __GFP_WAIT)
down_write(&slub_lock);
else {
if (!down_write_trylock(&slub_lock))
goto out;
}
if (kmalloc_caches_dma[index])
goto unlock_out;
realsize = kmalloc_caches[index].objsize;
text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
(unsigned int)realsize);
s = kmalloc(kmem_size, flags & ~SLUB_DMA);
if (!s || !text || !kmem_cache_open(s, flags, text,
realsize, ARCH_KMALLOC_MINALIGN,
SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
kfree(s);
kfree(text);
goto unlock_out;
}
list_add(&s->list, &slab_caches);
kmalloc_caches_dma[index] = s;
schedule_work(&sysfs_add_work);
unlock_out:
up_write(&slub_lock);
out:
return kmalloc_caches_dma[index];
}
#endif
/*
* Conversion table for small slabs sizes / 8 to the index in the
* kmalloc array. This is necessary for slabs < 192 since we have non power
* of two cache sizes there. The size of larger slabs can be determined using
* fls.
*/
static s8 size_index[24] = {
3, /* 8 */
4, /* 16 */
5, /* 24 */
5, /* 32 */
6, /* 40 */
6, /* 48 */
6, /* 56 */
6, /* 64 */
1, /* 72 */
1, /* 80 */
1, /* 88 */
1, /* 96 */
7, /* 104 */
7, /* 112 */
7, /* 120 */
7, /* 128 */
2, /* 136 */
2, /* 144 */
2, /* 152 */
2, /* 160 */
2, /* 168 */
2, /* 176 */
2, /* 184 */
2 /* 192 */
};
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
int index;
if (size <= 192) {
if (!size)
return ZERO_SIZE_PTR;
index = size_index[(size - 1) / 8];
} else
index = fls(size - 1);
#ifdef CONFIG_ZONE_DMA
if (unlikely((flags & SLUB_DMA)))
return dma_kmalloc_cache(index, flags);
#endif
return &kmalloc_caches[index];
}
void *__kmalloc(size_t size, gfp_t flags)
{
struct kmem_cache *s;
if (unlikely(size > PAGE_SIZE))
return kmalloc_large(size, flags);
s = get_slab(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
return slab_alloc(s, flags, -1, __builtin_return_address(0));
}
EXPORT_SYMBOL(__kmalloc);
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
get_order(size));
if (page)
return page_address(page);
else
return NULL;
}
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
struct kmem_cache *s;
if (unlikely(size > PAGE_SIZE))
return kmalloc_large_node(size, flags, node);
s = get_slab(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
return slab_alloc(s, flags, node, __builtin_return_address(0));
}
EXPORT_SYMBOL(__kmalloc_node);
#endif
size_t ksize(const void *object)
{
struct page *page;
struct kmem_cache *s;
if (unlikely(object == ZERO_SIZE_PTR))
return 0;
page = virt_to_head_page(object);
if (unlikely(!PageSlab(page)))
return PAGE_SIZE << compound_order(page);
s = page->slab;
#ifdef CONFIG_SLUB_DEBUG
/*
* Debugging requires use of the padding between object
* and whatever may come after it.
*/
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
return s->objsize;
#endif
/*
* If we have the need to store the freelist pointer
* back there or track user information then we can
* only use the space before that information.
*/
if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
return s->inuse;
/*
* Else we can use all the padding etc for the allocation
*/
return s->size;
}
EXPORT_SYMBOL(ksize);
void kfree(const void *x)
{
struct page *page;
void *object = (void *)x;
if (unlikely(ZERO_OR_NULL_PTR(x)))
return;
page = virt_to_head_page(x);
if (unlikely(!PageSlab(page))) {
put_page(page);
return;
}
slab_free(page->slab, page, object, __builtin_return_address(0));
}
EXPORT_SYMBOL(kfree);
#if defined(SLUB_DEBUG) || defined(CONFIG_SLABINFO)
static unsigned long count_partial(struct kmem_cache_node *n)
{
unsigned long flags;
unsigned long x = 0;
struct page *page;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry(page, &n->partial, lru)
x += page->inuse;
spin_unlock_irqrestore(&n->list_lock, flags);
return x;
}
#endif
/*
* kmem_cache_shrink removes empty slabs from the partial lists and sorts
* the remaining slabs by the number of items in use. The slabs with the
* most items in use come first. New allocations will then fill those up
* and thus they can be removed from the partial lists.
*
* The slabs with the least items are placed last. This results in them
* being allocated from last increasing the chance that the last objects
* are freed in them.
*/
int kmem_cache_shrink(struct kmem_cache *s)
{
int node;
int i;
struct kmem_cache_node *n;
struct page *page;
struct page *t;
struct list_head *slabs_by_inuse =
kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
unsigned long flags;
if (!slabs_by_inuse)
return -ENOMEM;
flush_all(s);
for_each_node_state(node, N_NORMAL_MEMORY) {
n = get_node(s, node);
if (!n->nr_partial)
continue;
for (i = 0; i < s->objects; i++)
INIT_LIST_HEAD(slabs_by_inuse + i);
spin_lock_irqsave(&n->list_lock, flags);
/*
* Build lists indexed by the items in use in each slab.
