summaryrefslogtreecommitdiff
path: root/sound/soc/fsl/fsl_sai_ac97.c
blob: 32d3bcc1ca0ee6de8843aa86c8cf939491efe955 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
/*
 * Freescale ALSA SoC Digital Audio Interface (SAI) AC97 driver.
 *
 * Copyright (C) 2013-2015 Toradex, Inc.
 * Authors: Stefan Agner, Marcel Ziswiler
 *
 * This program is free software, you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 of the License, or(at your
 * option) any later version.
 *
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include <linux/pinctrl/consumer.h>

#include <sound/ac97_codec.h>
#include <sound/initval.h>

#include "fsl_sai.h"
#include "imx-pcm.h"

struct imx_pcm_runtime_data {
	unsigned int period;
	int periods;
	unsigned long offset;
	struct snd_pcm_substream *substream;
};

#define EDMA_PRIO_HIGH		6
#define SAI_AC97_DMABUF_SIZE	(13 * 4)
#define SAI_AC97_RBUF_COUNT	(4)
#define SAI_AC97_RBUF_FRAMES	(1024)
#define SAI_AC97_RBUF_SIZE	(SAI_AC97_RBUF_FRAMES * SAI_AC97_DMABUF_SIZE)
#define SAI_AC97_RBUF_SIZE_TOT	(SAI_AC97_RBUF_COUNT * SAI_AC97_RBUF_SIZE)

static struct fsl_sai_ac97 *info;

struct fsl_sai_ac97 {
	struct platform_device *pdev;

	resource_size_t mapbase;

	struct regmap *regmap;
	struct clk *bus_clk;
	struct clk *mclk_clk[FSL_SAI_MCLK_MAX];

	struct dma_chan		*dma_tx_chan;
	struct dma_chan		*dma_rx_chan;
	struct dma_async_tx_descriptor  *dma_tx_desc;
	struct dma_async_tx_descriptor  *dma_rx_desc;

	dma_cookie_t		dma_tx_cookie;
	dma_cookie_t		dma_rx_cookie;

	struct snd_dma_buffer rx_buf;
	struct snd_dma_buffer tx_buf;

	bool big_endian_regs;
	bool big_endian_data;
	bool is_dsp_mode;
	bool sai_on_imx;

	struct snd_dmaengine_dai_dma_data dma_params_rx;
	struct snd_dmaengine_dai_dma_data dma_params_tx;


	struct snd_card *card;

	struct mutex lock;

	int cmdbufid;
	unsigned short reg;
	unsigned short val;

	struct snd_soc_platform platform;

	atomic_t playing;
	atomic_t capturing;

	struct imx_pcm_runtime_data *iprtd_playback;
	struct imx_pcm_runtime_data *iprtd_capture;
};

#define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
		       FSL_SAI_CSR_FEIE)


struct ac97_tx {
	/*
	 * Slot 0: TAG
	 * Bit 15 Codec Ready
	 * Bit 14:3 Slot Valid (Which of slot 1 to slot 12 contain valid data)
	 * Bit 2 Zero
	 * Bit 1:0 Codec ID
	 */
	unsigned int reserved_2:4; /* Align the 16-bit Tag to 20-bit */
	unsigned int codec_id:2;
	unsigned int reserved_1:1;
	unsigned int slot_valid:12;
	unsigned int valid:1;
	unsigned int align_32_0:12;

	/*
	 * Slot 1: Command Address Port
	 * Bit(19) Read/Write command (1=read, 0=write)
	 * Bit(18:12) Control Register Index (64 16-bit locations,
	 * addressed on even byte boundaries)
	 * Bit(11:0) Reserved (Stuffed with 0’s)
	 */
	unsigned int reserved_3:12;
	unsigned int cmdindex:7;
	unsigned int cmdread:1;
	unsigned int align_32_1:12;


	/*
	 * Slot 2: Command Data Port
	 * The command data port is used to deliver 16-bit
	 * control register write data in the event that
	 * the current command port operation is a write
	 * cycle. (as indicated by Slot 1, bit 19)
	 * Bit(19:4) Control Register Write Data (Completed
	 * with 0’s if current operation is a read)
	 * Bit(3:0) Reserved (Completed with 0’s)
	 */
	unsigned int reserved_4:4;
	unsigned int cmddata:16;
	unsigned int align_32_2:12;

	unsigned int slots_data[10];
}  __attribute__((__packed__));

struct ac97_rx {
	/*
	 * Slot 0: TAG
	 * Bit 15 Codec Ready
	 * Bit 14:3 Slot Valid (Which of slot 1 to slot 12 contain valid data)
	 * Bit 2:0 Zero
	 */
	unsigned int reserved_2:4; /* Align the 16-bit Tag to 20-bit */
	unsigned int reserved_1:3;
	unsigned int slot_valid:12;
	unsigned int valid:1;
	unsigned int align_32_0:12;

	/*
	 * Slot 1: Status Address
	 */
	unsigned int reserved_4:2;
	unsigned int slot_req:10;
	unsigned int regindex:7;
	unsigned int reserved_3:1;
	unsigned int align_32_1:12;

