summaryrefslogtreecommitdiff
path: root/cpu/mpc8220/dramSetup.c
diff options
context:
space:
mode:
Diffstat (limited to 'cpu/mpc8220/dramSetup.c')
-rw-r--r--cpu/mpc8220/dramSetup.c755
1 files changed, 755 insertions, 0 deletions
diff --git a/cpu/mpc8220/dramSetup.c b/cpu/mpc8220/dramSetup.c
new file mode 100644
index 00000000000..033b71966ce
--- /dev/null
+++ b/cpu/mpc8220/dramSetup.c
@@ -0,0 +1,755 @@
+/*
+ * (C) Copyright 2004, Freescale, Inc
+ * TsiChung Liew, Tsi-Chung.Liew@freescale.com
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+/*
+DESCRIPTION
+Read Dram spd and base on its information to calculate the memory size,
+characteristics to initialize the dram on MPC8220
+*/
+
+#include <common.h>
+#include <mpc8220.h>
+#include "i2cCore.h"
+#include "dramSetup.h"
+
+#define SPD_SIZE 0x40
+#define DRAM_SPD 0xA2 /* on Board SPD eeprom */
+#define TOTAL_BANK 2
+
+int spd_status (volatile i2c8220_t * pi2c, u8 sta_bit, u8 truefalse)
+{
+ int i;
+
+ for (i = 0; i < I2C_POLL_COUNT; i++) {
+ if ((pi2c->sr & sta_bit) == (truefalse ? sta_bit : 0))
+ return (OK);
+ }
+
+ return (ERROR);
+}
+
+int spd_clear (volatile i2c8220_t * pi2c)
+{
+ pi2c->adr = 0;
+ pi2c->fdr = 0;
+ pi2c->cr = 0;
+ pi2c->sr = 0;
+
+ return (OK);
+}
+
+int spd_stop (volatile i2c8220_t * pi2c)
+{
+ pi2c->cr &= ~I2C_CTL_STA; /* Generate stop signal */
+ if (spd_status (pi2c, I2C_STA_BB, 0) != OK)
+ return ERROR;
+
+ return (OK);
+}
+
+int spd_readbyte (volatile i2c8220_t * pi2c, u8 * readb, int *index)
+{
+ pi2c->sr &= ~I2C_STA_IF; /* Clear Interrupt Bit */
+ *readb = pi2c->dr; /* Read a byte */
+
+ /*
+ Set I2C_CTRL_TXAK will cause Transfer pending and
+ set I2C_CTRL_STA will cause Interrupt pending
+ */
+ if (*index != 2) {
+ if (spd_status (pi2c, I2C_STA_CF, 1) != OK) /* Transfer not complete? */
+ return ERROR;
+ }
+
+ if (*index != 1) {
+ if (spd_status (pi2c, I2C_STA_IF, 1) != OK)
+ return ERROR;
+ }
+
+ return (OK);
+}
+
+int readSpdData (u8 * spdData)
+{
+ DECLARE_GLOBAL_DATA_PTR;
+
+ volatile i2c8220_t *pi2cReg;
+ volatile pcfg8220_t *pcfg;
+ u8 slvAdr = DRAM_SPD;
+ u8 Tmp;
+ int Length = SPD_SIZE;
+ int i = 0;
+
+ /* Enable Port Configuration for SDA and SDL signals */
+ pcfg = (volatile pcfg8220_t *) (MMAP_PCFG);
+ __asm__ ("sync");
+ pcfg->pcfg3 &= ~CFG_I2C_PORT3_CONFIG;
+ __asm__ ("sync");
+
+ /* Points the structure to I2c mbar memory offset */
+ pi2cReg = (volatile i2c8220_t *) (MMAP_I2C);
+
+
+ /* Clear FDR, ADR, SR and CR reg */
+ pi2cReg->adr = 0;
+ pi2cReg->fdr = 0;
+ pi2cReg->cr = 0;
+ pi2cReg->sr = 0;
+
+ /* Set for fix XLB Bus Frequency */
+ switch (gd->bus_clk) {
+ case 60000000:
+ pi2cReg->fdr = 0x15;
+ break;
+ case 70000000:
+ pi2cReg->fdr = 0x16;
+ break;
+ case 80000000:
+ pi2cReg->fdr = 0x3a;
+ break;
+ case 90000000:
+ pi2cReg->fdr = 0x17;
+ break;
+ case 100000000:
+ pi2cReg->fdr = 0x3b;
+ break;
+ case 110000000:
+ pi2cReg->fdr = 0x18;
+ break;
+ case 120000000:
+ pi2cReg->fdr = 0x19;
+ break;
+ case 130000000:
+ pi2cReg->fdr = 0x1a;
+ break;
+ }