*
* Note that concurrent frees may occur while we hold the
* list_lock. page->inuse here is the upper limit.
*/
list_for_each_entry_safe(page, t, &n->partial, lru) {
if (!page->inuse && slab_trylock(page)) {
/*
* Must hold slab lock here because slab_free
* may have freed the last object and be
* waiting to release the slab.
*/
list_del(&page->lru);
n->nr_partial--;
slab_unlock(page);
discard_slab(s, page);
} else {
list_move(&page->lru,
slabs_by_inuse + page->inuse);
}
}
/*
* Rebuild the partial list with the slabs filled up most
* first and the least used slabs at the end.
*/
for (i = s->objects - 1; i >= 0; i--)
list_splice(slabs_by_inuse + i, n->partial.prev);
spin_unlock_irqrestore(&n->list_lock, flags);
}
kfree(slabs_by_inuse);
return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
struct kmem_cache *s;
down_read(&slub_lock);
list_for_each_entry(s, &slab_caches, list)
kmem_cache_shrink(s);
up_read(&slub_lock);
return 0;
}
static void slab_mem_offline_callback(void *arg)
{
struct kmem_cache_node *n;
struct kmem_cache *s;
struct memory_notify *marg = arg;
int offline_node;
offline_node = marg->status_change_nid;
/*
* If the node still has available memory. we need kmem_cache_node
* for it yet.
*/
if (offline_node < 0)
return;
down_read(&slub_lock);
list_for_each_entry(s, &slab_caches, list) {
n = get_node(s, offline_node);
if (n) {
/*
* if n->nr_slabs > 0, slabs still exist on the node
* that is going down. We were unable to free them,
* and offline_pages() function shoudn't call this
* callback. So, we must fail.
*/
BUG_ON(atomic_long_read(&n->nr_slabs));
s->node[offline_node] = NULL;
kmem_cache_free(kmalloc_caches, n);
}
}
up_read(&slub_lock);
}
static int slab_mem_going_online_callback(void *arg)
{
struct kmem_cache_node *n;
struct kmem_cache *s;
struct memory_notify *marg = arg;
int nid = marg->status_change_nid;
int ret = 0;
/*
* If the node's memory is already available, then kmem_cache_node is
* already created. Nothing to do.
*/
if (nid < 0)
return 0;
/*
* We are bringing a node online. No memory is availabe yet. We must
* allocate a kmem_cache_node structure in order to bring the node
* online.
*/
down_read(&slub_lock);
list_for_each_entry(s, &slab_caches, list) {
/*
* XXX: kmem_cache_alloc_node will fallback to other nodes
* since memory is not yet available from the node that
* is brought up.
*/
n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
if (!n) {
ret = -ENOMEM;
goto out;
}
init_kmem_cache_node(n);
s->node[nid] = n;
}
out:
up_read(&slub_lock);
return ret;
}
static int slab_memory_callback(struct notifier_block *self,
unsigned long action, void *arg)
{
int ret = 0;
switch (action) {
case MEM_GOING_ONLINE:
ret = slab_mem_going_online_callback(arg);
break;
case MEM_GOING_OFFLINE:
ret = slab_mem_going_offline_callback(arg);
break;
case MEM_OFFLINE:
case MEM_CANCEL_ONLINE:
slab_mem_offline_callback(arg);
break;
case MEM_ONLINE:
case MEM_CANCEL_OFFLINE:
break;
}
ret = notifier_from_errno(ret);
return ret;
}
#endif /* CONFIG_MEMORY_HOTPLUG */
/********************************************************************
* Basic setup of slabs
*******************************************************************/
void __init kmem_cache_init(void)
{
int i;
int caches = 0;
init_alloc_cpu();
#ifdef CONFIG_NUMA
/*
* Must first have the slab cache available for the allocations of the
* struct kmem_cache_node's. There is special bootstrap code in
* kmem_cache_open for slab_state == DOWN.
*/
create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
sizeof(struct kmem_cache_node), GFP_KERNEL);
kmalloc_caches[0].refcount = -1;
caches++;
hotplug_memory_notifier(slab_memory_callback, 1);
#endif
/* Able to allocate the per node structures */
slab_state = PARTIAL;
/* Caches that are not of the two-to-the-power-of size */
if (KMALLOC_MIN_SIZE <= 64) {
create_kmalloc_cache(&kmalloc_caches[1],
"kmalloc-96", 96, GFP_KERNEL);
caches++;
}
if (KMALLOC_MIN_SIZE <= 128) {
create_kmalloc_cache(&kmalloc_caches[2],
"kmalloc-192", 192, GFP_KERNEL);
caches++;
}
for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
create_kmalloc_cache(&kmalloc_caches[i],
"kmalloc", 1 << i, GFP_KERNEL);
caches++;
}
/*
* Patch up the size_index table if we have strange large alignment
* requirements for the kmalloc array. This is only the case for
* MIPS it seems. The standard arches will not generate any code here.