	/*
	 * Slot 2: Status Data
	 * Bit 19:4 Control Register Read Data (Completed with 0’s if tagged
	 * “invalid” by AC‘97)
	 * Bit 3:0 RESERVED (Completed with 0’s)
	 */
	unsigned int reserved_5:4;
	unsigned int cmddata:16;
	unsigned int align_32_2:12;

	unsigned int slots_data[10];
}  __attribute__((__packed__));

static void fsl_dma_tx_complete(void *arg)
{
	struct fsl_sai_ac97 *sai = arg;
	struct ac97_tx *aclink;
	struct imx_pcm_runtime_data *iprtd = sai->iprtd_playback;
	int i = 0;
	struct dma_tx_state state;
	enum dma_status status;
	int bufid;

	async_tx_ack(sai->dma_tx_desc);

	status = dmaengine_tx_status(sai->dma_tx_chan, sai->dma_tx_cookie, &state);

	/* Calculate the id of the running buffer */
	if (state.residue % SAI_AC97_RBUF_SIZE == 0)
		bufid = 4 - (state.residue / SAI_AC97_RBUF_SIZE);
	else
		bufid = 3 - (state.residue / SAI_AC97_RBUF_SIZE);

	/* Calculate the id of the next free buffer */
	bufid = (bufid + 1) % 4;

	/* First frame of the just completed buffer... */
	aclink = (struct ac97_tx *)(sai->tx_buf.area + (bufid * SAI_AC97_RBUF_SIZE));

	if (atomic_read(&info->playing))
	{
		struct snd_dma_buffer *buf = &iprtd->substream->dma_buffer;
		u16 *ptr = (u16 *)(buf->area + iprtd->offset);

		/* Copy samples of the PCM stream into PCM slots 3/4 */
		for (i = 0; i < SAI_AC97_RBUF_FRAMES; i++) {

			aclink->valid = 1;
			aclink->slot_valid |= (1 << 9 | 1 << 8);
			aclink->slots_data[0] = ptr[i * 2];
			aclink->slots_data[0] <<= 4;
			aclink->slots_data[1] = ptr[i * 2 + 1];
			aclink->slots_data[1] <<= 4;
			aclink++;
		}

		iprtd->offset += SAI_AC97_RBUF_FRAMES * 4;
		iprtd->offset %= (SAI_AC97_RBUF_FRAMES * 4 * SAI_AC97_RBUF_COUNT);
		snd_pcm_period_elapsed(iprtd->substream);
	}
	else if (aclink->slot_valid & (1 << 9 | 1 << 8))
	{
		/* There is nothing playing anymore, clean the samples */
		for (i = 0; i < SAI_AC97_RBUF_FRAMES; i++) {
			aclink->valid = 0;
			aclink->slot_valid &= ~(1 << 9 | 1 << 8);
			aclink->slots_data[0] = 0;
			aclink->slots_data[1] = 0;
			aclink++;
		}
	}
}

static void fsl_dma_rx_complete(void *arg)
{
	struct fsl_sai_ac97 *sai = arg;
	struct ac97_rx *aclink;
	struct imx_pcm_runtime_data *iprtd = sai->iprtd_capture;
	struct dma_tx_state state;
	enum dma_status status;
	int bufid;
	int i;

	async_tx_ack(sai->dma_rx_desc);

	status = dmaengine_tx_status(sai->dma_rx_chan, sai->dma_rx_cookie, &state);

	/* Calculate the id of the running buffer */
	if (state.residue % SAI_AC97_RBUF_SIZE == 0)
		bufid = 4 - (state.residue / SAI_AC97_RBUF_SIZE);
	else
		bufid = 3 - (state.residue / SAI_AC97_RBUF_SIZE);

	/* Calculate the id of the last processed buffer */
	bufid = (bufid + 3) % 4;

	/* First frame of the just completed buffer... */
	aclink = (struct ac97_rx *)(sai->rx_buf.area + (bufid * SAI_AC97_RBUF_SIZE));

	if (atomic_read(&info->capturing))
	{
		struct snd_dma_buffer *buf = &iprtd->substream->dma_buffer;
		u16 *ptr = (u16 *)buf->area;

		/*
		 * Loop through all AC97 frames, but only some might have data:
		 * Depending on bit rate, the valid flag might not be set for
		 * all frames (see AC97 VBR specification)
		 */
		for (i = 0; i < SAI_AC97_RBUF_FRAMES; i++, aclink++) {
			if (!aclink->valid)
				continue;

			if (aclink->slot_valid & (1 << 9)) {
				ptr[iprtd->offset / 2] = aclink->slots_data[0] >> 4;
				iprtd->offset+=2;
			}

			if (aclink->slot_valid & (1 << 8)) {
				ptr[iprtd->offset / 2] = aclink->slots_data[1] >> 4;
				iprtd->offset+=2;
			}

			iprtd->offset %= (SAI_AC97_RBUF_FRAMES * 4 * SAI_AC97_RBUF_COUNT);
		}

		snd_pcm_period_elapsed(iprtd->substream);
	}
}

static int vf610_sai_ac97_read_write(struct snd_ac97 *ac97, bool isread,
				   unsigned short reg, unsigned short *val)
{
	enum dma_status rx_status;
	enum dma_status tx_status;
	struct dma_tx_state tx_state;
	struct dma_tx_state rx_state;
	struct ac97_tx *tx_aclink;
	struct ac97_rx *rx_aclink;
	int rxbufidstart, txbufidstart, txbufid, rxbufid, curbufid;
	unsigned long flags;
	int ret = 0;
	int rxbufmaxcheck = 10;

	/*
	 * We need to disable interrupts to make sure we insert the message
	 * before the next AC97 frame has been sent
	 */
	local_irq_save(flags);
	tx_status = dmaengine_tx_status(info->dma_tx_chan, info->dma_tx_cookie,
					&tx_state);
	rx_status = dmaengine_tx_status(info->dma_rx_chan, info->dma_rx_cookie,
					&rx_state);