+
+ pi2cReg->adr = 0x90; /* I2C device address */
+
+ pi2cReg->cr = I2C_CTL_EN; /* Set Enable */
+
+ /*
+ The I2C bus should be in Idle state. If the bus is busy,
+ clear the STA bit in control register
+ */
+ if (spd_status (pi2cReg, I2C_STA_BB, 0) != OK) {
+ if ((pi2cReg->cr & I2C_CTL_STA) == I2C_CTL_STA)
+ pi2cReg->cr &= ~I2C_CTL_STA;
+
+ /* Check again if it is still busy, return error if found */
+ if (spd_status (pi2cReg, I2C_STA_BB, 1) == OK)
+ return ERROR;
+ }
+
+ pi2cReg->cr |= I2C_CTL_TX; /* Enable the I2c for TX, Ack */
+ pi2cReg->cr |= I2C_CTL_STA; /* Generate start signal */
+
+ if (spd_status (pi2cReg, I2C_STA_BB, 1) != OK)
+ return ERROR;
+
+
+ /* Write slave address */
+ pi2cReg->sr &= ~I2C_STA_IF; /* Clear Interrupt */
+ pi2cReg->dr = slvAdr; /* Write a byte */
+
+ if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) { /* Transfer not complete? */
+ spd_stop (pi2cReg);
+ return ERROR;
+ }
+
+ if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
+ spd_stop (pi2cReg);
+ return ERROR;
+ }
+
+
+ /* Issue the offset to start */
+ pi2cReg->sr &= ~I2C_STA_IF; /* Clear Interrupt */
+ pi2cReg->dr = 0; /* Write a byte */
+
+ if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) { /* Transfer not complete? */
+ spd_stop (pi2cReg);
+ return ERROR;
+ }
+
+ if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
+ spd_stop (pi2cReg);
+ return ERROR;
+ }
+
+
+ /* Set repeat start */
+ pi2cReg->cr |= I2C_CTL_RSTA; /* Repeat Start */
+
+ pi2cReg->sr &= ~I2C_STA_IF; /* Clear Interrupt */
+ pi2cReg->dr = slvAdr | 1; /* Write a byte */
+
+ if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) { /* Transfer not complete? */
+ spd_stop (pi2cReg);
+ return ERROR;
+ }
+
+ if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
+ spd_stop (pi2cReg);
+ return ERROR;
+ }
+
+ if (((pi2cReg->sr & 0x07) == 0x07) || (pi2cReg->sr & 0x01))
+ return ERROR;
+
+ pi2cReg->cr &= ~I2C_CTL_TX; /* Set receive mode */
+
+ if (((pi2cReg->sr & 0x07) == 0x07) || (pi2cReg->sr & 0x01))
+ return ERROR;
+
+ /* Dummy Read */
+ if (spd_readbyte (pi2cReg, &Tmp, &i) != OK) {
+ spd_stop (pi2cReg);
+ return ERROR;
+ }
+
+ i = 0;
+ while (Length) {
+ if (Length == 2)
+ pi2cReg->cr |= I2C_CTL_TXAK;
+
+ if (Length == 1)
+ pi2cReg->cr &= ~I2C_CTL_STA;
+
+ if (spd_readbyte (pi2cReg, spdData, &Length) != OK) {
+ return spd_stop (pi2cReg);
+ }
+ i++;
+ Length--;
+ spdData++;
+ }
+
+ /* Stop the service */
+ spd_stop (pi2cReg);
+
+ return OK;
+}
+
+int getBankInfo (int bank, draminfo_t * pBank)
+{
+ int status;
+ int checksum;
+ int count;
+ u8 spdData[SPD_SIZE];
+
+
+ if (bank > 2 || pBank == 0) {
+ /* illegal values */
+ return (-42);
+ }
+
+ status = readSpdData (&spdData[0]);
+ if (status < 0)
+ return (-1);
+
+ /* check the checksum */
+ for (count = 0, checksum = 0; count < LOC_CHECKSUM; count++)
+ checksum += spdData[count];
+
+ checksum = checksum - ((checksum / 256) * 256);
+
+ if (checksum != spdData[LOC_CHECKSUM])
+ return (-2);
+
+ /* Get the memory type */
+ if (!