*
* Largest permitted alignment is 256 bytes due to the way we
* handle the index determination for the smaller caches.
*
* Make sure that nothing crazy happens if someone starts tinkering
* around with ARCH_KMALLOC_MINALIGN
*/
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
slab_state = UP;
/* Provide the correct kmalloc names now that the caches are up */
for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
kmalloc_caches[i]. name =
kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
#ifdef CONFIG_SMP
register_cpu_notifier(&slab_notifier);
kmem_size = offsetof(struct kmem_cache, cpu_slab) +
nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
kmem_size = sizeof(struct kmem_cache);
#endif
printk(KERN_INFO
"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
" CPUs=%d, Nodes=%d\n",
caches, cache_line_size(),
slub_min_order, slub_max_order, slub_min_objects,
nr_cpu_ids, nr_node_ids);
}
/*
* Find a mergeable slab cache
*/
static int slab_unmergeable(struct kmem_cache *s)
{
if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
return 1;
if ((s->flags & __PAGE_ALLOC_FALLBACK))
return 1;
if (s->ctor)
return 1;
/*
* We may have set a slab to be unmergeable during bootstrap.
*/
if (s->refcount < 0)
return 1;
return 0;
}
static struct kmem_cache *find_mergeable(size_t size,
size_t align, unsigned long flags, const char *name,
void (*ctor)(struct kmem_cache *, void *))
{
struct kmem_cache *s;
if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
return NULL;
if (ctor)
return NULL;
size = ALIGN(size, sizeof(void *));
align = calculate_alignment(flags, align, size);
size = ALIGN(size, align);
flags = kmem_cache_flags(size, flags, name, NULL);
list_for_each_entry(s, &slab_caches, list) {
if (slab_unmergeable(s))
continue;
if (size > s->size)
continue;
if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
continue;
/*
* Check if alignment is compatible.
* Courtesy of Adrian Drzewiecki
*/
if ((s->size & ~(align - 1)) != s->size)
continue;
if (s->size - size >= sizeof(void *))
continue;
return s;
}
return NULL;
}
struct kmem_cache *kmem_cache_create(const char *name, size_t size,
size_t align, unsigned long flags,
void (*ctor)(struct kmem_cache *, void *))
{
struct kmem_cache *s;
down_write(&slub_lock);
s = find_mergeable(size, align, flags, name, ctor);
if (s) {
int cpu;
s->refcount++;
/*
* Adjust the object sizes so that we clear
* the complete object on kzalloc.
*/
s->objsize = max(s->objsize, (int)size);
/*
* And then we need to update the object size in the
* per cpu structures
*/
for_each_online_cpu(cpu)
get_cpu_slab(s, cpu)->objsize = s->objsize;
s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
up_write(&slub_lock);
if (sysfs_slab_alias(s, name))
goto err;
return s;
}
s = kmalloc(kmem_size, GFP_KERNEL);
if (s) {
if (kmem_cache_open(s, GFP_KERNEL, name,
size, align, flags, ctor)) {
list_add(&s->list, &slab_caches);
up_write(&slub_lock);
if (sysfs_slab_add(s))
goto err;
return s;
}
kfree(s);
}
up_write(&slub_lock);
err:
if (flags & SLAB_PANIC)
panic("Cannot create slabcache %s\n", name);
else
s = NULL;
return s;
}
EXPORT_SYMBOL(kmem_cache_create);
#ifdef CONFIG_SMP
/*
* Use the cpu notifier to insure that the cpu slabs are flushed when
* necessary.
