diff options
Diffstat (limited to 'cpu/arm926ejs/da8xx/nand.c')
-rw-r--r-- | cpu/arm926ejs/da8xx/nand.c | 468 |
1 files changed, 468 insertions, 0 deletions
diff --git a/cpu/arm926ejs/da8xx/nand.c b/cpu/arm926ejs/da8xx/nand.c new file mode 100644 index 00000000000..05049d59f14 --- /dev/null +++ b/cpu/arm926ejs/da8xx/nand.c @@ -0,0 +1,468 @@ +/* + * NAND driver for TI DaVinci based boards. + * + * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net> + * + * Based on Linux DaVinci NAND driver by TI. Original copyright follows: + */ + +/* + * + * linux/drivers/mtd/nand/nand_dm355.c + * + * NAND Flash Driver + * + * Copyright (C) 2006 Texas Instruments. + * + * ---------------------------------------------------------------------------- + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * ---------------------------------------------------------------------------- + * + * Overview: + * This is a device driver for the NAND flash device found on the + * DaVinci board which utilizes the Samsung k9k2g08 part. + * + Modifications: + ver. 1.0: Feb 2005, Vinod/Sudhakar + March 2008, Sandeep + - + * + */ + +#include <common.h> + +#ifdef CONFIG_CMD_NAND +#if !defined(CFG_NAND_LEGACY) + +#include <asm/arch/hardware.h> +#include <nand.h> +#include <asm/arch/nand_defs.h> +#include <asm/arch/emif_defs.h> + +#define CSL_EMIF_1_REGS (0x68000000) +#define NAND4BITECCLOAD (CSL_EMIF_1_REGS + 0xBC) +#define NAND4BITECC1 (CSL_EMIF_1_REGS + 0xC0) +#define NAND4BITECC2 (CSL_EMIF_1_REGS + 0xC4) +#define NAND4BITECC3 (CSL_EMIF_1_REGS + 0xC8) +#define NAND4BITECC4 (CSL_EMIF_1_REGS + 0xCC) +#define NANDERRADD1 (CSL_EMIF_1_REGS + 0xD0) +#define NANDERRADD2 (CSL_EMIF_1_REGS + 0xD4) +#define NANDERRVAL1 (CSL_EMIF_1_REGS + 0xD8) +#define NANDERRVAL2 (CSL_EMIF_1_REGS + 0xDC) + +/* Definitions for 4-bit hardware ECC */ +#define NAND_4BITECC_MASK 0x03FF03FF +#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00 +#define ECC_STATE_NO_ERR 0x0 +#define ECC_STATE_TOO_MANY_ERRS 0x1 +#define ECC_STATE_ERR_CORR_COMP_P 0x2 +#define ECC_STATE_ERR_CORR_COMP_N 0x3 +#define ECC_MAX_CORRECTABLE_ERRORS 0x4 + +extern struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE]; + +static void nand_dm350evm_hwcontrol(struct mtd_info *mtd, int cmd) +{ + struct nand_chip *this = mtd->priv; + u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W; + u_int32_t IO_ADDR_R = (u_int32_t)this->IO_ADDR_R; + + IO_ADDR_W &= ~(MASK_ALE|MASK_CLE); + + switch (cmd) { + case NAND_CTL_SETCLE: + IO_ADDR_W |= MASK_CLE; + break; + case NAND_CTL_SETALE: + IO_ADDR_W |= MASK_ALE; + break; + } + + this->IO_ADDR_W = (void *)IO_ADDR_W; +} + +/* + * Instead of placing the spare data at the end of the page, the 4-bit ECC + * hardware generator requires that the page be subdivided into 4 subpages, + * each with its own spare data area. This structure defines the format of + * each of these subpages. + */ +static struct page_layout_item nand_dm355_hw10_512_layout[] = { + {.type = ITEM_TYPE_DATA,.length = 512}, + {.type = ITEM_TYPE_OOB,.length = 6,}, + {.type = ITEM_TYPE_ECC,.length = 10,}, + {.type = 0,.length = 0,}, +}; + +static struct nand_oobinfo nand_dm355_hw10_512_oobinfo = { + .useecc = MTD_NANDECC_AUTOPLACE, + /* + * We actually have 40 bytes of ECC per page, but the nand_oobinfo + * structure definition limits us to a maximum of 32 bytes. This + * doesn't matter, because