diff options
Diffstat (limited to 'scripts/mbedtls_dev/bignum_common.py')
-rw-r--r-- | scripts/mbedtls_dev/bignum_common.py | 406 |
1 files changed, 0 insertions, 406 deletions
diff --git a/scripts/mbedtls_dev/bignum_common.py b/scripts/mbedtls_dev/bignum_common.py deleted file mode 100644 index eebc858b21b..00000000000 --- a/scripts/mbedtls_dev/bignum_common.py +++ /dev/null @@ -1,406 +0,0 @@ -"""Common features for bignum in test generation framework.""" -# Copyright The Mbed TLS Contributors -# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later -# - -from abc import abstractmethod -import enum -from typing import Iterator, List, Tuple, TypeVar, Any -from copy import deepcopy -from itertools import chain -from math import ceil - -from . import test_case -from . import test_data_generation -from .bignum_data import INPUTS_DEFAULT, MODULI_DEFAULT - -T = TypeVar('T') #pylint: disable=invalid-name - -def invmod(a: int, n: int) -> int: - """Return inverse of a to modulo n. - - Equivalent to pow(a, -1, n) in Python 3.8+. Implementation is equivalent - to long_invmod() in CPython. - """ - b, c = 1, 0 - while n: - q, r = divmod(a, n) - a, b, c, n = n, c, b - q*c, r - # at this point a is the gcd of the original inputs - if a == 1: - return b - raise ValueError("Not invertible") - -def invmod_positive(a: int, n: int) -> int: - """Return a non-negative inverse of a to modulo n.""" - inv = invmod(a, n) - return inv if inv >= 0 else inv + n - -def hex_to_int(val: str) -> int: - """Implement the syntax accepted by mbedtls_test_read_mpi(). - - This is a superset of what is accepted by mbedtls_test_read_mpi_core(). - """ - if val in ['', '-']: - return 0 - return int(val, 16) - -def quote_str(val: str) -> str: - return "\"{}\"".format(val) - -def bound_mpi(val: int, bits_in_limb: int) -> int: - """First number exceeding number of limbs needed for given input value.""" - return bound_mpi_limbs(limbs_mpi(val, bits_in_limb), bits_in_limb) - -def bound_mpi_limbs(limbs: int, bits_in_limb: int) -> int: - """First number exceeding maximum of given number of limbs.""" - bits = bits_in_limb * limbs - return 1 << bits - -def limbs_mpi(val: int, bits_in_limb: int) -> int: - """Return the number of limbs required to store value.""" - bit_length = max(val.bit_length(), 1) - return (bit_length + bits_in_limb - 1) // bits_in_limb - -def combination_pairs(values: List[T]) -> List[Tuple[T, T]]: - """Return all pair combinations from input values.""" - return [(x, y) for x in values for y in values] - -def bits_to_limbs(bits: int, bits_in_limb: int) -> int: - """ Return the appropriate ammount of limbs needed to store - a number contained in input bits""" - return ceil(bits / bits_in_limb) - -def hex_digits_for_limb(limbs: int, bits_in_limb: int) -> int: - """ Return the hex digits need for a number of limbs. """ - return 2 * ((limbs * bits_in_limb) // 8) - -def hex_digits_max_int(val: str, bits_in_limb: int) -> int: - """ Return the first number exceeding maximum the limb space - required to store the input hex-string value. This method - weights on the input str_len rather than numerical value - and works with zero-padded inputs""" - n = ((1 << (len(val) * 4)) - 1) - l = limbs_mpi(n, bits_in_limb) - return bound_mpi_limbs(l, bits_in_limb) - -def zfill_match(reference: str, target: str) -> str: - """ Zero pad target hex-string to match the limb size of - the reference input """ - lt = len(target) - lr = len(reference) - target_len = lr if lt < lr else lt - return "{:x}".format(int(target, 16)).zfill(target_len) - -class OperationCommon(test_data_generation.BaseTest): - """Common features for bignum binary operations. - - This adds functionality common in binary operation tests. - - Attributes: - symbol: Symbol to use for the operation in case description. - input_values: List of values to use as test case inputs. These are - combined to produce pairs of values. - input_cases: List of tuples containing pairs of test case inputs. This - can be used to implement specific pairs of inputs. - unique_combinations_only: Boolean to select if test case combinations - must be unique. If True, only A,B or B,A would be included as a test - case. If False, both A,B and B,A would be included. - input_style: Controls the way how test data is passed to the functions - in the generated test cases. "variable" passes them as they are - defined in the python source. "arch_split" pads the values with - zeroes depending on the architecture/limb size. If this is set, - test cases are