*/
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
long cpu = (long)hcpu;
struct kmem_cache *s;
unsigned long flags;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
init_alloc_cpu_cpu(cpu);
down_read(&slub_lock);
list_for_each_entry(s, &slab_caches, list)
s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
GFP_KERNEL);
up_read(&slub_lock);
break;
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
case CPU_DEAD:
case CPU_DEAD_FROZEN:
down_read(&slub_lock);
list_for_each_entry(s, &slab_caches, list) {
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
local_irq_save(flags);
__flush_cpu_slab(s, cpu);
local_irq_restore(flags);
free_kmem_cache_cpu(c, cpu);
s->cpu_slab[cpu] = NULL;
}
up_read(&slub_lock);
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata slab_notifier = {
.notifier_call = slab_cpuup_callback
};
#endif
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
struct kmem_cache *s;
if (unlikely(size > PAGE_SIZE))
return kmalloc_large(size, gfpflags);
s = get_slab(size, gfpflags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
return slab_alloc(s, gfpflags, -1, caller);
}
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
int node, void *caller)
{
struct kmem_cache *s;
if (unlikely(size > PAGE_SIZE))
return kmalloc_large_node(size, gfpflags, node);
s = get_slab(size, gfpflags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
return slab_alloc(s, gfpflags, node, caller);
}
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
static int validate_slab(struct kmem_cache *s, struct page *page,
unsigned long *map)
{
void *p;
void *addr = page_address(page);
if (!check_slab(s, page) ||
!on_freelist(s, page, NULL))
return 0;
/* Now we know that a valid freelist exists */
bitmap_zero(map, s->objects);
for_each_free_object(p, s, page->freelist) {
set_bit(slab_index(p, s, addr), map);
if (!check_object(s, page, p, 0))
return 0;
}
for_each_object(p, s, addr)
if (!test_bit(slab_index(p, s, addr), map))
if (!check_object(s, page, p, 1))
return 0;
return 1;
}
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
unsigned long *map)
{
if (slab_trylock(page)) {
validate_slab(s, page, map);
slab_unlock(page);
} else
printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
s->name, page);
if (s->flags & DEBUG_DEFAULT_FLAGS) {
if (!SlabDebug(page))
printk(KERN_ERR "SLUB %s: SlabDebug not set "
"on slab 0x%p\n", s->name, page);
} else {
if (SlabDebug(page))
printk(KERN_ERR "SLUB %s: SlabDebug set on "
"slab 0x%p\n", s->name, page);
}
}
static int validate_slab_node(struct kmem_cache *s,
struct kmem_cache_node *n, unsigned long *map)
{
unsigned long count = 0;
struct page *page;
unsigned long flags;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry(page, &n->partial, lru) {
validate_slab_slab(s, page, map);
count++;
}
if (count != n->nr_partial)
printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
"counter=%ld\n", s->name, count, n->nr_partial);
if (!(s->flags & SLAB_STORE_USER))
goto out;
list_for_each_entry(page, &n->full, lru) {
validate_slab_slab(s, page, map);
count++;
}
if (count != atomic_long_read(&n->nr_slabs))
printk(KERN_ERR "SLUB: %s %ld slabs counted but "
"counter=%ld\n", s->name, count,
atomic_long_read(&n->nr_slabs));
out:
spin_unlock_irqrestore(&n->list_lock, flags);
return count;
}
static long validate_slab_cache(struct kmem_cache *s)
{
int node;
unsigned long count = 0;
unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
sizeof(unsigned long), GFP_KERNEL);
if (!map)
return -ENOMEM;
flush_all(s);
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
count += validate_slab_node(s, n, map);
}
kfree(map);
return count;
}
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
u8 *p;
printk(KERN_ERR "SLUB resiliency testing\n");
printk(KERN_ERR "-----------------------\n");
printk(KERN_ERR "A. Corruption after allocation\n");
p = kzalloc(16, GFP_KERNEL);
p[16] = 0x12;
printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
" 0x12->0x%p\n\n", p + 16);
validate_slab_cache(kmalloc_caches + 4);
/* Hmmm... The next two are dangerous */
p = kzalloc(32, GFP_KERNEL);
p[32 + sizeof(void *)] = 0x34;
printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
" 0x34 -> -0x%p\n", p);
printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
validate_slab_cache(kmalloc_caches + 5);
p = kzalloc(64, GFP_KERNEL);
p += 64 + (get_cycles() & 0xff) * sizeof(void *);
*p = 0x56;
printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
p);
printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
validate_slab_cache(kmalloc_caches + 6);
printk(KERN_ERR "\nB. Corruption after free\n");
p = kzalloc(128, GFP_KERNEL);
kfree(p);
*p = 0x78;
printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
validate_slab_cache(kmalloc_caches + 7);
p = kzalloc(256, GFP_KERNEL);
kfree(p);
p[50] = 0x9a;
printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
p);
validate_slab_cache(kmalloc_caches + 8);
p = kzalloc(512, GFP_KERNEL);
kfree(p);
p[512] = 0xab;
printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif
/*
* Generate lists of code addresses where slabcache objects are allocated
* and freed.
*/
struct location {
unsigned long count;
void *addr;
long long sum_time;
long min_time;
long max_time;
long min_pid;
long max_pid;
cpumask_t cpus;
nodemask_t nodes;
};
struct loc_track {
unsigned long max;
unsigned long count;
struct location *loc;
};
static void free_loc_track(struct loc_track *t)
{
if (t->max)
free_pages((unsigned long)t->loc,
get_order(sizeof(struct location) * t->max));
}
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
{
struct location *l;
int order;
order = get_order(sizeof(struct location) * max);
l = (void *)__get_free_pages(flags, order);
if (!l)
return 0;
if (t->count) {
memcpy(l, t->loc, sizeof(struct location) * t->count);
free_loc_track(t);
}
t->max = max;
t->loc = l;
return 1;
}
static int add_location(struct loc_track *t, struct kmem_cache *s,
const struct track *track)
{
long start, end, pos;
struct location *l;
void *caddr;
unsigned long age = jiffies - track->when;
start = -1;
end = t->count;
for ( ; ; ) {
pos = start + (end - start + 1) / 2;
/*
* There is nothing at "end". If we end up there
* we need to add something to before end.