	/* Calculate next DMA buffer sent out to the AC97 codec */
	rxbufidstart = (SAI_AC97_RBUF_SIZE_TOT - rx_state.residue) / SAI_AC97_DMABUF_SIZE;
	rxbufidstart %= SAI_AC97_RBUF_COUNT * SAI_AC97_RBUF_FRAMES;
	txbufidstart = (SAI_AC97_RBUF_SIZE_TOT - tx_state.residue) / SAI_AC97_DMABUF_SIZE;
	txbufidstart %= SAI_AC97_RBUF_COUNT * SAI_AC97_RBUF_FRAMES;

	/* Safety margin, use next buffer in case current buffer is DMA'ed now */
	txbufid = txbufidstart + 1;
	txbufid %= SAI_AC97_RBUF_COUNT * SAI_AC97_RBUF_FRAMES;
	tx_aclink = (struct ac97_tx *)(info->tx_buf.area + (txbufid * SAI_AC97_DMABUF_SIZE));

	/* Put our request into the next AC97 frame */
	tx_aclink->valid = 1;
	tx_aclink->slot_valid |= (1 << 11);

	tx_aclink->cmdread = isread;
	tx_aclink->cmdindex = reg;

	if (!isread) {
		tx_aclink->slot_valid |= (1 << 10);
		tx_aclink->cmddata = *val;
	}

	local_irq_restore(flags);

	/* Wait at least until TX frame is in FIFO... */
	if (!isread) {
		do {
			usleep_range(50, 200);
			tx_status = dmaengine_tx_status(info->dma_tx_chan, info->dma_tx_cookie,
					&tx_state);
			curbufid = ((SAI_AC97_RBUF_SIZE_TOT - tx_state.residue) / SAI_AC97_DMABUF_SIZE);

			if (likely(txbufid > txbufidstart) &&
			    (curbufid > txbufid || curbufid < txbufidstart))
			       break;

			/* Wrap-around case */
			if (unlikely(txbufid < txbufidstart) &&
			    (curbufid > txbufid && curbufid < txbufidstart))
				break;
		} while (true);
		goto clear_command;
	}

	/*
	 * Look into every frame starting at the RX frame which was
	 * last copied by DMA at command insert time. Typically, the
	 * answer is in RX start frame +4. Factors which sum up to
	 * this delay are:
	 * - TX send delay (+1 safety margin, +2 TX FIFO)
	 * - AC97 codec sends back the answer in the next frame (+1)
	 *
	 * TX ring buffer
	 * |------|------|------|------|------|------|------|------|
	 * |      |      |      |txbuf |txbuf |      |      |      |
	 * |      |      |      |start |      |      |      |      |
	 * |------|------|------|------|------|------|------|------|
	 *
	 * RX ring buffer
	 * |------|------|------|------|------|------|------|------|
	 * |      |rxbuf |      |      |      |rxbuf |      |      |
	 * |      |start |      |      |      |      |      |      |
	 * |------|------|------|------|------|------|------|------|
	 *
	 */
	rxbufid = rxbufidstart;
	curbufid = rxbufid;
	do {
		while (rxbufid == curbufid)
		{
			/* Wait for frames being transmitted/received... */
			usleep_range(50, 200);
			rx_status = dmaengine_tx_status(info->dma_rx_chan, info->dma_rx_cookie,
							&rx_state);
			curbufid = ((SAI_AC97_RBUF_SIZE_TOT - rx_state.residue) / SAI_AC97_DMABUF_SIZE);
		}

		/* Ok, frames überprüfen... */
		rx_aclink = (struct ac97_rx *)(info->rx_buf.area + rxbufid * SAI_AC97_DMABUF_SIZE);
		if (rx_aclink->slot_valid & (1 << 11 | 1 << 10) &&
			rx_aclink->regindex == reg)
		{
			*val = rx_aclink->cmddata;
			break;
		}

		rxbufmaxcheck--;
		rxbufid++;
		rxbufid %= SAI_AC97_RBUF_COUNT * SAI_AC97_RBUF_FRAMES;
	} while (rxbufmaxcheck);

	if (!rxbufmaxcheck) {
		pr_err("timeout, rx checked up to %d, rx start %d, rx cur %d\n",
				rxbufid, rxbufidstart, curbufid);
		ret = -ETIMEDOUT;
	}

clear_command:
	/* Clear sent command... */
	tx_aclink->slot_valid &= ~(1 << 11 | 1 << 10);
	tx_aclink->cmdread = 0;
	tx_aclink->cmdindex = 0;
	tx_aclink->cmddata = 0;

	return ret;
}

static unsigned short vf610_sai_ac97_read(struct snd_ac97 *ac97,
					unsigned short reg)
{
	unsigned short val = 0;
	int err;

	err = vf610_sai_ac97_read_write(ac97, true, reg, &val);
	pr_debug("%s: 0x%02x 0x%04x\n", __func__, reg, val);

	if (err)
		pr_err("failed to read register 0x%02x\n", reg);

	return val;
}

static void vf610_sai_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
			     unsigned short val)
{
	int err;

	err = vf610_sai_ac97_read_write(ac97, false, reg, &val);
	pr_debug("%s: 0x%02x 0x%04x\n", __func__, reg, val);

	if (err)
		pr_err("failed to write register 0x%02x\n", reg);
}


static struct snd_ac97_bus_ops fsl_sai_ac97_ops = {
	.read	= vf610_sai_ac97_read,
	.write	= vf610_sai_ac97_write,
};

