diff options
Diffstat (limited to 'test/lib/lmb.c')
-rw-r--r-- | test/lib/lmb.c | 804 |
1 files changed, 804 insertions, 0 deletions
diff --git a/test/lib/lmb.c b/test/lib/lmb.c new file mode 100644 index 00000000000..b2c54fb4bcb --- /dev/null +++ b/test/lib/lmb.c @@ -0,0 +1,804 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * (C) Copyright 2018 Simon Goldschmidt + */ + +#include <alist.h> +#include <dm.h> +#include <lmb.h> +#include <log.h> +#include <malloc.h> +#include <dm/test.h> +#include <test/lib.h> +#include <test/test.h> +#include <test/ut.h> + +static inline bool lmb_is_nomap(struct lmb_region *m) +{ + return m->flags & LMB_NOMAP; +} + +static int check_lmb(struct unit_test_state *uts, struct alist *mem_lst, + struct alist *used_lst, phys_addr_t ram_base, + phys_size_t ram_size, unsigned long num_reserved, + phys_addr_t base1, phys_size_t size1, + phys_addr_t base2, phys_size_t size2, + phys_addr_t base3, phys_size_t size3) +{ + struct lmb_region *mem, *used; + + mem = mem_lst->data; + used = used_lst->data; + + if (ram_size) { + ut_asserteq(mem_lst->count, 1); + ut_asserteq(mem[0].base, ram_base); + ut_asserteq(mem[0].size, ram_size); + } + + ut_asserteq(used_lst->count, num_reserved); + if (num_reserved > 0) { + ut_asserteq(used[0].base, base1); + ut_asserteq(used[0].size, size1); + } + if (num_reserved > 1) { + ut_asserteq(used[1].base, base2); + ut_asserteq(used[1].size, size2); + } + if (num_reserved > 2) { + ut_asserteq(used[2].base, base3); + ut_asserteq(used[2].size, size3); + } + return 0; +} + +#define ASSERT_LMB(mem_lst, used_lst, ram_base, ram_size, num_reserved, base1, size1, \ + base2, size2, base3, size3) \ + ut_assert(!check_lmb(uts, mem_lst, used_lst, ram_base, ram_size, \ + num_reserved, base1, size1, base2, size2, base3, \ + size3)) + +static int setup_lmb_test(struct unit_test_state *uts, struct lmb *store, + struct alist **mem_lstp, struct alist **used_lstp) +{ + struct lmb *lmb; + + ut_assertok(lmb_push(store)); + lmb = lmb_get(); + *mem_lstp = &lmb->free_mem; + *used_lstp = &lmb->used_mem; + + return 0; +} + +static int test_multi_alloc(struct unit_test_state *uts, const phys_addr_t ram, + const phys_size_t ram_size, const phys_addr_t ram0, + const phys_size_t ram0_size, + const phys_addr_t alloc_64k_addr) +{ + const phys_addr_t ram_end = ram + ram_size; + const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000; + + long ret; + struct alist *mem_lst, *used_lst; + struct lmb_region *mem, *used; + phys_addr_t a, a2, b, b2, c, d; + struct lmb store; + + /* check for overflow */ + ut_assert(ram_end == 0 || ram_end > ram); + ut_assert(alloc_64k_end > alloc_64k_addr); + /* check input addresses + size */ + ut_assert(alloc_64k_addr >= ram + 8); + ut_assert(alloc_64k_end <= ram_end - 8); + + ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); + mem = mem_lst->data; + used = used_lst->data; + + if (ram0_size) { + ret = lmb_add(ram0, ram0_size); + ut_asserteq(ret, 0); + } + + ret = lmb_add(ram, ram_size); + ut_asserteq(ret, 0); + + if (ram0_size) { + ut_asserteq(mem_lst->count, 2); + ut_asserteq(mem[0].base, ram0); + ut_asserteq(mem[0].size, ram0_size); + ut_asserteq(mem[1].base, ram); + ut_asserteq(mem[1].size, ram_size); + } else { + ut_asserteq(mem_lst->count, 1); + ut_asserteq(mem[0].base, ram); + ut_asserteq(mem[0].size, ram_size); + } + + /* reserve 64KiB somewhere */ + ret = lmb_reserve(alloc_64k_addr, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 1, alloc_64k_addr, 0x10000, + 0, 0, 0, 0); + + /* allocate somewhere, should be at the end of RAM */ + a = lmb_alloc(4, 1); + ut_asserteq(a, ram_end - 4); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr, 0x10000, + ram_end - 4, 4, 0, 0); + /* alloc below end of reserved region -> below reserved region */ + b = lmb_alloc_base(4, 1, alloc_64k_end); + ut_asserteq(b, alloc_64k_addr - 4); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, + alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0); + + /* 2nd time */ + c = lmb_alloc(4, 1); + ut_asserteq(c, ram_end - 8); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, + alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0); + d = lmb_alloc_base(4, 1, alloc_64k_end); + ut_asserteq(d, alloc_64k_addr - 8); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, + alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); + + ret = lmb_free(a, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, + alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); + /* allocate again to ensure we get the same address */ + a2 = lmb_alloc(4, 1); + ut_asserteq(a, a2); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, + alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); + ret = lmb_free(a2, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, + alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); + + ret = lmb_free(b, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 3, + alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, + ram_end - 8, 4); + /* allocate again to ensure we get the same address */ + b2 = lmb_alloc_base(4, 1, alloc_64k_end); + ut_asserteq(b, b2); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, + alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); + ret = lmb_free(b2, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 3, + alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, + ram_end - 8, 4); + + ret = lmb_free(c, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, + alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0); + ret = lmb_free(d, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, 0, 0, 1, alloc_64k_addr, 0x10000, + 0, 0, 0, 0); + + if (ram0_size) { + ut_asserteq(mem_lst->count, 2); + ut_asserteq(mem[0].base, ram0); + ut_asserteq(mem[0].size, ram0_size); + ut_asserteq(mem[1].base, ram); + ut_asserteq(mem[1].size, ram_size); + } else { + ut_asserteq(mem_lst->count, 1); + ut_asserteq(mem[0].base, ram); + ut_asserteq(mem[0].size, ram_size); + } + + lmb_pop(&store); + + return 0; +} + +static int test_multi_alloc_512mb(struct unit_test_state *uts, + const phys_addr_t ram) +{ + return test_multi_alloc(uts, ram, 0x20000000, 0, 0, ram + 0x10000000); +} + +static int test_multi_alloc_512mb_x2(struct unit_test_state *uts, + const phys_addr_t ram, + const phys_addr_t ram0) +{ + return test_multi_alloc(uts, ram, 0x20000000, ram0, 0x20000000, + ram + 0x10000000); +} + +/* Create a memory region with one reserved region and allocate */ +static int lib_test_lmb_simple(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_multi_alloc_512mb(uts, 0x40000000); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_multi_alloc_512mb(uts, 0xE0000000); +} +LIB_TEST(lib_test_lmb_simple, 0); + +/* Create two memory regions with one reserved region and allocate */ +static int lib_test_lmb_simple_x2(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 2GiB and 1 GiB */ + ret = test_multi_alloc_512mb_x2(uts, 0x80000000, 0x40000000); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 3.5GiB and 1 GiB */ + return test_multi_alloc_512mb_x2(uts, 0xE0000000, 0x40000000); +} +LIB_TEST(lib_test_lmb_simple_x2, 0); + +/* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */ +static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram) +{ + const phys_size_t ram_size = 0x20000000; + const phys_size_t big_block_size = 0x10000000; + const phys_addr_t ram_end = ram + ram_size; + const phys_addr_t alloc_64k_addr = ram + 0x10000000; + struct alist *mem_lst, *used_lst; + long ret; + phys_addr_t a, b; + struct lmb store; + + /* check for overflow */ + ut_assert(ram_end == 0 || ram_end > ram); + + ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); + + ret = lmb_add(ram, ram_size); + ut_asserteq(ret, 0); + + /* reserve 64KiB in the middle of RAM */ + ret = lmb_reserve(alloc_64k_addr, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000, + 0, 0, 0, 0); + + /* allocate a big block, should be below reserved */ + a = lmb_alloc(big_block_size, 1); + ut_asserteq(a, ram); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, + big_block_size + 0x10000, 0, 0, 0, 0); + /* allocate 2nd big block */ + /* This should fail, printing an error */ + b = lmb_alloc(big_block_size, 1); + ut_asserteq(b, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, + big_block_size + 0x10000, 0, 0, 0, 0); + + ret = lmb_free(a, big_block_size); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000, + 0, 0, 0, 0); + + /* allocate too big block */ + /* This should fail, printing an error */ + a = lmb_alloc(ram_size, 1); + ut_asserteq(a, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000, + 0, 0, 0, 0); + + lmb_pop(&store); + + return 0; +} + +static int lib_test_lmb_big(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_bigblock(uts, 0x40000000); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_bigblock(uts, 0xE0000000); +} +LIB_TEST(lib_test_lmb_big, 0); + +/* Simulate 512 MiB RAM, allocate a block without previous reservation */ +static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram, + const phys_addr_t alloc_size, const ulong align) +{ + const phys_size_t ram_size = 0x20000000; + const phys_addr_t ram_end = ram + ram_size; + long ret; + phys_addr_t a, b; + struct lmb store; + struct alist *mem_lst, *used_lst; + const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) & + ~(align - 1); + + /* check for overflow */ + ut_assert(ram_end == 0 || ram_end > ram); + + ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); + + ret = lmb_add(ram, ram_size); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); + + /* allocate a block */ + a = lmb_alloc(alloc_size, align); + ut_assert(a != 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, + ram + ram_size - alloc_size_aligned, alloc_size, 0, 0, 0, 0); + + /* allocate another block */ + b = lmb_alloc(alloc_size, align); + ut_assert(b != 0); + if (alloc_size == alloc_size_aligned) { + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram + ram_size - + (alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0, + 0); + } else { + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram + ram_size - + (alloc_size_aligned * 2), alloc_size, ram + ram_size + - alloc_size_aligned, alloc_size, 0, 0); + } + /* and free them */ + ret = lmb_free(b, alloc_size); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, + ram + ram_size - alloc_size_aligned, + alloc_size, 0, 0, 0, 0); + ret = lmb_free(a, alloc_size); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); + + /* allocate a block with base*/ + b = lmb_alloc_base(alloc_size, align, ram_end); + ut_assert(a == b); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, + ram + ram_size - alloc_size_aligned, + alloc_size, 0, 0, 0, 0); + /* and free it */ + ret = lmb_free(b, alloc_size); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); + + lmb_pop(&store); + + return 0; +} + +static int lib_test_lmb_noreserved(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_noreserved(uts, 0x40000000, 4, 1); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_noreserved(uts, 0xE0000000, 4, 1); +} +LIB_TEST(lib_test_lmb_noreserved, 0); + +static int lib_test_lmb_unaligned_size(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_noreserved(uts, 0x40000000, 5, 8); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_noreserved(uts, 0xE0000000, 5, 8); +} +LIB_TEST(lib_test_lmb_unaligned_size, 0); + +/* + * Simulate a RAM that starts at 0 and allocate down to address 0, which must + * fail as '0' means failure for the lmb_alloc