+ ((spdData[LOC_TYPE] == TYPE_DDR)
+ || (spdData[LOC_TYPE] == TYPE_SDR)))
+ /* not one of the types we support */
+ return (-3);
+
+ pBank->type = spdData[LOC_TYPE];
+
+ /* Set logical banks */
+ pBank->banks = spdData[LOC_LOGICAL_BANKS];
+
+ /* Check that we have enough physical banks to cover the bank we are
+ * figuring out. Odd-numbered banks correspond to the second bank
+ * on the device.
+ */
+ if (bank & 1) {
+ /* Second bank of a "device" */
+ if (spdData[LOC_PHYS_BANKS] < 2)
+ /* this bank doesn't exist on the "device" */
+ return (-4);
+
+ if (spdData[LOC_ROWS] & 0xf0)
+ /* Two asymmetric banks */
+ pBank->rows = spdData[LOC_ROWS] >> 4;
+ else
+ pBank->rows = spdData[LOC_ROWS];
+
+ if (spdData[LOC_COLS] & 0xf0)
+ /* Two asymmetric banks */
+ pBank->cols = spdData[LOC_COLS] >> 4;
+ else
+ pBank->cols = spdData[LOC_COLS];
+ } else {
+ /* First bank of a "device" */
+ pBank->rows = spdData[LOC_ROWS];
+ pBank->cols = spdData[LOC_COLS];
+ }
+
+ pBank->width = spdData[LOC_WIDTH_HIGH] << 8 | spdData[LOC_WIDTH_LOW];
+ pBank->bursts = spdData[LOC_BURSTS];
+ pBank->CAS = spdData[LOC_CAS];
+ pBank->CS = spdData[LOC_CS];
+ pBank->WE = spdData[LOC_WE];
+ pBank->Trp = spdData[LOC_Trp];
+ pBank->Trcd = spdData[LOC_Trcd];
+ pBank->buffered = spdData[LOC_Buffered] & 1;
+ pBank->refresh = spdData[LOC_REFRESH];
+
+ return (0);
+}
+
+
+/* checkMuxSetting -- given a row/column device geometry, return a mask
+ * of the valid DRAM controller addr_mux settings for
+ * that geometry.