static int fsl_sai_startup(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	pr_debug("%s, %d\n", __func__, substream->stream);

	return 0;
}

static void fsl_sai_shutdown(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	pr_debug("%s, %d\n", __func__, substream->stream);
}

static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
	//.set_sysclk	= fsl_sai_set_dai_sysclk,
	//.set_fmt	= fsl_sai_set_dai_fmt,
	//.hw_params	= fsl_sai_hw_params,
	//.trigger	= fsl_sai_trigger,
	.startup	= fsl_sai_startup,
	.shutdown	= fsl_sai_shutdown,
};

static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai_ac97 *sai = dev_get_drvdata(cpu_dai->dev);

	snd_soc_dai_set_drvdata(cpu_dai, sai);

	return 0;
}

static struct snd_soc_dai_driver fsl_sai_ac97_dai = {
	.name = "fsl-sai-ac97-pcm",
	.bus_control = true,
	.probe = fsl_sai_dai_probe,
	.playback = {
		.stream_name = "PCM Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.capture = {
		.stream_name = "PCM Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.ops = &fsl_sai_pcm_dai_ops,
};

static const struct snd_soc_component_driver fsl_component = {
	.name           = "fsl-sai",
};

static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TFR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RDR:
	case FSL_SAI_RFR:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TFR:
	case FSL_SAI_RFR:
	case FSL_SAI_TDR:
	case FSL_SAI_RDR:
		return true;
	default:
		return false;
	}

}

static bool fsl_sai_precious_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_RDR:
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TDR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

static struct regmap_config fsl_sai_regmap_config = {
	.reg_bits = 32,
	.reg_stride = 4,
	.val_bits = 32,

	.max_register = FSL_SAI_RMR,
	.precious_reg = fsl_sai_precious_reg,
	.readable_reg = fsl_sai_readable_reg,
	.volatile_reg = fsl_sai_volatile_reg,
	.writeable_reg = fsl_sai_writeable_reg,
};

static struct snd_pcm_hardware snd_sai_ac97_hardware = {
	.info = SNDRV_PCM_INFO_INTERLEAVED |
		SNDRV_PCM_INFO_BLOCK_TRANSFER |
		SNDRV_PCM_INFO_MMAP |
		SNDRV_PCM_INFO_MMAP_VALID |
		SNDRV_PCM_INFO_PAUSE |
		SNDRV_PCM_INFO_RESUME,
	.formats = SNDRV_PCM_FMTBIT_S16_LE,
	.buffer_bytes_max = SAI_AC97_RBUF_FRAMES * 4 * SAI_AC97_RBUF_COUNT,
	.period_bytes_min = SAI_AC97_RBUF_FRAMES * 4,
	.period_bytes_max = SAI_AC97_RBUF_FRAMES * 4,
	.periods_min = SAI_AC97_RBUF_COUNT,
	.periods_max = SAI_AC97_RBUF_COUNT,
	.fifo_size = 0,
};

static int snd_fsl_sai_pcm_hw_params(struct snd_pcm_substream *substream,
				struct snd_pcm_hw_params *params)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	struct imx_pcm_runtime_data *iprtd = runtime->private_data;

	iprtd->periods = params_periods(params);
	iprtd->period = params_period_bytes(params);
	iprtd->offset = 0;

	pr_debug("%s: period %d, periods %d\n", __func__,
		iprtd->period, iprtd->periods);
	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);

	return 0;
}

static int snd_fsl_sai_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
	pr_debug("%s:, %p, cmd %d\n", __func__, substream, cmd);

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			atomic_set(&info->playing, 1);
		else
			atomic_set(&info->capturing, 1);
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			atomic_set(&info->playing, 0);
		else
			atomic_set(&info->capturing, 0);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

static snd_pcm_uframes_t snd_fsl_sai_pcm_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	struct imx_pcm_runtime_data *iprtd = runtime->private_data;

	return bytes_to_frames(substream->runtime, iprtd->offset);
}

static int snd_fsl_sai_pcm_mmap(struct snd_pcm_substream *substream,
		struct vm_area_struct *vma)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int ret = 0;

	ret = dma_mmap_writecombine(substream->pcm->card->dev, vma,
		runtime->dma_area, runtime->dma_addr, runtime->dma_bytes);

	return ret;
}

static int snd_fsl_sai_pcm_prepare(struct snd_pcm_substream *substream)
{
	pr_debug("%s, %p\n", __func__, substream);
	return 0;
}

static int snd_fsl_sai_open(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	struct imx_pcm_runtime_data *iprtd;
	int ret;

	iprtd = kzalloc(sizeof(*iprtd), GFP_KERNEL);

	if (iprtd == NULL)
		return -ENOMEM;

	runtime->private_data = iprtd;
	iprtd->substream = substream;

	ret = snd_pcm_hw_constraint_integer(substream->runtime,
			SNDRV_PCM_HW_PARAM_PERIODS);
	if (ret < 0) {
		kfree(iprtd);
		return ret;
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		atomic_set(&info->playing, 0);
		info->iprtd_playback = iprtd;
	} else {
		atomic_set(&info->capturing, 0);
		info->iprtd_capture = iprtd;
	}

	snd_soc_set_runtime_hwparams(substream, &snd_sai_ac97_hardware);

	return 0;
}

static int snd_fsl_sai_close(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	struct imx_pcm_runtime_data *iprtd = runtime->private_data;


