// SPDX-License-Identifier: BSD-3-Clause AND GPL-2.0 /* * Clock and reset drivers for Qualcomm platforms Global Clock * Controller (GCC). * * (C) Copyright 2015 Mateusz Kulikowski * (C) Copyright 2020 Sartura Ltd. (reset driver) * Author: Robert Marko * (C) Copyright 2022 Linaro Ltd. (reset driver) * Author: Sumit Garg * * Based on Little Kernel driver, simplified */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "clock-qcom.h" /* CBCR register fields */ #define CBCR_BRANCH_ENABLE_BIT BIT(0) #define CBCR_BRANCH_OFF_BIT BIT(31) #define GDSC_SW_COLLAPSE_MASK BIT(0) #define GDSC_POWER_DOWN_COMPLETE BIT(15) #define GDSC_POWER_UP_COMPLETE BIT(16) #define GDSC_PWR_ON_MASK BIT(31) #define CFG_GDSCR_OFFSET 0x4 #define GDSC_STATUS_POLL_TIMEOUT_US 1500 /* Enable clock controlled by CBC soft macro */ void clk_enable_cbc(phys_addr_t cbcr) { setbits_le32(cbcr, CBCR_BRANCH_ENABLE_BIT); while (readl(cbcr) & CBCR_BRANCH_OFF_BIT) ; } void clk_enable_gpll0(phys_addr_t base, const struct pll_vote_clk *gpll0) { if (readl(base + gpll0->status) & gpll0->status_bit) return; /* clock already enabled */ setbits_le32(base + gpll0->ena_vote, gpll0->vote_bit); while ((readl(base + gpll0->status) & gpll0->status_bit) == 0) ; } #define BRANCH_ON_VAL (0) #define BRANCH_NOC_FSM_ON_VAL BIT(29) #define BRANCH_CHECK_MASK GENMASK(31, 28) void clk_enable_vote_clk(phys_addr_t base, const struct vote_clk *vclk) { u32 val; setbits_le32(base + vclk->ena_vote, vclk->vote_bit); do { val = readl(base + vclk->cbcr_reg); val &= BRANCH_CHECK_MASK; } while ((val != BRANCH_ON_VAL) && (val != BRANCH_NOC_FSM_ON_VAL)); } int qcom_gate_clk_en(const struct msm_clk_priv *priv, unsigned long id) { if (id >= priv->data->num_clks || priv->data->clks[id].reg == 0) { log_err("gcc@%#08llx: unknown clock ID %lu!\n", priv->base, id); return -ENOENT; } setbits_le32(priv->base + priv->data->clks[id].reg, priv->data->clks[id].en_val); if (priv->data->clks[id].cbcr_reg) { unsigned int count; u32 val; for (count = 0; count < 200; count++) { val = readl(priv->base + priv->data->clks[id].cbcr_reg); val &= BRANCH_CHECK_MASK; if (val == BRANCH_ON_VAL || val == BRANCH_NOC_FSM_ON_VAL) break; udelay(1); } if (WARN(count == 200, "WARNING: Clock @ %#lx [%#010x] stuck at off\n", priv->data->clks[id].cbcr_reg, val)) return -EBUSY; } return 0; } #define APPS_CMD_RCGR_UPDATE BIT(0) /* Update clock command via CMD_RCGR */ void clk_bcr_update(phys_addr_t apps_cmd_rcgr) { u32 count; setbits_le32(apps_cmd_rcgr, APPS_CMD_RCGR_UPDATE); /* Wait for frequency to be updated. */ for (count = 0; count < 50000; count++) { if (!(readl(apps_cmd_rcgr) & APPS_CMD_RCGR_UPDATE)) break; udelay(1); } WARN(count == 50000, "WARNING: RCG @ %#llx [%#010x] stuck at off\n", apps_cmd_rcgr, readl(apps_cmd_rcgr)); } #define CFG_SRC_DIV_MASK 0b11111 #define CFG_SRC_SEL_SHIFT 8 #define CFG_SRC_SEL_MASK (0x7 << CFG_SRC_SEL_SHIFT) #define CFG_MODE_SHIFT 12 #define CFG_MODE_MASK (0x3 << CFG_MODE_SHIFT) #define CFG_MODE_DUAL_EDGE (0x2 << CFG_MODE_SHIFT) #define CFG_HW_CLK_CTRL_MASK BIT(20) /* * root set rate for clocks with half integer and MND divider * div should be pre-calculated ((div * 2) - 1) */ void clk_rcg_set_rate_mnd(phys_addr_t base, uint32_t cmd_rcgr, int div, int m, int n, int source, u8 mnd_width) { u32 cfg; /* M value for MND divider. */ u32 m_val = m; u32 n_minus_m = n - m; /* NOT(N-M) value for MND divider. */ u32 n_val = ~n_minus_m * !!