// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) /* * NXP NETC Blocks Control Driver * * Copyright 2024 NXP * * This driver is used for pre-initialization of NETC, such as PCS and MII * protocols, LDID, warm reset, etc. Therefore, all NETC device drivers can * only be probed after the netc-blk-crtl driver has completed initialization. * In addition, when the system enters suspend mode, IERB, PRB, and NETCMIX * will be powered off, except for WOL. Therefore, when the system resumes, * these blocks need to be reinitialized. */ #include #include #include #include #include #include #include #include #include /* NETCMIX registers */ #define IMX95_CFG_LINK_IO_VAR 0x0 #define IO_VAR_16FF_16G_SERDES 0x1 #define IO_VAR(port, var) (((var) & 0xf) << ((port) << 2)) #define IMX95_CFG_LINK_MII_PROT 0x4 #define CFG_LINK_MII_PORT_0 GENMASK(3, 0) #define CFG_LINK_MII_PORT_1 GENMASK(7, 4) #define MII_PROT_MII 0x0 #define MII_PROT_RMII 0x1 #define MII_PROT_RGMII 0x2 #define MII_PROT_SERIAL 0x3 #define MII_PROT(port, prot) (((prot) & 0xf) << ((port) << 2)) #define IMX95_CFG_LINK_PCS_PROT(a) (0x8 + (a) * 4) #define PCS_PROT_1G_SGMII BIT(0) #define PCS_PROT_2500M_SGMII BIT(1) #define PCS_PROT_XFI BIT(3) #define PCS_PROT_SFI BIT(4) #define PCS_PROT_10G_SXGMII BIT(6) /* NETC privileged register block register */ #define PRB_NETCRR 0x100 #define NETCRR_SR BIT(0) #define NETCRR_LOCK BIT(1) #define PRB_NETCSR 0x104 #define NETCSR_ERROR BIT(0) #define NETCSR_STATE BIT(1) /* NETC integrated endpoint register block register */ #define IERB_EMDIOFAUXR 0x344 #define IERB_T0FAUXR 0x444 #define IERB_EFAUXR(a) (0x3044 + 0x100 * (a)) #define IERB_VFAUXR(a) (0x4004 + 0x40 * (a)) #define FAUXR_LDID GENMASK(3, 0) /* Platform information */ #define IMX95_ENETC0_BUS_DEVFN 0x0 #define IMX95_ENETC1_BUS_DEVFN 0x40 #define IMX95_ENETC2_BUS_DEVFN 0x80 /* Flags for different platforms */ #define NETC_HAS_NETCMIX BIT(0) struct netc_blk_ctrl { void __iomem *prb; void __iomem *ierb; void __iomem *netcmix; }; static void netc_reg_write(void __iomem *base, u32 offset, u32 val) { writel(val, base + offset); } static u32 netc_reg_read(void __iomem *base, u32 offset) { return readl(base + offset); } static int netc_of_pci_get_bus_devfn(ofnode node) { u32 reg[5]; int error; error = ofnode_read_u32_array(node, "reg", reg, ARRAY_SIZE(reg)); if (error) return error; return (reg[0] >> 8) & 0xffff; } static int netc_get_link_mii_protocol(phy_interface_t interface) { switch (interface) { case PHY_INTERFACE_MODE_MII: return MII_PROT_MII; case PHY_INTERFACE_MODE_RMII: return MII_PROT_RMII; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: return MII_PROT_RGMII; case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_2500BASEX: case PHY_INTERFACE_MODE_10GBASER: case PHY_INTERFACE_MODE_XGMII: case PHY_INTERFACE_MODE_USXGMII: return