	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		info->iprtd_playback = NULL;
	else
		info->iprtd_capture = NULL;

	kfree(iprtd);

	return 0;
}

static struct snd_pcm_ops fsl_sai_pcm_ops = {
	.open		= snd_fsl_sai_open,
	.close		= snd_fsl_sai_close,
	.ioctl		= snd_pcm_lib_ioctl,
	.hw_params	= snd_fsl_sai_pcm_hw_params,
	.prepare	= snd_fsl_sai_pcm_prepare,
	.trigger	= snd_fsl_sai_pcm_trigger,
	.pointer	= snd_fsl_sai_pcm_pointer,
	.mmap		= snd_fsl_sai_pcm_mmap,
};

static int imx_pcm_preallocate_dma_buffer(struct snd_pcm *pcm, int stream)
{
	struct snd_pcm_substream *substream = pcm->streams[stream].substream;
	struct snd_dma_buffer *buf = &substream->dma_buffer;

	/* Allocate for buffers, 16-Bit stereo data.. */
	size_t size = SAI_AC97_RBUF_FRAMES * 4 * SAI_AC97_RBUF_COUNT;

	buf->dev.type = SNDRV_DMA_TYPE_DEV;
	buf->dev.dev = pcm->card->dev;
	buf->private_data = NULL;
	buf->area = dma_alloc_writecombine(pcm->card->dev, size,
					   &buf->addr, GFP_KERNEL);
	if (!buf->area)
		return -ENOMEM;
	buf->bytes = size;

	return 0;
}

static int fsl_sai_pcm_new(struct snd_soc_pcm_runtime *rtd)
{
	struct snd_pcm *pcm = rtd->pcm;
	struct snd_card *card = rtd->card->snd_card;
	int ret;

	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

	if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
		ret = imx_pcm_preallocate_dma_buffer(pcm,
			SNDRV_PCM_STREAM_PLAYBACK);
		if (ret)
			return ret;
	}

	if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
		ret = imx_pcm_preallocate_dma_buffer(pcm,
			SNDRV_PCM_STREAM_CAPTURE);
		if (ret)
			return ret;
	}

	pr_debug("%s, %p\n", __func__, pcm);

	return 0;
}

static void fsl_sai_pcm_free(struct snd_pcm *pcm)
{
	pr_debug("%s, %p\n", __func__, pcm);
}

static struct snd_soc_platform_driver ac97_software_pcm_platform = {
	.ops		= &fsl_sai_pcm_ops,
	.pcm_new	= fsl_sai_pcm_new,
	.pcm_free	= fsl_sai_pcm_free,
};


static int fsl_sai_ac97_prepare_tx_dma(struct fsl_sai_ac97 *sai)
{
	struct dma_slave_config dma_tx_sconfig;
	int ret;

	dma_tx_sconfig.dst_addr = sai->mapbase + FSL_SAI_TDR;
	dma_tx_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	dma_tx_sconfig.dst_maxburst = 13;
	dma_tx_sconfig.direction = DMA_MEM_TO_DEV;
	ret = dmaengine_slave_config(sai->dma_tx_chan, &dma_tx_sconfig);
	if (ret < 0) {
		dev_err(&sai->pdev->dev,
				"DMA slave config failed, err = %d\n", ret);
		dma_release_channel(sai->dma_tx_chan);
		return ret;
	}
	sai->dma_tx_desc = dmaengine_prep_dma_cyclic(sai->dma_tx_chan,
			sai->tx_buf.addr, SAI_AC97_RBUF_SIZE_TOT,
			SAI_AC97_RBUF_SIZE, DMA_MEM_TO_DEV,
			DMA_PREP_INTERRUPT);
	sai->dma_tx_desc->callback = fsl_dma_tx_complete;
	sai->dma_tx_desc->callback_param = sai;

	return 0;
};

static int fsl_sai_ac97_prepare_rx_dma(struct fsl_sai_ac97 *sai)
{
	struct dma_slave_config dma_rx_sconfig;
	int ret;

	dma_rx_sconfig.src_addr = sai->mapbase + FSL_SAI_RDR;
	dma_rx_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	dma_rx_sconfig.src_maxburst = 13;
	dma_rx_sconfig.direction = DMA_DEV_TO_MEM;
	ret = dmaengine_slave_config(sai->dma_rx_chan, &dma_rx_sconfig);
	if (ret < 0) {
		dev_err(&sai->pdev->dev,
				"DMA slave config failed, err = %d\n", ret);
		dma_release_channel(sai->dma_rx_chan);
		return ret;
	}
	sai->dma_rx_desc = dmaengine_prep_dma_cyclic(sai->dma_rx_chan,
			sai->rx_buf.addr, SAI_AC97_RBUF_SIZE_TOT,
			SAI_AC97_RBUF_SIZE, DMA_DEV_TO_MEM,
			DMA_PREP_INTERRUPT);
	sai->dma_rx_desc->callback = fsl_dma_rx_complete;
	sai->dma_rx_desc->callback_param = sai;

	return 0;
};

static void fsl_sai_ac97_reset_sai(struct fsl_sai_ac97 *sai)
{
	/* TX */
	/* Issue software reset */
	regmap_update_bits(sai->regmap, FSL_SAI_TCSR, FSL_SAI_CSR_SR,
			   FSL_SAI_CSR_SR);

	udelay(2);
	/* Release software reset */
	regmap_update_bits(sai->regmap, FSL_SAI_TCSR, FSL_SAI_CSR_SR, 0);

	/* FIFO reset */
	regmap_update_bits(sai->regmap, FSL_SAI_TCSR, FSL_SAI_CSR_FR,
			   FSL_SAI_CSR_FR);