*/
if (pos == end)
break;
caddr = t->loc[pos].addr;
if (track->addr == caddr) {
l = &t->loc[pos];
l->count++;
if (track->when) {
l->sum_time += age;
if (age < l->min_time)
l->min_time = age;
if (age > l->max_time)
l->max_time = age;
if (track->pid < l->min_pid)
l->min_pid = track->pid;
if (track->pid > l->max_pid)
l->max_pid = track->pid;
cpu_set(track->cpu, l->cpus);
}
node_set(page_to_nid(virt_to_page(track)), l->nodes);
return 1;
}
if (track->addr < caddr)
end = pos;
else
start = pos;
}
/*
* Not found. Insert new tracking element.
*/
if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
return 0;
l = t->loc + pos;
if (pos < t->count)
memmove(l + 1, l,
(t->count - pos) * sizeof(struct location));
t->count++;
l->count = 1;
l->addr = track->addr;
l->sum_time = age;
l->min_time = age;
l->max_time = age;
l->min_pid = track->pid;
l->max_pid = track->pid;
cpus_clear(l->cpus);
cpu_set(track->cpu, l->cpus);
nodes_clear(l->nodes);
node_set(page_to_nid(virt_to_page(track)), l->nodes);
return 1;
}
static void process_slab(struct loc_track *t, struct kmem_cache *s,
struct page *page, enum track_item alloc)
{
void *addr = page_address(page);
DECLARE_BITMAP(map, s->objects);
void *p;
bitmap_zero(map, s->objects);
for_each_free_object(p, s, page->freelist)
set_bit(slab_index(p, s, addr), map);
for_each_object(p, s, addr)
if (!test_bit(slab_index(p, s, addr), map))
add_location(t, s, get_track(s, p, alloc));
}
static int list_locations(struct kmem_cache *s, char *buf,
enum track_item alloc)
{
int len = 0;
unsigned long i;
struct loc_track t = { 0, 0, NULL };
int node;
if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
GFP_TEMPORARY))
return sprintf(buf, "Out of memory\n");
/* Push back cpu slabs */
flush_all(s);
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
unsigned long flags;
struct page *page;
if (!atomic_long_read(&n->nr_slabs))
continue;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry(page, &n->partial, lru)
process_slab(&t, s, page, alloc);
list_for_each_entry(page, &n->full, lru)
process_slab(&t, s, page, alloc);
spin_unlock_irqrestore(&n->list_lock, flags);
}
for (i = 0; i < t.count; i++) {
struct location *l = &t.loc[i];
if (len > PAGE_SIZE - 100)
break;
len += sprintf(buf + len, "%7ld ", l->count);
if (l->addr)
len += sprint_symbol(buf + len, (unsigned long)l->addr);
else
len += sprintf(buf + len, "<not-available>");
if (l->sum_time != l->min_time) {
unsigned long remainder;
len += sprintf(buf + len, " age=%ld/%ld/%ld",
l->min_time,
div_long_long_rem(l->sum_time, l->count, &remainder),
l->max_time);
} else
len += sprintf(buf + len, " age=%ld",
l->min_time);
if (l->min_pid != l->max_pid)
len += sprintf(buf + len, " pid=%ld-%ld",
l->min_pid, l->max_pid);
else
len += sprintf(buf + len, " pid=%ld",
l->min_pid);
if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
len < PAGE_SIZE - 60) {
len += sprintf(buf + len, " cpus=");
len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
l->cpus);
}
if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
len < PAGE_SIZE - 60) {
len += sprintf(buf + len, " nodes=");
len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
l->nodes);
}
len += sprintf(buf + len, "\n");
}
free_loc_track(&t);
if (!t.count)
len += sprintf(buf, "No data\n");
return len;
}
enum slab_stat_type {
SL_FULL,
SL_PARTIAL,
SL_CPU,
SL_OBJECTS
};
#define SO_FULL (1 << SL_FULL)
#define SO_PARTIAL (1 << SL_PARTIAL)
#define SO_CPU (1 << SL_CPU)
#define SO_OBJECTS (1 << SL_OBJECTS)
static ssize_t show_slab_objects(struct kmem_cache *s,
char *buf, unsigned long flags)
{
unsigned long total = 0;
int cpu;
int node;
int x;
unsigned long *nodes;
unsigned long *per_cpu;
nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
if (!nodes)
return -ENOMEM;
per_cpu = nodes + nr_node_ids;
for_each_possible_cpu(cpu) {
struct page *page;
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
if (!c)
continue;
page = c->page;
node = c->node;
if (node < 0)
continue;
if (page) {
if (flags & SO_CPU) {
if (flags & SO_OBJECTS)
x = page->inuse;
else
x = 1;
total += x;
nodes[node] += x;
}
per_cpu[node]++;
}
}
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
if (flags & SO_PARTIAL) {
if (flags & SO_OBJECTS)
x = count_partial(n);
else
x = n->nr_partial;
total += x;
nodes[node] += x;