(n); /* NOT 2D value for MND divider. */ u32 d_val = ~(clamp_t(u32, n, m, n_minus_m)); u32 mask = BIT(mnd_width) - 1; debug("m %#x n %#x d %#x div %#x mask %#x\n", m_val, n_val, d_val, div, mask); /* Program MND values */ writel(m_val & mask, base + cmd_rcgr + RCG_M_REG); writel(n_val & mask, base + cmd_rcgr + RCG_N_REG); writel(d_val & mask, base + cmd_rcgr + RCG_D_REG); /* setup src select and divider */ cfg = readl(base + cmd_rcgr + RCG_CFG_REG); cfg &= ~(CFG_SRC_SEL_MASK | CFG_MODE_MASK | CFG_HW_CLK_CTRL_MASK | CFG_SRC_DIV_MASK); cfg |= source & CFG_SRC_SEL_MASK; /* Select clock source */ if (div) cfg |= div & CFG_SRC_DIV_MASK; if (n && n != m) cfg |= CFG_MODE_DUAL_EDGE; writel(cfg, base + cmd_rcgr + RCG_CFG_REG); /* Write new clock configuration */ /* Inform h/w to start using the new config. */ clk_bcr_update(base + cmd_rcgr); } /* root set rate for clocks with half integer and mnd_width=0 */ void clk_rcg_set_rate(phys_addr_t base, uint32_t cmd_rcgr, int div, int source) { u32 cfg; /* setup src select and divider */ cfg = readl(base + cmd_rcgr + RCG_CFG_REG); cfg &= ~(CFG_SRC_SEL_MASK | CFG_MODE_MASK | CFG_HW_CLK_CTRL_MASK); cfg |= source & CFG_CLK_SRC_MASK; /* Select clock source */ /* * Set the divider; HW permits fraction dividers (+0.5), but * for simplicity, we will support integers only */ if (div) cfg |= (2 * div - 1) & CFG_SRC_DIV_MASK; writel(cfg, base + cmd_rcgr + RCG_CFG_REG); /* Write new clock configuration */ /* Inform h/w to start using the new config. */ clk_bcr_update(base + cmd_rcgr); } #define PHY_MUX_MASK GENMASK(1, 0) #define PHY_MUX_PHY_SRC 0 #define PHY_MUX_REF_SRC 2 void clk_phy_mux_enable(phys_addr_t base, uint32_t cmd_rcgr, bool enabled) { u32 cfg; /* setup src select and divider */ cfg = readl(base + cmd_rcgr); cfg &= ~(PHY_MUX_MASK); if (enabled) cfg |= FIELD_PREP(PHY_MUX_MASK, PHY_MUX_PHY_SRC); else cfg |= FIELD_PREP(PHY_MUX_MASK, PHY_MUX_REF_SRC); writel(cfg, base + cmd_rcgr); } const struct freq_tbl *qcom_find_freq(const struct freq_tbl *f, uint rate) { if (!f) return NULL; if (!f->freq) return f; for (; f->freq; f++) if (rate <= f->freq) return f; /* Default to our fastest rate */ return f - 1; } static int msm_clk_probe(struct udevice *dev) { struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(dev); struct msm_clk_priv *priv = dev_get_priv(dev); priv->base = dev_read_addr(dev); if (priv->base == FDT_ADDR_T_NONE) return -EINVAL; priv->data = data; return 0; } static ulong msm_clk_set_rate(struct clk *clk, ulong rate) { struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(clk->dev); if (data->set_rate) return data->set_rate(clk, rate); return 0; } static int msm_clk_enable(struct clk *clk) { struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(clk->dev); if (data->enable) return data->enable(clk); return 0; } static void dump_gplls(struct udevice *dev, phys_addr_t base) { struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(dev); u32 i; bool locked; u64 l, a, xo_rate = 19200000; struct clk *clk = NULL; struct udevice *xodev; const phys_addr_t *gplls = data->dbg_pll_addrs; uclass_foreach_dev_probe(UCLASS_CLK, xodev) { if (!strcmp(xodev->name, "xo-board") || !strcmp(xodev->name, "xo_board")) { clk = dev_get_clk_ptr(xodev); break; } } if (clk) { xo_rate = clk_get_rate(clk); /* On SDM845 this needs to be divided by 2 for some reason */ if (xo_rate && of_machine_is_compatible("qcom,sdm845")) xo_rate /= 2; } else { printf("Can't find XO clock, XO_BOARD rate may be wrong\n"); } printf("GPLL clocks:\n"); printf("| GPLL | LOCKED | XO_BOARD | PLL_L | ALPHA |\n"); printf("+--------+--------+-----------+------------+----------------+\n"); for (i = 0; i < data->num_plls; i++) { locked = !!