	/* RX */
	/* Issue software reset */
	regmap_update_bits(sai->regmap, FSL_SAI_RCSR, FSL_SAI_CSR_SR,
			   FSL_SAI_CSR_SR);

	udelay(2);
	/* Release software reset */
	regmap_update_bits(sai->regmap, FSL_SAI_RCSR, FSL_SAI_CSR_SR, 0);

	/* FIFO reset */
	regmap_update_bits(sai->regmap, FSL_SAI_RCSR, FSL_SAI_CSR_FR,
			   FSL_SAI_CSR_FR);
};

static int fsl_sai_ac97_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct fsl_sai_ac97 *sai;
	struct resource *res;
	void __iomem *base;
	char tmp[8];
	//int irq
	int ret, i;

	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
	if (!sai)
		return -ENOMEM;

	info = sai;
	sai->pdev = pdev;

	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx6sx-sai"))
		sai->sai_on_imx = true;

	sai->big_endian_regs = of_property_read_bool(np, "big-endian-regs");
	if (sai->big_endian_regs)
		fsl_sai_regmap_config.val_format_endian = REGMAP_ENDIAN_BIG;

	sai->big_endian_data = of_property_read_bool(np, "big-endian-data");

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	sai->mapbase = res->start;
	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
			"bus", base, &fsl_sai_regmap_config);

	/* Compatible with old DTB cases */
	if (IS_ERR(sai->regmap))
		sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
				"sai", base, &fsl_sai_regmap_config);
	if (IS_ERR(sai->regmap)) {
		dev_err(&pdev->dev, "regmap init failed\n");
		return PTR_ERR(sai->regmap);
	}

	/* No error out for old DTB cases but only mark the clock NULL */
	sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
	if (IS_ERR(sai->bus_clk)) {
		dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
				PTR_ERR(sai->bus_clk));
		sai->bus_clk = NULL;
	}

	ret = clk_prepare_enable(sai->bus_clk);
	if (ret) {
		dev_err(&pdev->dev, "failed to enable bus clk: %d\n", ret);
		return ret;
	}

	for (i = 0; i < FSL_SAI_MCLK_MAX; i++) {
		sprintf(tmp, "mclk%d", i + 1);
		sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
		if (IS_ERR(sai->mclk_clk[i])) {
			dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
					i + 1, PTR_ERR(sai->mclk_clk[i]));
			sai->mclk_clk[i] = NULL;
		}
	}

	ret = snd_soc_set_ac97_ops_of_reset(&fsl_sai_ac97_ops, pdev);
	if (ret < 0) {
		dev_err(&pdev->dev, "failed to reset AC97 link: %d\n", ret);
		goto err_disable_clock;
	}

	mutex_init(&info->lock);

	/* clear transmit/receive configuration/status registers */
	regmap_write(sai->regmap, FSL_SAI_TCSR, 0x0);
	regmap_write(sai->regmap, FSL_SAI_RCSR, 0x0);

	/* pre allocate DMA buffers */
	sai->tx_buf.dev.type = SNDRV_DMA_TYPE_DEV;
	sai->tx_buf.dev.dev = &pdev->dev;
	sai->tx_buf.private_data = NULL;
	sai->tx_buf.area = dma_alloc_writecombine(&pdev->dev, SAI_AC97_RBUF_SIZE_TOT,
					   &sai->tx_buf.addr, GFP_KERNEL);
	if (!sai->tx_buf.area) {
		ret = -ENOMEM;
		//goto failed_tx_buf;
		return ret;
	}
	sai->tx_buf.bytes = SAI_AC97_RBUF_SIZE_TOT;

	sai->rx_buf.dev.type = SNDRV_DMA_TYPE_DEV;
	sai->rx_buf.dev.dev = &pdev->dev;
	sai->rx_buf.private_data = NULL;
	sai->rx_buf.area = dma_alloc_writecombine(&pdev->dev, SAI_AC97_RBUF_SIZE_TOT,
					   &sai->rx_buf.addr, GFP_KERNEL);
	if (!sai->rx_buf.area) {
		ret = -ENOMEM;
		//goto failed_rx_buf;
		return ret;
	}
	sai->rx_buf.bytes = SAI_AC97_RBUF_SIZE_TOT;

	memset(sai->tx_buf.area, 0, SAI_AC97_RBUF_SIZE_TOT);
	memset(sai->rx_buf.area, 0, SAI_AC97_RBUF_SIZE_TOT);

	/* 1. Configuration of SAI clock mode */

	/*
	 * Issue software reset and FIFO reset for Transmitter and Receiver
	 * sections before starting configuration.
	 */
	fsl_sai_ac97_reset_sai(sai);

	/* Configure FIFO watermark. FIFO watermark is used as an indicator for
	   DMA trigger when read or write data from/to FIFOs. */
	/* Watermark level for all enabled transmit channels of one SAI module.
	 */
	regmap_write(sai->regmap, FSL_SAI_TCR1, 13);
	regmap_write(sai->regmap, FSL_SAI_RCR1, 13);

	/* Configure the clocking mode, bitclock polarity, direction, and
	   divider. Clocking mode defines synchronous or asynchronous operation
	   for SAI module. Bitclock polarity configures polarity of the
	   bitclock. Bitclock direction configures direction of the bitclock.
	   Bus master has bitclock generated externally, slave has bitclock
	   generated internally */

	/* TX */
	/* The transmitter must be configured for asynchronous operation */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR2, FSL_SAI_CR2_SYNC_MASK, 0);