functions. + */ +static int lib_test_lmb_at_0(struct unit_test_state *uts) +{ + const phys_addr_t ram = 0; + const phys_size_t ram_size = 0x20000000; + struct lmb store; + struct alist *mem_lst, *used_lst; + long ret; + phys_addr_t a, b; + + ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); + + ret = lmb_add(ram, ram_size); + ut_asserteq(ret, 0); + + /* allocate nearly everything */ + a = lmb_alloc(ram_size - 4, 1); + ut_asserteq(a, ram + 4); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4, + 0, 0, 0, 0); + /* allocate the rest */ + /* This should fail as the allocated address would be 0 */ + b = lmb_alloc(4, 1); + ut_asserteq(b, 0); + /* check that this was an error by checking lmb */ + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4, + 0, 0, 0, 0); + /* check that this was an error by freeing b */ + ret = lmb_free(b, 4); + ut_asserteq(ret, -1); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4, + 0, 0, 0, 0); + + ret = lmb_free(a, ram_size - 4); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); + + lmb_pop(&store); + + return 0; +} +LIB_TEST(lib_test_lmb_at_0, 0); + +/* Check that calling lmb_reserve with overlapping regions fails. */ +static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts) +{ + const phys_addr_t ram = 0x40000000; + const phys_size_t ram_size = 0x20000000; + struct lmb store; + struct alist *mem_lst, *used_lst; + long ret; + + ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); + + ret = lmb_add(ram, ram_size); + ut_asserteq(ret, 0); + + ret = lmb_reserve(0x40010000, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000, + 0, 0, 0, 0); + + /* allocate overlapping region should return the coalesced count */ + ret = lmb_reserve(0x40011000, 0x10000); + ut_asserteq(ret, 1); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x11000, + 0, 0, 0, 0); + /* allocate 3nd region */ + ret = lmb_reserve(0x40030000, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40010000, 0x11000, + 0x40030000, 0x10000, 0, 0); + /* allocate 2nd region , This should coalesced all region into one */ + ret = lmb_reserve(0x40020000, 0x10000); + ut_assert(ret >= 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x30000, + 0, 0, 0, 0); + + /* allocate 2nd region, which should be added as first region */ + ret = lmb_reserve(0x40000000, 0x8000); + ut_assert(ret >= 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x8000, + 0x40010000, 0x30000, 0, 0); + + /* allocate 3rd region, coalesce with first and overlap with second */ + ret = lmb_reserve(0x40008000, 0x10000); + ut_assert(ret >= 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40000000, 0x40000, + 0, 0, 0, 0); + + lmb_pop(&store); + + return 0; +} +LIB_TEST(lib_test_lmb_overlapping_reserve, 0); + +/* + * Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between. + * Expect addresses outside the memory range to fail. + */ +static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram) +{ + struct lmb store; + struct alist *mem_lst, *used_lst; + const phys_size_t ram_size = 0x20000000; + const phys_addr_t ram_end = ram + ram_size; + const phys_size_t alloc_addr_a = ram + 0x8000000; + const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; + const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; + long ret; + phys_addr_t a, b, c, d, e; + + /* check for overflow */ + ut_assert(ram_end == 0 || ram_end > ram); + + ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); + + ret = lmb_add(ram, ram_size); + ut_asserteq(ret, 0); + + /* reserve 3 blocks */ + ret = lmb_reserve(alloc_addr_a, 0x10000); + ut_asserteq(ret, 0); + ret = lmb_reserve(alloc_addr_b, 0x10000); + ut_asserteq(ret, 0); + ret = lmb_reserve(alloc_addr_c, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, alloc_addr_a, 0x10000, + alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); + + /* allocate blocks */ + a = lmb_alloc_addr(ram, alloc_addr_a - ram); + ut_asserteq(a, ram); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, ram, 0x8010000, + alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); + b = lmb_alloc_addr(alloc_addr_a + 0x10000, + alloc_addr_b - alloc_addr_a - 0x10000); + ut_asserteq(b, alloc_addr_a + 0x10000); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x10010000, + alloc_addr_c, 0x10000, 0, 0); + c = lmb_alloc_addr(alloc_addr_b + 0x10000, + alloc_addr_c - alloc_addr_b - 0x10000); + ut_asserteq(c, alloc_addr_b + 0x10000); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000, + 0, 0, 0, 0); + d = lmb_alloc_addr(alloc_addr_c + 0x10000, + ram_end - alloc_addr_c - 0x10000); + ut_asserteq(d, alloc_addr_c + 0x10000); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, ram_size, + 0, 0, 0, 0); + + /* allocating anything else should fail */ + e = lmb_alloc(1, 1); + ut_asserteq(e, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, ram_size, + 0, 0, 0, 0); + + ret = lmb_free(d, ram_end - alloc_addr_c - 0x10000); + ut_asserteq(ret, 0); + + /* allocate at 3 points in free range */ + + d = lmb_alloc_addr(ram_end - 4, 4); + ut_asserteq(d, ram_end - 4); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x18010000, + d, 4, 0, 0); + ret = lmb_free(d, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000, + 0, 0, 0, 0); + + d = lmb_alloc_addr(ram_end - 128, 4); + ut_asserteq(d, ram_end - 128); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x18010000, + d, 4, 0, 0); + ret = lmb_free(d, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000, + 0, 0, 0, 0); + + d = lmb_alloc_addr(alloc_addr_c + 0x10000, 4); + ut_asserteq(d, alloc_addr_c + 0x10000); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010004, + 0, 0, 0, 0); + ret = lmb_free(d, 4); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000, + 0, 0, 0, 0); + + /* allocate at the bottom */ + ret = lmb_free(a, alloc_addr_a - ram); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram + 0x8000000, + 0x10010000, 0, 0, 0, 0); + + d = lmb_alloc_addr(ram, 4); + ut_asserteq(d, ram); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, d, 4, + ram + 0x8000000, 0x10010000, 0, 0); + + /* check that allocating outside memory fails */ + if (ram_end != 0) { + ret = lmb_alloc_addr(ram_end, 1); + ut_asserteq(ret, 0); + } + if (ram != 0) { + ret = lmb_alloc_addr(ram - 1, 1); + ut_asserteq(ret, 0); + } + + lmb_pop(&store); + + return 0; +} + +static int lib_test_lmb_alloc_addr(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_alloc_addr(uts, 0x40000000); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_alloc_addr(uts, 0xE0000000); +} +LIB_TEST(lib_test_lmb_alloc_addr, 0); + +/* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */ +static int test_get_unreserved_size(struct unit_test_state *uts, + const phys_addr_t ram) +{ + struct lmb store; + struct alist *mem_lst, *used_lst; + const phys_size_t ram_size = 0x20000000; + const phys_addr_t ram_end = ram + ram_size; + const phys_size_t alloc_addr_a = ram + 0x8000000; + const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; + const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; + long ret; + phys_size_t s; + + /* check for overflow */ + ut_assert(ram_end == 0 || ram_end > ram); + ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); + + ret = lmb_add(ram, ram_size); + ut_asserteq(ret, 0); + + /* reserve 3 blocks */ + ret = lmb_reserve(alloc_addr_a, 0x10000); + ut_asserteq(ret, 0); + ret = lmb_reserve(alloc_addr_b, 0x10000); + ut_asserteq(ret, 0); + ret = lmb_reserve(alloc_addr_c, 0x10000); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, alloc_addr_a, 0x10000, + alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); + + /* check addresses in between blocks */ + s = lmb_get_free_size(ram); + ut_asserteq(s, alloc_addr_a - ram); + s = lmb_get_free_size(ram + 0x10000); + ut_asserteq(s, alloc_addr_a - ram - 0x10000); + s = lmb_get_free_size(alloc_addr_a - 4); + ut_asserteq(s, 4); + + s = lmb_get_free_size(alloc_addr_a + 0x10000); + ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000); + s = lmb_get_free_size(alloc_addr_a + 0x20000); + ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000); + s = lmb_get_free_size(alloc_addr_b - 4); + ut_asserteq(s, 4); + + s = lmb_get_free_size(alloc_addr_c + 0x10000); + ut_asserteq(s, ram_end - alloc_addr_c - 0x10000); + s = lmb_get_free_size(alloc_addr_c + 0x20000); + ut_asserteq(s, ram_end - alloc_addr_c - 0x20000); + s = lmb_get_free_size(ram_end - 4); + ut_asserteq(s, 4); + + lmb_pop(&store); + + return 0; +} + +static int lib_test_lmb_get_free_size(struct unit_test_state *uts) +{ + int ret; + + /* simulate 512 MiB RAM beginning at 1GiB */ + ret = test_get_unreserved_size(uts, 0x40000000); + if (ret) + return ret; + + /* simulate 512 MiB RAM beginning at 1.5GiB */ + return test_get_unreserved_size(uts, 0xE0000000); +} +LIB_TEST(lib_test_lmb_get_free_size, 0); + +static int lib_test_lmb_flags(struct unit_test_state *uts) +{ + struct lmb store; + struct lmb_region *mem, *used; + struct alist *mem_lst, *used_lst; + const phys_addr_t ram = 0x40000000; + const phys_size_t ram_size = 0x20000000; + long ret; + + ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); + mem = mem_lst->data; + used = used_lst->data; + + ret = lmb_add(ram, ram_size); + ut_asserteq(ret, 0); + + /* reserve, same flag */ + ret = lmb_reserve_flags(0x40010000, 0x10000, LMB_NOMAP); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000, + 0, 0, 0, 0); + + /* reserve again, same flag */ + ret = lmb_reserve_flags(0x40010000, 0x10000, LMB_NOMAP); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000, + 0, 0, 0, 0); + + /* reserve again, new flag */ + ret = lmb_reserve_flags(0x40010000, 0x10000, LMB_NONE); + ut_asserteq(ret, -1); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000, + 0, 0, 0, 0); + + ut_asserteq(lmb_is_nomap(&used[0]), 1); + + /* merge after */ + ret = lmb_reserve_flags(0x40020000, 0x10000, LMB_NOMAP); + ut_asserteq(ret, 1); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x20000, + 0, 0, 0, 0); + + /* merge before */ + ret = lmb_reserve_flags(0x40000000, 0x10000, LMB_NOMAP); + ut_asserteq(ret, 1); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40000000, 0x30000, + 0, 0, 0, 0); + + ut_asserteq(lmb_is_nomap(&used[0]), 1); + + ret = lmb_reserve_flags(0x40030000, 0x10000, LMB_NONE); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x30000, + 0x40030000, 0x10000, 0, 0); + + ut_asserteq(lmb_is_nomap(&used[0]), 1); + ut_asserteq(lmb_is_nomap(&used[1]), 0); + + /* test that old API use LMB_NONE */ + ret = lmb_reserve(0x40040000, 0x10000); + ut_asserteq(ret, 1); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x30000, + 0x40030000, 0x20000, 0, 0); + + ut_asserteq(lmb_is_nomap(&used[0]), 1); + ut_asserteq(lmb_is_nomap(&used[1]), 0); + + ret = lmb_reserve_flags(0x40070000, 0x10000, LMB_NOMAP); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, 0x40000000, 0x30000, + 0x40030000, 0x20000, 0x40070000, 0x10000); + + ret = lmb_reserve_flags(0x40050000, 0x10000, LMB_NOMAP); + ut_asserteq(ret, 0); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 4, 0x40000000, 0x30000, + 0x40030000, 0x20000, 0x40050000, 0x10000); + + /* merge with 2 adjacent regions */ + ret = lmb_reserve_flags(0x40060000, 0x10000, LMB_NOMAP); + ut_asserteq(ret, 2); + ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, 0x40000000, 0x30000, + 0x40030000, 0x20000, 0x40050000, 0x30000); + + ut_asserteq(lmb_is_nomap(&used[0]), 1); + ut_asserteq(lmb_is_nomap(&used[1]), 0); + ut_asserteq(lmb_is_nomap(&used[2]), 1); + + lmb_pop(&store); + + return 0; +} +LIB_TEST(lib_test_lmb_flags, 0); |