}
if (flags & SO_FULL) {
int full_slabs = atomic_long_read(&n->nr_slabs)
- per_cpu[node]
- n->nr_partial;
if (flags & SO_OBJECTS)
x = full_slabs * s->objects;
else
x = full_slabs;
total += x;
nodes[node] += x;
}
}
x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
for_each_node_state(node, N_NORMAL_MEMORY)
if (nodes[node])
x += sprintf(buf + x, " N%d=%lu",
node, nodes[node]);
#endif
kfree(nodes);
return x + sprintf(buf + x, "\n");
}
static int any_slab_objects(struct kmem_cache *s)
{
int node;
int cpu;
for_each_possible_cpu(cpu) {
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
if (c && c->page)
return 1;
}
for_each_online_node(node) {
struct kmem_cache_node *n = get_node(s, node);
if (!n)
continue;
if (n->nr_partial || atomic_long_read(&n->nr_slabs))
return 1;
}
return 0;
}
#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);
struct slab_attribute {
struct attribute attr;
ssize_t (*show)(struct kmem_cache *s, char *buf);
ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};
#define SLAB_ATTR_RO(_name) \
static struct slab_attribute _name##_attr = __ATTR_RO(_name)
#define SLAB_ATTR(_name) \
static struct slab_attribute _name##_attr = \
__ATTR(_name, 0644, _name##_show, _name##_store)
static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);
static ssize_t align_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);
static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);
static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
if (s->ctor) {
int n = sprint_symbol(buf, (unsigned long)s->ctor);
return n + sprintf(buf + n, "\n");
}
return 0;
}
SLAB_ATTR_RO(ctor);
static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);
static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);
static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);
static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}
static ssize_t sanity_checks_store(struct kmem_cache *s,
const char *buf, size_t length)
{
s->flags &= ~SLAB_DEBUG_FREE;
if (buf[0] == '1')
s->flags |= SLAB_DEBUG_FREE;
return length;
}
SLAB_ATTR(sanity_checks);
static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}
static ssize_t trace_store(struct kmem_cache *s, const char *buf,
size_t length)
{
s->flags &= ~SLAB_TRACE;
if (buf[0] == '1')
s->flags |= SLAB_TRACE;
return length;
}
SLAB_ATTR(trace);
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}
static ssize_t reclaim_account_store(struct kmem_cache *s,
const char *buf, size_t length)
{
s->flags &= ~SLAB_RECLAIM_ACCOUNT;
if (buf[0] == '1')
s->flags |= SLAB_RECLAIM_ACCOUNT;
return length;
}
SLAB_ATTR(reclaim_account);
static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);
#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);
static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}
static ssize_t red_zone_store(struct kmem_cache *s,
const char *buf, size_t length)
{
if (any_slab_objects(s))
return -EBUSY;
s->flags &= ~SLAB_RED_ZONE;
if (buf[0] == '1')
s->flags |= SLAB_RED_ZONE;
calculate_sizes(s);
return length;
}
SLAB_ATTR(red_zone);
static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}
static ssize_t poison_store(struct kmem_cache *s,
const char *buf, size_t length)
{
if (any_slab_objects(s))
return -EBUSY;
s->flags &= ~SLAB_POISON;
if (buf[0] == '1')
s->flags |= SLAB_POISON;
calculate_sizes(s);
return length;
}
SLAB_ATTR(poison);
static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}
static ssize_t store_user_store(struct kmem_cache *s,
const char *buf, size_t length)
{
if (any_slab_objects(s))
return -EBUSY;
s->flags &= ~SLAB_STORE_USER;
if (buf[0] == '1')
s->flags |= SLAB_STORE_USER;
calculate_sizes(s);
return length;
}
SLAB_ATTR(store_user);
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
return 0;
}
static ssize_t validate_store(struct kmem_cache *s,
const char *buf, size_t length)
{
int ret = -EINVAL;
if (buf[0] == '1') {
ret = validate_slab_cache(s);
if (ret >= 0)
ret = length;
}
return ret;
}
SLAB_ATTR(validate);
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
return 0;
}
static ssize_t shrink_store(struct kmem_cache *s,
const char *buf, size_t length)
{
if (buf[0] == '1') {
int rc = kmem_cache_shrink(s);
if (rc)
return rc;
} else
return -EINVAL;
return length;
}
SLAB_ATTR(shrink);