	/* bit clock not swapped */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR2, FSL_SAI_CR2_BCS, 0);

	/* Bitclock is active high (drive outputs on rising edge and sample
	 * inputs on falling edge
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR2, FSL_SAI_CR2_BCP, 0);

	/* Bitclock is generated externally (Slave mode) */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR2, FSL_SAI_CR2_BCD_MSTR, 0);

	/* RX */
	/* The receiver must be configured for synchronous operation. */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR2, FSL_SAI_CR2_SYNC_MASK,
			   FSL_SAI_CR2_SYNC);

	/* bit clock not swapped */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR2, FSL_SAI_CR2_BCS, 0);

	/* Bitclock is active high (drive outputs on rising edge and sample
	 * inputs on falling edge
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR2, FSL_SAI_CR2_BCP, 0);

	/* Bitclock is generated externally (Slave mode) */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR2, FSL_SAI_CR2_BCD_MSTR, 0);

	/* Configure frame size, frame sync width, MSB first, frame sync early,
	   polarity, and direction
	   Frame size – configures the number of words in each frame. AC97
	   requires 13 words per frame.
	   Frame sync width – configures the length of the frame sync in number
	   of bitclock. The sync width cannot be longer than the first word of
	   the frame. AC97 requires frame sync asserted for first word. */

	/* Configures number of words in each frame. The value written should be
	 * one less than the number of words in the frame (part of define!)
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR4, FSL_SAI_CR4_FRSZ_MASK,
			   FSL_SAI_CR4_FRSZ(13));

	/* Configures length of the frame sync. The value written should be one
	 * less than the number of bitclocks. 
	 * AC97 - 16 bits transmitted in first word.
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR4, FSL_SAI_CR4_SYWD_MASK,
			   FSL_SAI_CR4_SYWD(16));


	/* MSB is transmitted first */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR4, FSL_SAI_CR4_MF,
			   FSL_SAI_CR4_MF);

	/* Frame sync asserted one bit before the first bit of the frame */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR4, FSL_SAI_CR4_FSE,
			   FSL_SAI_CR4_FSE);

	/* A new AC-link input frame begins with a low to high transition of
	 * SYNC. Frame sync is active high
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR4, FSL_SAI_CR4_FSP, 0);

	/* Frame sync is generated internally (Master mode) */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR4, FSL_SAI_CR4_FSD_MSTR,
			   FSL_SAI_CR4_FSD_MSTR);

	/* RX */
	/* Configures number of words in each frame. The value written should be
	 * one less than the number of words in the frame (part of define!)
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR4, FSL_SAI_CR4_FRSZ_MASK,
			   FSL_SAI_CR4_FRSZ(13));

	/* Configures length of the frame sync. The value written should be one
	 * less than the number of bitclocks. 
	 * AC97 - 16 bits transmitted in first word.
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR4, FSL_SAI_CR4_SYWD_MASK,
			   FSL_SAI_CR4_SYWD(16));


	/* MSB is transmitted first */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR4, FSL_SAI_CR4_MF,
			   FSL_SAI_CR4_MF);

	/* Frame sync asserted one bit before the first bit of the frame */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR4, FSL_SAI_CR4_FSE,
			   FSL_SAI_CR4_FSE);

	/* A new AC-link input frame begins with a low to high transition of
	 * SYNC. Frame sync is active high
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR4, FSL_SAI_CR4_FSP, 0);

	/* Frame sync is generated internally (Master mode) */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR4, FSL_SAI_CR4_FSD_MSTR,
			   FSL_SAI_CR4_FSD_MSTR);

	/* Configure the Word 0 and next word sizes.
	   W0W – defines number of bits in the first word in each frame.
	   WNW – defines number of bits in each word for each word except the
	   first in the frame. */

	/* TX */
	/* Number of bits in first word in each frame. AC97 – 16-bit word is
	 * transmitted.
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR5, FSL_SAI_CR5_W0W_MASK,
			   FSL_SAI_CR5_W0W(16));

	/* Number of bits in each word in each frame. AC97 – 20-bit word is
	 * transmitted.
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR5, FSL_SAI_CR5_WNW_MASK,
			   FSL_SAI_CR5_WNW(20));

	regmap_update_bits(sai->regmap, FSL_SAI_TCR5, FSL_SAI_CR5_W0W_MASK,
			   FSL_SAI_CR5_W0W(16));

	/* Configures the bit index for the first bit transmitted for each word
	 * in the frame. The value written must be greater than or equal to the
	 * word width when configured for MSB First.
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR5, FSL_SAI_CR5_FBT_MASK,
			   FSL_SAI_CR5_FBT(20));

	/* RX */
	/* Number of bits in first word in each frame. AC97 – 16-bit word is
	 * transmitted.
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR5, FSL_SAI_CR5_W0W_MASK,
			   FSL_SAI_CR5_W0W(16));

	/* Number of bits in each word in each frame. AC97 – 20-bit word is
	 * transmitted.
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR5, FSL_SAI_CR5_WNW_MASK,
			   FSL_SAI_CR5_WNW(20));

	regmap_update_bits(sai->regmap, FSL_SAI_RCR5, FSL_SAI_CR5_W0W_MASK,
			   FSL_SAI_CR5_W0W(16));

	/* Configures the bit index for the first bit transmitted for each word
	 * in the frame. The value written must be greater than or equal to the
	 * word width when configured for MSB First.
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR5, FSL_SAI_CR5_FBT_MASK,
			   FSL_SAI_CR5_FBT(20));