out page_layout_item structure definition + * determines where our ECC actually goes in the flash page. + */ + .eccbytes = 32, + .eccpos = {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 54, 55, + }, + .oobfree = {{0, 6}, {16, 6}, {32, 6}, {48, 6}}, +}; + + + +static int nand_dm355_hw10_512_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *this = mtd->priv; + int block; + + /* Get block number */ + block = ((int)ofs) >> this->bbt_erase_shift; + if (this->bbt) + this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); + + /* Do we have a flash based bad block table ? */ + if (this->options & NAND_USE_FLASH_BBT) + return nand_update_bbt(mtd, ofs); + + return 0; +} + +static void nand_dm355_4bit_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct nand_chip *this = mtd->priv; + emifregs emif_addr = (emifregs)CSL_EMIF_1_REGS; + u32 val; + + switch (mode) { + case NAND_ECC_WRITE: + case NAND_ECC_READ: + /* + * Start a new ECC calculation for reading or writing 512 bytes + * of data. + */ + val = (emif_addr->NANDFCR & ~(3 << 4)); + val |= (1 << 4) | (1 << 12); + emif_addr->NANDFCR = val; + break; + case NAND_ECC_WRITEOOB: + case NAND_ECC_READOOB: + /* + * Terminate ECC calculation by performing a dummy read of an + * ECC register. Our hardware ECC generator supports including + * the OOB in the ECC calculation, but the NAND core code + * doesn't really support that. We will only calculate the ECC + * on the data; errors in the non-ECC bytes in the OOB will not + * be detected or corrected. + */ + val = emif_addr->NANDF1ECC; + break; + case NAND_ECC_WRITESYN: + case NAND_ECC_READSYN: + /* + * Our ECC calculation has already been terminated, so no need + * to do anything here. + */ + break; + default: + break; + } +} + +static u32 nand_dm355_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4]) +{ + emifregs emif_addr = (emifregs)CSL_EMIF_1_REGS; + + ecc[0] = (*(dv_reg_p) NAND4BITECC1) & NAND_4BITECC_MASK; + ecc[1] = (*(dv_reg_p) NAND4BITECC2) & NAND_4BITECC_MASK; + ecc[2] = (*(dv_reg_p) NAND4BITECC3) & NAND_4BITECC_MASK; + ecc[3] = (*(dv_reg_p) NAND4BITECC4) & NAND_4BITECC_MASK; + + return 0; +} + +static int nand_dm355_4bit_calculate_ecc(struct mtd_info *mtd, + const u_char * dat, + u_char * ecc_code) +{ + unsigned int hw_4ecc[4] = { 0, 0, 0, 0 }; + unsigned int const1 = 0, const2 = 0; + unsigned char count1 = 0; + + /* + * Since the NAND_HWECC_SYNDROME option is enabled, this routine is + * only called just after the data and oob have been written. The + * ECC value calculated by the hardware ECC generator is available + * for us to read. + */ + nand_dm355_4bit_readecc(mtd, hw_4ecc); + + /*Convert 10 bit ecc value to 8 bit */ + for (count1 = 0; count1 < 2; count1++) { + const2 = count1 * 5; + const1 = count1 * 2; + + /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */ + ecc_code[const2] = hw_4ecc[const1] & 0xFF; + + /* + * Take 2 bits as LSB bits from val1 (count1=0) or val5 + * (count1=1) and 6 bits from val2 (count1=0) or val5 (count1=1) + */ + ecc_code[const2 + 1] = + ((hw_4ecc[const1] >> 8) & 0x3) | ((hw_4ecc[const1] >> 14) & + 0xFC); + + /* + * Take 4 bits from val2 (count1=0) or val5 (count1=1) and + * 4 bits from val3 (count1=0) or val6 (count1=1) + */ + ecc_code[const2 + 2] = + ((hw_4ecc[const1] >> 22) & 0xF) | + ((hw_4ecc[const1 + 1] << 4) & 0xF0); + + /* + * Take 6 bits from