+ *
+ * Arguments: u8 rows: number of row addresses in this device
+ * u8 columns: number of column addresses in this device
+ *
+ * Returns: a mask of the allowed addr_mux settings for this
+ * geometry. Each bit in the mask represents a
+ * possible addr_mux settings (for example, the
+ * (1<<2) bit in the mask represents the 0b10 setting)/
+ *
+ */
+u8 checkMuxSetting (u8 rows, u8 columns)
+{
+ muxdesc_t *pIdx, *pMux;
+ u8 mask;
+ int lrows, lcolumns;
+ u32 mux[4] = { 0x00080c04, 0x01080d03, 0x02080e02, 0xffffffff };
+
+ /* Setup MuxDescriptor in SRAM space */
+ /* MUXDESC AddressRuns [] = {
+ { 0, 8, 12, 4 }, / setting, columns, rows, extra columns /
+ { 1, 8, 13, 3 }, / setting, columns, rows, extra columns /
+ { 2, 8, 14, 2 }, / setting, columns, rows, extra columns /
+ { 0xff } / list terminator /
+ }; */
+
+ pIdx = (muxdesc_t *) & mux[0];
+
+ /* Check rows x columns against each possible address mux setting */
+ for (pMux = pIdx, mask = 0;; pMux++) {
+ lrows = rows;
+ lcolumns = columns;
+
+ if (pMux->MuxValue == 0xff)
+ break; /* end of list */
+
+ /* For a given mux setting, since we want all the memory in a
+ * device to be contiguous, we want the device "use up" the
+ * address lines such that there are no extra column or row
+ * address lines on the device.
+ */
+
+ lcolumns -= pMux->Columns;
+ if (lcolumns < 0)
+ /* Not enough columns to get to the rows */
+ continue;
+
+ lrows -= pMux->Rows;
+ if (lrows > 0)
+ /* we have extra rows left -- can't do that! */
+ continue;
+
+ /* At this point, we either have to have used up all the
+ * rows or we have to have no columns left.
+ */
+
+ if (lcolumns != 0 && lrows != 0)
+ /* rows AND columns are left. Bad! */
+ continue;
+
+ lcolumns -= pMux->MoreColumns;
+
+ if (lcolumns <= 0)
+ mask |= (1 << pMux->MuxValue);
+ }
+
+ return (mask);
+}
+
+
+u32 dramSetup (void)
+{
+ DECLARE_GLOBAL_DATA_PTR;
+
+ draminfo_t DramInfo[TOTAL_BANK];
+ draminfo_t *pDramInfo;
+ u32 size, temp, cfg_value, mode_value, refresh;
+ u8 *ptr;
+ u8 bursts, Trp, Trcd, type, buffered;
+ u8 muxmask, rows, columns;
+ int count, banknum;
+ u32 *prefresh, *pIdx;
+ u32 refrate[8] = { 15625, 3900, 7800, 31300,
+ 62500, 125000, 0xffffffff, 0xffffffff
+ };
+ volatile sysconf8220_t *sysconf;
+ volatile memctl8220_t *memctl;
+
+ sysconf = (volatile sysconf8220_t *) MMAP_MBAR;
+ memctl = (volatile memctl8220_t *) MMAP_MEMCTL;
+
+ /* Set everything in the descriptions to zero */
+ ptr = (u8 *) & DramInfo[0];
+ for (count = 0; count < sizeof (DramInfo); count++)
+ *ptr++ = 0;
+
+ for (banknum = 0; banknum < TOTAL_BANK; banknum++)
+ sysconf->cscfg[banknum];
+
+ /* Descriptions of row/column address muxing for various
+ * addr_mux settings.
+ */
+
+ pIdx = prefresh = (u32 *) & refrate[0];
+
+ /* Get all the info for all three logical banks */
+ bursts = 0xff;
+ Trp = 0;
+ Trcd = 0;
+ type = 0;
+ buffered = 0xff;
+ refresh = 0xffffffff;
+ muxmask = 0xff;
+
+ /* Two bank, CS0 and CS1 */
+ for (banknum = 0, pDramInfo = &DramInfo[0];
+ banknum < TOTAL_BANK; banknum++, pDramInfo++) {
+ pDramInfo->ordinal = banknum; /* initial sorting */
+ if (getBankInfo (banknum, pDramInfo) < 0)
+ continue;
+
+ /* get cumulative parameters of all three banks */
+ if (type && pDramInfo->type != type)
+ return 0;
+
+ type = pDramInfo->type;
+ rows = pDramInfo->rows;
+ columns = pDramInfo->cols;
+
+ /* This chip only supports 13 DRAM memory lines, but some devices
+ * have 14 rows. To deal with this, ignore the 14th address line
+ * by limiting the number of rows (and columns) to 13. This will
+ * mean that for 14-row devices we will only be able to use
+ * half of the memory, but it's better than nothing.