	/* Clear the Transmit and Receive Mask registers. */
	regmap_write(sai->regmap, FSL_SAI_TMR, 0);
	regmap_write(sai->regmap, FSL_SAI_RMR, 0);


	sai->dma_tx_chan = dma_request_slave_channel(&pdev->dev, "tx");
	if (!sai->dma_tx_chan) {
		dev_err(&pdev->dev, "DMA tx channel request failed!\n");
		return -ENODEV;
	}

	sai->dma_rx_chan = dma_request_slave_channel(&pdev->dev, "rx");
	if (!sai->dma_rx_chan) {
		dev_err(&pdev->dev, "DMA rx channel request failed!\n");
		return -ENODEV;
	}

	/* Enables a data channel for a transmit operation. */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR3, FSL_SAI_CR3_TRCE,
			   FSL_SAI_CR3_TRCE);

	/* Enables a data channel for a receive operation. */
	regmap_update_bits(sai->regmap, FSL_SAI_RCR3, FSL_SAI_CR3_TRCE,
			   FSL_SAI_CR3_TRCE);


	/* In synchronous mode, receiver is enabled only when both transmitter
	   and receiver are enabled. It is recommended that transmitter is
	   enabled last and disabled first. */
	/* Enable receiver */
	regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
			   FSL_SAI_CSR_FRDE | FSL_SAI_CSR_TERE,
			   FSL_SAI_CSR_FRDE | FSL_SAI_CSR_TERE);

	/* Enable transmitter */
	regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
			   FSL_SAI_CSR_FRDE | FSL_SAI_CSR_TERE,
			   FSL_SAI_CSR_FRDE | FSL_SAI_CSR_TERE);

	platform_set_drvdata(pdev, sai);

	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
			&fsl_sai_ac97_dai, 1);
	if (ret) {
		dev_err(&pdev->dev, "Could not register Component: %d\n", ret);
		goto err_disable_clock;
	}

	/* Register our own PCM device, which fills the AC97 frames... */
	snd_soc_add_platform(&pdev->dev, &sai->platform, &ac97_software_pcm_platform);

	/* Start the DMA engine */
	fsl_sai_ac97_prepare_tx_dma(sai);
	fsl_sai_ac97_prepare_rx_dma(sai);

	sai->dma_tx_cookie = dmaengine_submit(sai->dma_tx_desc);
	dma_async_issue_pending(sai->dma_tx_chan);

	sai->dma_rx_cookie = dmaengine_submit(sai->dma_rx_desc);
	dma_async_issue_pending(sai->dma_rx_chan);

	return 0;

err_disable_clock:
	clk_disable_unprepare(sai->bus_clk);

	return ret;
}

#ifdef CONFIG_PM_SLEEP
static int fsl_sai_ac97_suspend(struct device *dev)
{
	struct fsl_sai_ac97 *sai = dev_get_drvdata(dev);

	/* Disable receiver/transmitter */
	regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
			   FSL_SAI_CSR_FRDE | FSL_SAI_CSR_TERE, 0x0);

	regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
			   FSL_SAI_CSR_FRDE | FSL_SAI_CSR_TERE, 0x0);

	dmaengine_terminate_all(sai->dma_tx_chan);
	dmaengine_terminate_all(sai->dma_rx_chan);

	return 0;
}

static int fsl_sai_ac97_resume(struct device *dev)
{
	struct fsl_sai_ac97 *sai = dev_get_drvdata(dev);

	/* Reset SAI */
	fsl_sai_ac97_reset_sai(sai);

	/* Enable receiver */
	regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
			   FSL_SAI_CSR_FRDE | FSL_SAI_CSR_TERE,
			   FSL_SAI_CSR_FRDE | FSL_SAI_CSR_TERE);

	/* Enable transmitter */
	regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
			   FSL_SAI_CSR_FRDE | FSL_SAI_CSR_TERE,
			   FSL_SAI_CSR_FRDE | FSL_SAI_CSR_TERE);

	/* Restart the DMA engine */
	fsl_sai_ac97_prepare_tx_dma(sai);
	fsl_sai_ac97_prepare_rx_dma(sai);

	sai->dma_tx_cookie = dmaengine_submit(sai->dma_tx_desc);
	dma_async_issue_pending(sai->dma_tx_chan);

	sai->dma_rx_cookie = dmaengine_submit(sai->dma_rx_desc);
	dma_async_issue_pending(sai->dma_rx_chan);

	return 0;
}
#endif /* CONFIG_PM_SLEEP */

static const struct dev_pm_ops fsl_sai_ac97_pm = {
	.suspend = fsl_sai_ac97_suspend,
	.resume = fsl_sai_ac97_resume,
};
static const struct of_device_id fsl_sai_ac97_ids[] = {
	{ .compatible = "fsl,vf610-sai-ac97", },
	{ /* sentinel */ }
};

static struct platform_driver fsl_sai_ac97_driver = {
	.probe = fsl_sai_ac97_probe,
	.driver = {
		.name = "fsl-sai-ac97",
		.owner = THIS_MODULE,
		.of_match_table = fsl_sai_ac97_ids,
		.pm = &fsl_sai_ac97_pm,
	},
};
module_platform_driver(fsl_sai_ac97_driver);

MODULE_DESCRIPTION("Freescale SoC SAI AC97 Interface");
MODULE_AUTHOR("Stefan Agner, Marcel Ziswiler");
MODULE_ALIAS("platform:fsl-sai-ac97");
MODULE_LICENSE("GPLv2");