(readl(gplls[i]) & BIT(31)); l = readl(gplls[i] + 4) & (BIT(16) - 1); a = readq(gplls[i] + 40) & (BIT(16) - 1); printf("| GPLL%-2d | %-6s | %9llu * (%#-9llx + %#-13llx * 2 ** -40 ) / 1000000\n", i, locked ? "X" : "", xo_rate, l, a); } } static void dump_rcgs(struct udevice *dev) { struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(dev); int i; u32 cmd; u32 cfg; u32 not_n_minus_m; u32 src, m, n, div; bool root_on, d_odd; printf("\nRCGs:\n"); /* * Which GPLL SRC corresponds to depends on the parent map, see gcc-.c in Linux * and find the parent map associated with the clock. Note that often there are multiple * outputs from a single GPLL where one is actually half the rate of the other (_EVEN). * intput_freq = associated GPLL output freq (potentially divided depending on SRC). */ printf("| NAME | ON | SRC | OUT_FREQ = input_freq * (m/n) * (1/d) | [CMD REG ] |\n"); printf("+----------------------------------+----+-----+---------------------------------------+--------------+\n"); for (i = 0; i < data->num_rcgs; i++) { cmd = readl(data->dbg_rcg_addrs[i]); cfg = readl(data->dbg_rcg_addrs[i] + 0x4); m = readl(data->dbg_rcg_addrs[i] + 0x8); n = 0; not_n_minus_m = readl(data->dbg_rcg_addrs[i] + 0xc); root_on = !(cmd & BIT(31)); // ROOT_OFF src = (cfg >> 8) & 7; if (not_n_minus_m) { n = (~not_n_minus_m & 0xffff); /* A clumsy assumption that this is an 8-bit MND RCG */ if ((n & 0xff00) == 0xff00) n = n & 0xff; n += m; } div = ((cfg & 0b11111) + 1) / 2; d_odd = ((cfg & 0b11111) + 1) % 2 == 1; printf("%-34s | %-2s | %3d | input_freq * (%4d/%5d) * (1/%1d%-2s) | [%#010x]\n", data->dbg_rcg_names[i], root_on ? "X" : "", src, m ?: 1, n ?: 1, div, d_odd ? ".5" : "", cmd); } printf("\n"); } static void __maybe_unused msm_dump_clks(struct udevice *dev) { struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(dev); struct msm_clk_priv *priv = dev_get_priv(dev); const struct gate_clk *sclk; int val, i; if (!data->clks) { printf("No clocks\n"); return; } printf("Gate Clocks:\n"); for (i = 0; i < data->num_clks; i++) { sclk = &data->clks[i]; if (!sclk->name) continue; printf("%-32s: ", sclk->name); val = readl(priv->base + sclk->reg) & sclk->en_val; printf("%s\n", val ? "ON" : ""); } dump_gplls(dev, priv->base); dump_rcgs(dev); } static struct clk_ops msm_clk_ops = { .set_rate = msm_clk_set_rate, .enable = msm_clk_enable, #if IS_ENABLED(CONFIG_CMD_CLK) .dump = msm_dump_clks, #endif }; U_BOOT_DRIVER(qcom_clk) = { .name = "qcom_clk", .id = UCLASS_CLK, .ops = &msm_clk_ops, .priv_auto = sizeof(struct msm_clk_priv), .probe = msm_clk_probe, .flags = DM_FLAG_PRE_RELOC | DM_FLAG_DEFAULT_PD_CTRL_OFF, }; int qcom_cc_bind(struct udevice *parent) { struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(parent); struct udevice *clkdev = NULL, *rstdev = NULL, *pwrdev; struct driver *drv; int ret; /* Get a handle to the common clk handler */ drv = lists_driver_lookup_name("qcom_clk"); if (!drv) return -ENOENT; /* Register the clock controller */ ret = device_bind_with_driver_data(parent, drv, "qcom_clk", (ulong)data, dev_ofnode(parent), &clkdev); if (ret) return ret; if (data->resets) { /* Get a handle to the common reset handler */ drv = lists_driver_lookup_name("qcom_reset"); if (!drv) { ret = -ENOENT; goto unbind_clkdev; } /* Register the reset controller */ ret = device_bind_with_driver_data(parent, drv, "qcom_reset", (ulong)data, dev_ofnode(parent), &rstdev); if (ret) goto unbind_clkdev; } if (data->power_domains) { /* Get a handle to the common power domain handler */ drv = lists_driver_lookup_name("qcom_power"); if (!drv) { ret = -ENOENT; goto unbind_rstdev; } /* Register the power domain controller */ ret = device_bind_with_driver_data(parent, drv, "qcom_power", (ulong)data, dev_ofnode(parent), &pwrdev); if (ret) goto unbind_rstdev; } return 0; unbind_rstdev: device_unbind(rstdev); unbind_clkdev: device_unbind(clkdev); return ret; } static int qcom_reset_set(struct reset_ctl *rst, bool assert) { struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(rst->dev); void __iomem *base = dev_get_priv(rst->dev); const struct qcom_reset_map *map; u32 value; map = &data->resets[rst->id]; value = readl(base + map->reg); if (assert) value |= BIT(map->bit); else value &= ~BIT(map->bit); writel(value, base + map->reg); return 0; } static int qcom_reset_assert(struct reset_ctl *rst) { return qcom_reset_set(rst, true); } static int qcom_reset_deassert(struct reset_ctl *rst) { return qcom_reset_set(rst, false); } static const struct reset_ops qcom_reset_ops = { .rst_assert = qcom_reset_assert, .rst_deassert = qcom_reset_deassert, }; static int qcom_reset_probe(struct udevice *dev) { /* Set our priv pointer to the base address */ dev_set_priv(dev, (void *)dev_read_addr(dev)); return 0; } U_BOOT_DRIVER(qcom_reset) = { .name = "qcom_reset", .id = UCLASS_RESET, .ops = &qcom_reset_ops, .probe = qcom_reset_probe, }; static int qcom_power_set(struct power_domain *pwr, bool on) { struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(pwr->dev); void __iomem *base = dev_get_priv(pwr->dev); const struct qcom_power_map *map; u32 value; int ret; if (pwr->id >= data->num_power_domains) return -ENODEV; map = &data->power_domains[pwr->id]; if (!map->reg) return -ENODEV; value = readl(base + map->reg); if (on) value &= ~GDSC_SW_COLLAPSE_MASK; else value |= GDSC_SW_COLLAPSE_MASK; writel(value, base + map->reg); if (on) ret = readl_poll_timeout(base + map->reg + CFG_GDSCR_OFFSET, value, (value & GDSC_POWER_UP_COMPLETE) || (value & GDSC_PWR_ON_MASK), GDSC_STATUS_POLL_TIMEOUT_US); else ret = readl_poll_timeout(base + map->reg + CFG_GDSCR_OFFSET, value, (value & GDSC_POWER_DOWN_COMPLETE) || !(value & GDSC_PWR_ON_MASK), GDSC_STATUS_POLL_TIMEOUT_US); if (ret == -ETIMEDOUT) printf("WARNING: GDSC %lu is stuck during power on/off\n", pwr->id); return ret; } static int qcom_power_on(struct power_domain *pwr) { return qcom_power_set(pwr, true); } static int qcom_power_off(struct power_domain *pwr) { return qcom_power_set(pwr, false); } static const struct power_domain_ops qcom_power_ops = { .on = qcom_power_on, .off = qcom_power_off, }; static int qcom_power_probe(struct udevice *dev) { /* Set our priv pointer to the base address */ dev_set_priv(dev, (void *)dev_read_addr(dev)); return 0; } U_BOOT_DRIVER(qcom_power) = { .name = "qcom_power", .id = UCLASS_POWER_DOMAIN, .ops = &qcom_power_ops, .probe = qcom_power_probe, .flags = DM_FLAG_PRE_RELOC, };