+ */
+ if (rows > 13)
+ rows = 13;
+ if (columns > 13)
+ columns = 13;
+
+ pDramInfo->size =
+ ((1 << (rows + columns)) * pDramInfo->width);
+ pDramInfo->size *= pDramInfo->banks;
+ pDramInfo->size >>= 3;
+
+ /* figure out which addr_mux configurations will support this device */
+ muxmask &= checkMuxSetting (rows, columns);
+ if (muxmask == 0)
+ return 0;
+
+ buffered = pDramInfo->buffered;
+ bursts &= pDramInfo->bursts; /* union of all bursts */
+ if (pDramInfo->Trp > Trp) /* worst case (longest) Trp */
+ Trp = pDramInfo->Trp;
+
+ if (pDramInfo->Trcd > Trcd) /* worst case (longest) Trcd */
+ Trcd = pDramInfo->Trcd;
+
+ prefresh = pIdx;
+ /* worst case (shortest) Refresh period */
+ if (refresh > prefresh[pDramInfo->refresh & 7])
+ refresh = prefresh[pDramInfo->refresh & 7];
+
+ } /* for loop */
+
+
+ /* We only allow a burst length of 8! */
+ if (!(bursts & 8))
+ bursts = 8;
+
+ /* Sort the devices. In order to get each chip select region
+ * aligned properly, put the biggest device at the lowest address.
+ * A simple bubble sort will do the trick.
+ */
+ for (banknum = 0, pDramInfo = &DramInfo[0];
+ banknum < TOTAL_BANK; banknum++, pDramInfo++) {
+ int i;
+
+ for (i = 0; i < TOTAL_BANK; i++) {
+ if (pDramInfo->size < DramInfo[i].size &&
+ pDramInfo->ordinal < DramInfo[i].ordinal) {
+ /* If the current bank is smaller, but if the ordinal is also
+ * smaller, swap the ordinals
+ */
+ u8 temp8;
+
+ temp8 = DramInfo[i].ordinal;
+ DramInfo[i].ordinal = pDramInfo->ordinal;
+ pDramInfo->ordinal = temp8;
+ }
+ }
+ }
+
+
+ /* Now figure out the base address for each bank. While
+ * we're at it, figure out how much memory there is.
+ *
+ */
+ size = 0;
+ for (banknum = 0; banknum < TOTAL_BANK; banknum++) {
+ int i;
+
+ for (i = 0; i < TOTAL_BANK; i++) {
+ if (DramInfo[i].ordinal == banknum
+ && DramInfo[i].size != 0) {
+ DramInfo[i].base = size;
+ size += DramInfo[i].size;
+ }
+ }
+ }
+
+ /* Set up the Drive Strength register */
+ temp = ((DRIVE_STRENGTH_LOW << SDRAMDS_SBE_SHIFT)
+ | (DRIVE_STRENGTH_HIGH << SDRAMDS_SBC_SHIFT)
+ | (DRIVE_STRENGTH_LOW << SDRAMDS_SBA_SHIFT)
+ | (DRIVE_STRENGTH_OFF << SDRAMDS_SBS_SHIFT)
+ | (DRIVE_STRENGTH_LOW << SDRAMDS_SBD_SHIFT));
+ sysconf->sdramds = temp;
+
+ /* ********************** Cfg 1 ************************* */
+
+ /* Set the single read to read/write/precharge delay */
+ cfg_value = CFG1_SRD2RWP ((type == TYPE_DDR) ? 7 : 0xb);
+
+ /* Set the single write to read/write/precharge delay.
+ * This may or may not be correct. The controller spec
+ * says "tWR", but "tWR" does not appear in the SPD. It
+ * always seems to be 15nsec for the class of device we're
+ * using, which turns out to be 2 clock cycles at 133MHz,
+ * so that's what we're going to use.