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
if (!(s->flags & SLAB_STORE_USER))
return -ENOSYS;
return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);
static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
if (!(s->flags & SLAB_STORE_USER))
return -ENOSYS;
return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#ifdef CONFIG_NUMA
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
}
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
const char *buf, size_t length)
{
int n = simple_strtoul(buf, NULL, 10);
if (n < 100)
s->remote_node_defrag_ratio = n * 10;
return length;
}
SLAB_ATTR(remote_node_defrag_ratio);
#endif
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
unsigned long sum = 0;
int cpu;
int len;
int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
if (!data)
return -ENOMEM;
for_each_online_cpu(cpu) {
unsigned x = get_cpu_slab(s, cpu)->stat[si];
data[cpu] = x;
sum += x;
}
len = sprintf(buf, "%lu", sum);
for_each_online_cpu(cpu) {
if (data[cpu] && len < PAGE_SIZE - 20)
len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
}
kfree(data);
return len + sprintf(buf + len, "\n");
}
#define STAT_ATTR(si, text) \
static ssize_t text##_show(struct kmem_cache *s, char *buf) \
{ \
return show_stat(s, buf, si); \
} \
SLAB_ATTR_RO(text); \
STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
#endif
static struct attribute *slab_attrs[] = {
&slab_size_attr.attr,
&object_size_attr.attr,
&objs_per_slab_attr.attr,
&order_attr.attr,
&objects_attr.attr,
&slabs_attr.attr,
&partial_attr.attr,
&cpu_slabs_attr.attr,
&ctor_attr.attr,
&aliases_attr.attr,
&align_attr.attr,
&sanity_checks_attr.attr,
&trace_attr.attr,
&hwcache_align_attr.attr,
&reclaim_account_attr.attr,
&destroy_by_rcu_attr.attr,
&red_zone_attr.attr,
&poison_attr.attr,
&store_user_attr.attr,
&validate_attr.attr,
&shrink_attr.attr,
&alloc_calls_attr.attr,
&free_calls_attr.attr,
#ifdef CONFIG_ZONE_DMA
&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
&remote_node_defrag_ratio_attr.attr,
#endif
#ifdef CONFIG_SLUB_STATS
&alloc_fastpath_attr.attr,
&alloc_slowpath_attr.attr,
&free_fastpath_attr.attr,
&free_slowpath_attr.attr,
&free_frozen_attr.attr,
&free_add_partial_attr.attr,
&free_remove_partial_attr.attr,
&alloc_from_partial_attr.attr,
&alloc_slab_attr.attr,
&alloc_refill_attr.attr,
&free_slab_attr.attr,
&cpuslab_flush_attr.attr,
&deactivate_full_attr.attr,
&deactivate_empty_attr.attr,
&deactivate_to_head_attr.attr,
&deactivate_to_tail_attr.attr,
&deactivate_remote_frees_attr.attr,
#endif
NULL
};
static struct attribute_group slab_attr_group = {
.attrs = slab_attrs,
};
static ssize_t slab_attr_show(struct kobject *kobj,
struct attribute *attr,
char *buf)
{
struct slab_attribute *attribute;
struct kmem_cache *s;
int err;
attribute = to_slab_attr(attr);
s = to_slab(kobj);
if (!attribute->show)
return -EIO;
err = attribute->show(s, buf);
return err;
}
static ssize_t slab_attr_store(struct kobject *kobj,
struct attribute *attr,
const char *buf, size_t len)
{
struct slab_attribute *attribute;
struct kmem_cache *s;
int err;
attribute = to_slab_attr(attr);
s = to_slab(kobj);
if (!attribute->store)
return -EIO;
err = attribute->store(s, buf, len);
return err;
}
static void kmem_cache_release(struct kobject *kobj)
{
struct kmem_cache *s = to_slab(kobj);
kfree(s);
}
static struct sysfs_ops slab_sysfs_ops = {
.show = slab_attr_show,
.store = slab_attr_store,
};
static struct kobj_type slab_ktype = {
.sysfs_ops = &slab_sysfs_ops,
.release = kmem_cache_release
};
static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
struct kobj_type *ktype = get_ktype(kobj);
if (ktype == &slab_ktype)
return 1;
return 0;
}
static struct kset_uevent_ops slab_uevent_ops = {
.filter = uevent_filter,
};
static struct kset *slab_kset;
#define ID_STR_LENGTH 64
/* Create a unique string id for a slab cache:
*
* Format :[flags-]size
*/
static char *create_unique_id(struct kmem_cache *s)
{
char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
char *p = name;
BUG_ON(!name);
*p++ = ':';
/*
* First flags affecting slabcache operations. We will only
* get here for aliasable slabs so we do not need to support
* too many flags. The flags here must cover all flags that
* are matched during merging to guarantee that the id is
* unique.