val3(count1=0) or val6 (count1=1) and + * 2 bits from val4 (count1=0) or val7 (count1=1) + */ + ecc_code[const2 + 3] = + ((hw_4ecc[const1 + 1] >> 4) & 0x3F) | + ((hw_4ecc[const1 + 1] >> 10) & 0xC0); + + /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */ + ecc_code[const2 + 4] = (hw_4ecc[const1 + 1] >> 18) & 0xFF; + } + + return 0; +} + +static int nand_dm355_4bit_compare_ecc(struct mtd_info *mtd, u8 * read_ecc, /* read from NAND */ + u8 * page_data) +{ + struct nand_chip *this = mtd->priv; + struct nand_dm355_info *info = this->priv; + unsigned short ecc_10bit[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; + int i; + unsigned int hw_4ecc[4] = { 0, 0, 0, 0 }, iserror = 0; + unsigned short *pspare = NULL, *pspare1 = NULL; + unsigned int numErrors, errorAddress, errorValue; + emifregs emif_addr = (emifregs)CSL_EMIF_1_REGS; + u32 val; + + /* + * Check for an ECC where all bytes are 0xFF. If this is the case, we + * will assume we are looking at an erased page and we should ignore the + * ECC. + */ + for (i = 0; i < 10; i++) { + if (read_ecc[i] != 0xFF) + break; + } + if (i == 10) + return 0; + + /* Convert 8 bit in to 10 bit */ + pspare = (unsigned short *)&read_ecc[2]; + pspare1 = (unsigned short *)&read_ecc[0]; + /* Take 10 bits from 0th and 1st bytes */ + ecc_10bit[0] = (*pspare1) & 0x3FF; /* 10 */ + /* Take 6 bits from 1st byte and 4 bits from 2nd byte */ + ecc_10bit[1] = (((*pspare1) >> 10) & 0x3F) + | (((pspare[0]) << 6) & 0x3C0); /* 6 + 4 */ + /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */ + ecc_10bit[2] = ((pspare[0]) >> 4) & 0x3FF; /* 10 */ + /*Take 2 bits from 3rd byte and 8 bits from 4th byte */ + ecc_10bit[3] = (((pspare[0]) >> 14) & 0x3) + | ((((pspare[1])) << 2) & 0x3FC); /* 2 + 8 */ + /* Take 8 bits from 5th byte and 2 bits from 6th byte */ + ecc_10bit[4] = ((pspare[1]) >> 8) + | ((((pspare[2])) << 8) & 0x300); /* 8 + 2 */ + /* Take 6 bits from 6th byte and 4 bits from 7th byte */ + ecc_10bit[5] = (pspare[2] >> 2) & 0x3FF; /* 10 */ + /* Take 4 bits from 7th byte and 6 bits from 8th byte */ + ecc_10bit[6] = (((pspare[2]) >> 12) & 0xF) + | ((((pspare[3])) << 4) & 0x3F0); /* 4 + 6 */ + /*Take 2 bits from 8th byte and 8 bits from 9th byte */ + ecc_10bit[7] = ((pspare[3]) >> 6) & 0x3FF; /* 10 */ + + /* + * Write the parity values in the NAND Flash 4-bit ECC Load register. + * Write each parity value one at a time starting from 4bit_ecc_val8 + * to 4bit_ecc_val1. + */ + for (i = 7; i >= 0; i--) + { + *(dv_reg_p)NAND4BITECCLOAD = ecc_10bit[i]; + } + + /* + * Perform a dummy read to the EMIF Revision Code and Status register. + * This is required to ensure time for syndrome calculation after + * writing the ECC values in previous step. + */ + val = emif_addr->ERCSR; + + /* + * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers. + * A syndrome value of 0 means no bit errors. If the syndrome is + * non-zero then go further otherwise return. + */ + nand_dm355_4bit_readecc(mtd, hw_4ecc); + + if (hw_4ecc[0] == ECC_STATE_NO_ERR && hw_4ecc[1] == ECC_STATE_NO_ERR && + hw_4ecc[2] == ECC_STATE_NO_ERR && hw_4ecc[3] == ECC_STATE_NO_ERR) + return 0; + + /* + * Clear any previous address calculation by doing a dummy read of an + * error address register. + */ + val = *(dv_reg_p)NANDERRADD1; + + /* + * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control + * register to 1. + */ + + emif_addr->NANDFCR |= (1 << 13); + + /* + * Wait for the corr_state field (bits 8 to 11)in the + * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3. + */ + do { + iserror = emif_addr->NANDFSR & 0xC00; + } while (iserror); + + iserror = emif_addr->NANDFSR; + iserror &= EMIF_NANDFSR_ECC_STATE_MASK; + iserror = iserror >> 8; + + + if (iserror == ECC_STATE_NO_ERR) + return 0; + else if (iserror == ECC_STATE_TOO_MANY_ERRS) + { + printf("too many erros to be corrected!