+ *
+ * HOWEVER, because of a bug in the controller, for DDR
+ * we need to set this to be the same as the value
+ * calculated for bwt2rwp.
+ */
+ cfg_value |= CFG1_SWT2RWP ((type == TYPE_DDR) ? 7 : 2);
+
+ /* Set the Read CAS latency. We're going to use a CL of
+ * 2 for DDR and SDR.
+ */
+ cfg_value |= CFG1_RLATENCY ((type == TYPE_DDR) ? 7 : 2);
+
+
+ /* Set the Active to Read/Write delay. This depends
+ * on Trcd which is reported as nanoseconds times 4.
+ * We want to calculate Trcd (in nanoseconds) times XLB clock (in Hz)
+ * which gives us a dimensionless quantity. Play games with
+ * the divisions so we don't run out of dynamic ranges.
+ */
+ /* account for megaherz and the times 4 */
+ temp = (Trcd * (gd->bus_clk / 1000000)) / 4;
+
+ /* account for nanoseconds and round up, with a minimum value of 2 */
+ temp = ((temp + 999) / 1000) - 1;
+ if (temp < 2)
+ temp = 2;
+
+ cfg_value |= CFG1_ACT2WR (temp);
+
+ /* Set the precharge to active delay. This depends
+ * on Trp which is reported as nanoseconds times 4.
+ * We want to calculate Trp (in nanoseconds) times XLB clock (in Hz)
+ * which gives us a dimensionless quantity. Play games with
+ * the divisions so we don't run out of dynamic ranges.
+ */
+ /* account for megaherz and the times 4 */
+ temp = (Trp * (gd->bus_clk / 1000000)) / 4;
+
+ /* account for nanoseconds and round up, then subtract 1, with a
+ * minumum value of 1 and a maximum value of 7.
+ */
+ temp = (((temp + 999) / 1000) - 1) & 7;
+ if (temp < 1)
+ temp = 1;
+
+ cfg_value |= CFG1_PRE2ACT (temp);
+
+ /* Set refresh to active delay. This depends
+ * on Trfc which is not reported in the SPD.
+ * We'll use a nominal value of 75nsec which is
+ * what the controller spec uses.
+ */
+ temp = (75 * (gd->bus_clk / 1000000));
+ /* account for nanoseconds and round up, then subtract 1 */
+ cfg_value |= CFG1_REF2ACT (((temp + 999) / 1000) - 1);
+
+ /* Set the write latency, using the values given in the controller spec */
+ cfg_value |= CFG1_WLATENCY ((type == TYPE_DDR) ? 3 : 0);
+ memctl->cfg1 = cfg_value; /* cfg 1 */
+ asm volatile ("sync");
+
+
+ /* ********************** Cfg 2 ************************* */
+
+ /* Set the burst read to read/precharge delay */
+ cfg_value = CFG2_BRD2RP ((type == TYPE_DDR) ? 5 : 8);
+
+ /* Set the burst write to read/precharge delay. Semi-magic numbers
+ * based on the controller spec recommendations, assuming tWR is
+ * two clock cycles.
+ */
+ cfg_value |= CFG2_BWT2RWP ((type == TYPE_DDR) ? 7 : 10);
+
+ /* Set the Burst read to write delay. Semi-magic numbers
+ * based on the DRAM controller documentation.
+ */
+ cfg_value |= CFG2_BRD2WT ((type == TYPE_DDR) ? 7 : 0xb);
+
+ /* Set the burst length -- must be 8!! Well, 7, actually, becuase
+ * it's burst lenght minus 1.
+ */
+ cfg_value |= CFG2_BURSTLEN (7);
+ memctl->cfg2 = cfg_value; /* cfg 2 */
+ asm volatile ("sync");
+
+
+ /* ********************** mode ************************* */
+
+ /* Set enable bit, CKE high/low bits, and the DDR/SDR mode bit,
+ * disable automatic refresh.