generated for all architectures. - arity: the number of operands for the operation. Currently supported - values are 1 and 2. - """ - symbol = "" - input_values = INPUTS_DEFAULT # type: List[str] - input_cases = [] # type: List[Any] - dependencies = [] # type: List[Any] - unique_combinations_only = False - input_styles = ["variable", "fixed", "arch_split"] # type: List[str] - input_style = "variable" # type: str - limb_sizes = [32, 64] # type: List[int] - arities = [1, 2] - arity = 2 - suffix = False # for arity = 1, symbol can be prefix (default) or suffix - - def __init__(self, val_a: str, val_b: str = "0", bits_in_limb: int = 32) -> None: - self.val_a = val_a - self.val_b = val_b - # Setting the int versions here as opposed to making them @properties - # provides earlier/more robust input validation. - self.int_a = hex_to_int(val_a) - self.int_b = hex_to_int(val_b) - self.dependencies = deepcopy(self.dependencies) - if bits_in_limb not in self.limb_sizes: - raise ValueError("Invalid number of bits in limb!") - if self.input_style == "arch_split": - self.dependencies.append("MBEDTLS_HAVE_INT{:d}".format(bits_in_limb)) - self.bits_in_limb = bits_in_limb - - @property - def boundary(self) -> int: - if self.arity == 1: - return self.int_a - elif self.arity == 2: - return max(self.int_a, self.int_b) - raise ValueError("Unsupported number of operands!") - - @property - def limb_boundary(self) -> int: - return bound_mpi(self.boundary, self.bits_in_limb) - - @property - def limbs(self) -> int: - return limbs_mpi(self.boundary, self.bits_in_limb) - - @property - def hex_digits(self) -> int: - return hex_digits_for_limb(self.limbs, self.bits_in_limb) - - def format_arg(self, val: str) -> str: - if self.input_style not in self.input_styles: - raise ValueError("Unknown input style!") - if self.input_style == "variable": - return val - else: - return val.zfill(self.hex_digits) - - def format_result(self, res: int) -> str: - res_str = '{:x}'.format(res) - return quote_str(self.format_arg(res_str)) - - @property - def arg_a(self) -> str: - return self.format_arg(self.val_a) - - @property - def arg_b(self) -> str: - if self.arity == 1: - raise AttributeError("Operation is unary and doesn't have arg_b!") - return self.format_arg(self.val_b) - - def arguments(self) -> List[str]: - args = [quote_str(self.arg_a)] - if self.arity == 2: - args.append(quote_str(self.arg_b)) - return args + self.result() - - def description(self) -> str: - """Generate a description for the test case. - - If not set, case_description uses the form A `symbol` B, where symbol - is used to represent the operation. Descriptions of each value are - generated to provide some context to the test case. - """ - if not self.case_description: - if self.arity == 1: - format_string = "{1:x} {0}" if self.suffix else "{0} {1:x}" - self.case_description = format_string.format( - self.symbol, self.int_a - ) - elif self.arity == 2: - self.case_description = "{:x} {} {:x}".format( - self.int_a, self.symbol, self.int_b - ) - return super().description() - - @property - def is_valid(self) -> bool: - return True - - @abstractmethod - def result(self) -> List[str]: - """Get the result of the operation. - - This could be calculated during initialization and stored as `_result` - and then returned, or calculated when the method is called. - """ - raise NotImplementedError - - @classmethod - def get_value_pairs(cls) -> Iterator[Tuple[str, str]]: - """Generator to yield pairs of inputs. - - Combinations are first generated from all input values, and then - specific cases provided. - """ - if cls.arity == 1: - yield from ((a, "0") for a in cls.input_values) - elif cls.arity == 2: - if cls.unique_combinations_only: - yield from combination_pairs(cls.input_values) - else: - yield from ( - (a, b) - for a in cls.input_values - for b in cls.input_values - ) - else: - raise ValueError("Unsupported number of operands!") - - @classmethod - def generate_function_tests(cls) -> Iterator[test_case.TestCase]: - if cls.input_style not in cls.input_styles: - raise ValueError("Unknown input style!") - if cls.arity not in cls.arities: - raise ValueError("Unsupported number of operands!") - if cls.input_style == "arch_split": - test_objects = (cls(a, b, bits_in_limb=bil) - for a, b in cls.get_value_pairs() - for bil in cls.limb_sizes) - special_cases = (cls(*args, bits_in_limb=bil) # type: ignore - for args in cls.input_cases - for bil in cls.limb_sizes) - else: - test_objects = (cls(a, b) - for a, b in cls.get_value_pairs()) - special_cases = (cls(*args) for args in cls.input_cases) - yield from (valid_test_object.create_test_case() - for valid_test_object in filter( - lambda test_object: test_object.is_valid, - chain(test_objects, special_cases) - ) - ) - - -class ModulusRepresentation(enum.Enum): - """Representation selector of a modulus.""" - # Numerical values aligned with the type mbedtls_mpi_mod_rep_selector - INVALID = 0 - MONTGOMERY = 2 - OPT_RED = 3 - - def symbol(self) -> str: - """The C symbol for this representation selector.""" - return 'MBEDTLS_MPI_MOD_REP_' + self.name - - @classmethod - def supported_representations(cls) -> List['ModulusRepresentation']: - """Return all representations that are supported in positive test cases.""" - return [cls.MONTGOMERY, cls.OPT_RED] - - -class ModOperationCommon(OperationCommon): - #pylint: disable=abstract-method - """Target for bignum mod_raw test case generation.""" - moduli = MODULI_DEFAULT # type: List[str] - montgomery_form_a = False - disallow_zero_a = False - - def __init__(self, val_n: str, val_a: str, val_b: str = "0", - bits_in_limb: int = 64) -> None: - super().__init__(val_a=val_a, val_b=val_b, bits_in_limb=bits_in_limb) - self.val_n = val_n - # Setting the int versions here as opposed to making them @properties - # provides earlier/more robust input validation. - self.int_n = hex_to_int(val_n) - - def to_montgomery(self, val: int) -> int: - return (val * self.r) % self.int_n - - def from_montgomery(self, val: int) -> int: - return (val * self.r_inv) % self.int_n - - def convert_from_canonical(self, canonical: int, - rep: ModulusRepresentation) -> int: - """Convert values from canonical representation to the given representation.""" - if rep is ModulusRepresentation.MONTGOMERY: - return self.to_montgomery(canonical) - elif rep is ModulusRepresentation.OPT_RED: - return canonical - else: - raise ValueError('Modulus representation not supported: {}' - .format(rep.name)) - - @property - def boundary(self) -> int: - return self.int_n - - @property - def arg_a(self) -> str: - if self.montgomery_form_a: - value_a = self.to_montgomery(self.int_a) - else: - value_a = self.int_a - return self.format_arg('{:x}'.format(value_a)) - - @property - def arg_n(self) -> str: - return self.format_arg(self.val_n) - - def format_arg(self, val: str) -> str: - return super().format_arg(val).zfill(self.hex_digits) - - def arguments(self) -> List[str]: - return [quote_str(self.arg_n)] + super().arguments() - - @property - def r(self) -> int: # pylint: disable=invalid-name - l = limbs_mpi(self.int_n, self.bits_in_limb) - return bound_mpi_limbs(l, self.bits_in_limb) - - @property - def r_inv(self) -> int: - return invmod(self.r, self.int_n) - - @property - def r2(self) -> int: # pylint: disable=invalid-name - return pow(self.r, 2) - - @property - def is_valid(self) -> bool: - if self.int_a >= self.int_n: - return False - if self.disallow_zero_a and self.int_a == 0: - return False - if self.arity == 2 and self.int_b >= self.int_n: - return False - return True - - def description(self) -> str: - """Generate a description for the test case. - - It uses the form A `symbol` B mod N, where symbol is used to represent - the operation. - """ - - if not self.case_description: - return super().description() + " mod {:x}".format(self.int_n) - return super().description() - - @classmethod - def input_cases_args(cls) -> Iterator[Tuple[Any, Any, Any]]: - if cls.arity == 1: - yield from ((n, a, "0") for a, n in cls.input_cases) - elif cls.arity == 2: - yield from ((n, a, b) for a, b, n in cls.input_cases) - else: - raise ValueError("Unsupported number of operands!") - - @classmethod - def generate_function_tests(cls) -> Iterator[test_case.TestCase]: - if cls.input_style not in cls.input_styles: - raise ValueError("Unknown input style!") - if cls.arity not in cls.arities: - raise ValueError("Unsupported number of operands!") - if cls.input_style == "arch_split": - test_objects = (cls(n, a, b, bits_in_limb=bil) - for n in cls.moduli - for a, b in cls.get_value_pairs() - for bil in cls.limb_sizes) - special_cases = (cls(*args, bits_in_limb=bil) - for args in cls.input_cases_args() - for bil in cls.limb_sizes) - else: - test_objects = (cls(n, a, b) - for n in cls.moduli - for a, b in cls.get_value_pairs()) - special_cases = (cls(*args) for args in cls.input_cases_args()) - yield from (valid_test_object.create_test_case() - for valid_test_object in filter( - lambda test_object: test_object.is_valid, - chain(test_objects, special_cases) - )) |