*/
if (s->flags & SLAB_CACHE_DMA)
*p++ = 'd';
if (s->flags & SLAB_RECLAIM_ACCOUNT)
*p++ = 'a';
if (s->flags & SLAB_DEBUG_FREE)
*p++ = 'F';
if (p != name + 1)
*p++ = '-';
p += sprintf(p, "%07d", s->size);
BUG_ON(p > name + ID_STR_LENGTH - 1);
return name;
}
static int sysfs_slab_add(struct kmem_cache *s)
{
int err;
const char *name;
int unmergeable;
if (slab_state < SYSFS)
/* Defer until later */
return 0;
unmergeable = slab_unmergeable(s);
if (unmergeable) {
/*
* Slabcache can never be merged so we can use the name proper.
* This is typically the case for debug situations. In that
* case we can catch duplicate names easily.
*/
sysfs_remove_link(&slab_kset->kobj, s->name);
name = s->name;
} else {
/*
* Create a unique name for the slab as a target
* for the symlinks.
*/
name = create_unique_id(s);
}
s->kobj.kset = slab_kset;
err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
if (err) {
kobject_put(&s->kobj);
return err;
}
err = sysfs_create_group(&s->kobj, &slab_attr_group);
if (err)
return err;
kobject_uevent(&s->kobj, KOBJ_ADD);
if (!unmergeable) {
/* Setup first alias */
sysfs_slab_alias(s, s->name);
kfree(name);
}
return 0;
}
static void sysfs_slab_remove(struct kmem_cache *s)
{
kobject_uevent(&s->kobj, KOBJ_REMOVE);
kobject_del(&s->kobj);
kobject_put(&s->kobj);
}
/*
* Need to buffer aliases during bootup until sysfs becomes
* available lest we loose that information.
*/
struct saved_alias {
struct kmem_cache *s;
const char *name;
struct saved_alias *next;
};
static struct saved_alias *alias_list;
static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
struct saved_alias *al;
if (slab_state == SYSFS) {
/*
* If we have a leftover link then remove it.
*/
sysfs_remove_link(&slab_kset->kobj, name);
return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
}
al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
if (!al)
return -ENOMEM;
al->s = s;
al->name = name;
al->next = alias_list;
alias_list = al;
return 0;
}
static int __init slab_sysfs_init(void)
{
struct kmem_cache *s;
int err;
slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
if (!slab_kset) {
printk(KERN_ERR "Cannot register slab subsystem.\n");
return -ENOSYS;
}
slab_state = SYSFS;
list_for_each_entry(s, &slab_caches, list) {
err = sysfs_slab_add(s);
if (err)
printk(KERN_ERR "SLUB: Unable to add boot slab %s"
" to sysfs\n", s->name);
}
while (alias_list) {
struct saved_alias *al = alias_list;
alias_list = alias_list->next;
err = sysfs_slab_alias(al->s, al->name);
if (err)
printk(KERN_ERR "SLUB: Unable to add boot slab alias"
" %s to sysfs\n", s->name);
kfree(al);
}
resiliency_test();
return 0;
}
__initcall(slab_sysfs_init);
#endif
/*
* The /proc/slabinfo ABI
*/
#ifdef CONFIG_SLABINFO
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
size_t count, loff_t *ppos)
{
return -EINVAL;
}
static void print_slabinfo_header(struct seq_file *m)
{
seq_puts(m, "slabinfo - version: 2.1\n");
seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
"<objperslab> <pagesperslab>");
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
seq_putc(m, '\n');
}
static void *s_start(struct seq_file *m, loff_t *pos)
{
loff_t n = *pos;
down_read(&slub_lock);
if (!n)
print_slabinfo_header(m);
return seq_list_start(&slab_caches, *pos);
}
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
return seq_list_next(p, &slab_caches, pos);
}
static void s_stop(struct seq_file *m, void *p)
{
up_read(&slub_lock);
}
static int s_show(struct seq_file *m, void *p)
{
unsigned long nr_partials = 0;
unsigned long nr_slabs = 0;
unsigned long nr_inuse = 0;
unsigned long nr_objs;
struct kmem_cache *s;
int node;
s = list_entry(p, struct kmem_cache, list);
for_each_online_node(node) {
struct kmem_cache_node *n = get_node(s, node);
if (!n)
continue;
nr_partials += n->nr_partial;
nr_slabs += atomic_long_read(&n->nr_slabs);
nr_inuse += count_partial(n);
}
nr_objs = nr_slabs * s->objects;
nr_inuse += (nr_slabs - nr_partials) * s->objects;
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
nr_objs, s->size, s->objects, (1 << s->order));
seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
0UL);
seq_putc(m, '\n');
return 0;
}
const struct seq_operations slabinfo_op = {
.start = s_start,
.next = s_next,
.stop = s_stop,
.show = s_show,
};
#endif /* CONFIG_SLABINFO */
|