+ */
+ cfg_value = CTL_MODE_ENABLE | CTL_CKE_HIGH |
+ ((type == TYPE_DDR) ? CTL_DDR_MODE : 0);
+
+ /* Set the address mux based on whichever setting(s) is/are common
+ * to all the devices we have. If there is more than one, choose
+ * one arbitrarily.
+ */
+ if (muxmask & 0x4)
+ cfg_value |= CTL_ADDRMUX (2);
+ else if (muxmask & 0x2)
+ cfg_value |= CTL_ADDRMUX (1);
+ else
+ cfg_value |= CTL_ADDRMUX (0);
+
+ /* Set the refresh interval. */
+ temp = ((refresh * (gd->bus_clk / 1000000)) / (1000 * 64)) - 1;
+ cfg_value |= CTL_REFRESH_INTERVAL (temp);
+
+ /* Set buffered/non-buffered memory */
+ if (buffered)
+ cfg_value |= CTL_BUFFERED;
+
+ memctl->ctrl = cfg_value; /* ctrl */
+ asm volatile ("sync");
+
+ if (type == TYPE_DDR) {
+ /* issue precharge all */
+ temp = cfg_value | CTL_PRECHARGE_CMD;
+ memctl->ctrl = temp; /* ctrl */
+ asm volatile ("sync");
+ }
+
+
+ /* Set up mode value for CAS latency == 2 */
+ mode_value = (MODE_MODE | MODE_BURSTLEN (MODE_BURSTLEN_8) |
+ MODE_BT_SEQUENTIAL | MODE_CL (MODE_CL_2) | MODE_CMD);
+
+ asm volatile ("sync");
+
+ /* Write Extended Mode - enable DLL */
+ if (type == TYPE_DDR) {
+ temp = MODE_EXTENDED | MODE_X_DLL_ENABLE |
+ MODE_X_DS_NORMAL | MODE_CMD;
+ memctl->mode = (temp >> 16); /* mode */
+ asm volatile ("sync");
+
+ /* Write Mode - reset DLL, set CAS latency == 2 */
+ temp = mode_value | MODE_OPMODE (MODE_OPMODE_RESETDLL);
+ memctl->mode = (temp >> 16); /* mode */
+ asm volatile ("sync");
+ }
+
+ /* Program the chip selects. */
+ for (banknum = 0; banknum < TOTAL_BANK; banknum++) {
+ if (DramInfo[banknum].size != 0) {
+ u32 mask;
+ int i;
+
+ for (i = 0, mask = 1; i < 32; mask <<= 1, i++) {
+ if (DramInfo[banknum].size & mask)
+ break;
+ }
+ temp = (DramInfo[banknum].base & 0xfff00000) | (i -
+ 1);
+
+ sysconf->cscfg[banknum] = temp;
+ asm volatile ("sync");
+ }
+ }
+
+ /* Wait for DLL lock */
+ udelay (200);
+
+ temp = cfg_value | CTL_PRECHARGE_CMD; /* issue precharge all */
+ memctl->ctrl = temp; /* ctrl */
+ asm volatile ("sync");
+
+ temp = cfg_value | CTL_REFRESH_CMD; /* issue precharge all */
+ memctl->ctrl = temp; /* ctrl */
+ asm volatile ("sync");
+
+ memctl->ctrl = temp; /* ctrl */
+ asm volatile ("sync");
+
+ /* Write Mode - DLL normal */
+ temp = mode_value | MODE_OPMODE (MODE_OPMODE_NORMAL);
+ memctl->mode = (temp >> 16); /* mode */
+ asm volatile ("sync");
+
+ /* Enable refresh, enable DQS's (if DDR), and lock the control register */
+ cfg_value &= ~CTL_MODE_ENABLE; /* lock register */
+ cfg_value |= CTL_REFRESH_ENABLE; /* enable refresh */
+
+ if (type == TYPE_DDR)
+ cfg_value |= CTL_DQSOEN (0xf); /* enable DQS's for DDR */
+
+ memctl->ctrl = cfg_value; /* ctrl */
+ asm volatile ("sync");
+
+ return size;
+}