\n"); + return -1; + } + +#if 1 + numErrors = ((emif_addr->NANDFSR >> 16) & 0x3) + 1; + + /* Read the error address, error value and correct */ + for (i = 0; i < numErrors; i++) { + if (i > 1) { + errorAddress = + ((*(dv_reg_p)(NANDERRADD2) >> + (16 * (i & 1))) & 0x3FF); + errorAddress = ((512 + 7) - errorAddress); + errorValue = + ((*(dv_reg_p)(NANDERRVAL2) >> + (16 * (i & 1))) & 0xFF); + } else { + errorAddress = + ((*(dv_reg_p)(NANDERRADD1) >> + (16 * (i & 1))) & 0x3FF); + errorAddress = ((512 + 7) - errorAddress); + errorValue = + ((*(dv_reg_p)(NANDERRVAL1) >> + (16 * (i & 1))) & 0xFF); + } + /* xor the corrupt data with error value */ + if (errorAddress < 512) + page_data[errorAddress] ^= errorValue; + } +#else + numErrors = ((emif_addr->NANDFSR >> 16) & 0x3); + // bit 9:0 + errorAddress = 519 - (*(dv_reg_p)NANDERRADD1 & (0x3FF)); + errorValue = (*(dv_reg_p)NANDERRVAL1) & (0x3FF); + page_data[errorAddress] ^= (char)errorValue; + + if(numErrors == 0) + return numErrors; + else { + // bit 25:16 + errorAddress = 519 - ( (*(dv_reg_p)NANDERRADD1 & (0x3FF0000))>>16 ); + errorValue = (*(dv_reg_p)NANDERRVAL1) & (0x3FF); + page_data[errorAddress] ^= (char)errorValue; + + if(numErrors == 1) + return numErrors; + else { + // bit 9:0 + errorAddress = 519 - (*(dv_reg_p)NANDERRADD2 & (0x3FF)); + errorValue = (*(dv_reg_p)NANDERRVAL2) & (0x3FF); + page_data[errorAddress] ^= (char)errorValue; + + if (numErrors == 2) + return numErrors; + else { + // bit 25:16 + errorAddress = 519 - ( (*(dv_reg_p)NANDERRADD2 & (0x3FF0000))>>16 ); + errorValue = (*(dv_reg_p)NANDERRVAL2) & (0x3FF); + page_data[errorAddress] ^= (char)errorValue; + } + } + } +#endif + + return numErrors; +} + +static int nand_dm355_4bit_correct_data(struct mtd_info *mtd, u_char * dat, + u_char * read_ecc, u_char * calc_ecc) +{ + int r = 0; + + /* + * dat points to 512 bytes of data. read_ecc points to the start of the + * oob area for this subpage, so the ecc values start at offset 6. + * The calc_ecc pointer is not needed since our caclulated ECC is + * already latched in the hardware ECC generator. + */ +#if 1 + r = nand_dm355_4bit_compare_ecc(mtd, read_ecc + 6, dat); +#endif + + return r; +} +int board_nand_init(struct nand_chip *nand) +{ + nand->chip_delay = 0; + nand->eccmode = NAND_ECC_HW10_512; + nand->options = NAND_HWECC_SYNDROME | NAND_USE_FLASH_BBT; + nand->autooob = &nand_dm355_hw10_512_oobinfo; + nand->layout = nand_dm355_hw10_512_layout; + nand->calculate_ecc = nand_dm355_4bit_calculate_ecc; + nand->correct_data = nand_dm355_4bit_correct_data; + nand->enable_hwecc = nand_dm355_4bit_enable_hwecc; + nand->block_markbad = nand_dm355_hw10_512_block_markbad; + + /* Set address of hardware control function */ + nand->hwcontrol = nand_dm350evm_hwcontrol; + + + return 0; +} + +#else +#error "U-Boot legacy NAND support not available for DaVinci chips" +#endif +#endif /* CFG_USE_NAND */ |