MII_PROT_SERIAL; default: return -EINVAL; } } static int imx95_netcmix_init(struct udevice *dev) { struct netc_blk_ctrl *priv = dev_get_priv(dev); ofnode child, gchild; phy_interface_t interface; int bus_devfn, mii_proto; u32 val; /* Default setting of MII protocol */ val = MII_PROT(0, MII_PROT_RGMII) | MII_PROT(1, MII_PROT_RGMII) | MII_PROT(2, MII_PROT_SERIAL); /* Update the link MII protocol through parsing phy-mode */ dev_for_each_subnode(child, dev) { if (!ofnode_is_enabled(child)) continue; ofnode_for_each_subnode(gchild, child) { if (!ofnode_is_enabled(gchild)) continue; if (!ofnode_device_is_compatible(gchild, "pci1131,e101")) continue; bus_devfn = netc_of_pci_get_bus_devfn(gchild); if (bus_devfn < 0) return -EINVAL; if (bus_devfn == IMX95_ENETC2_BUS_DEVFN) continue; interface = ofnode_read_phy_mode(gchild); if (interface == -1) continue; mii_proto = netc_get_link_mii_protocol(interface); if (mii_proto < 0) return -EINVAL; switch (bus_devfn) { case IMX95_ENETC0_BUS_DEVFN: val &= ~CFG_LINK_MII_PORT_0; val |= FIELD_PREP(CFG_LINK_MII_PORT_0, mii_proto); break; case IMX95_ENETC1_BUS_DEVFN: val &= ~CFG_LINK_MII_PORT_1; val |= FIELD_PREP(CFG_LINK_MII_PORT_1, mii_proto); break; default: return -EINVAL; } } } /* Configure Link I/O variant */ netc_reg_write(priv->netcmix, IMX95_CFG_LINK_IO_VAR, IO_VAR(2, IO_VAR_16FF_16G_SERDES)); /* Configure Link 2 PCS protocol */ netc_reg_write(priv->netcmix, IMX95_CFG_LINK_PCS_PROT(2), PCS_PROT_10G_SXGMII); netc_reg_write(priv->netcmix, IMX95_CFG_LINK_MII_PROT, val); return 0; } static bool netc_ierb_is_locked(struct netc_blk_ctrl *priv) { return !!(netc_reg_read(priv->prb, PRB_NETCRR) & NETCRR_LOCK); } static int netc_lock_ierb(struct netc_blk_ctrl *priv) { u32 val; netc_reg_write(priv->prb, PRB_NETCRR, NETCRR_LOCK); return readl_poll_timeout(priv->prb + PRB_NETCSR, val, !(val & NETCSR_STATE), 2000); } static int netc_unlock_ierb_with_warm_reset(struct netc_blk_ctrl *priv) { u32 val; netc_reg_write(priv->prb, PRB_NETCRR, 0); return readl_poll_timeout(priv->prb + PRB_NETCRR, val, !(val & NETCRR_LOCK), 100000); } static int imx95_ierb_init(struct udevice *dev) { struct netc_blk_ctrl *priv = dev_get_priv(dev); /* EMDIO : No MSI-X intterupt */ netc_reg_write(priv->ierb, IERB_EMDIOFAUXR, 0); /* ENETC0 PF */ netc_reg_write(priv->ierb, IERB_EFAUXR(0), 0); /* ENETC0 VF0 */ netc_reg_write(priv->ierb, IERB_VFAUXR(0), 1); /* ENETC0 VF1 */ netc_reg_write(priv->ierb, IERB_VFAUXR(1), 2); /* ENETC1 PF */ netc_reg_write(priv->ierb, IERB_EFAUXR(1), 3); /* ENETC1 VF0 */ netc_reg_write(priv->ierb, IERB_VFAUXR(2), 5); /* ENETC1 VF1 */ netc_reg_write(priv->ierb, IERB_VFAUXR(3), 6); /* ENETC2 PF */ netc_reg_write(priv->ierb, IERB_EFAUXR(2), 4); /* ENETC2 VF0 */ netc_reg_write(priv->ierb, IERB_VFAUXR(4), 5); /* ENETC2 VF1 */ netc_reg_write(priv->ierb, IERB_VFAUXR(5), 6); /* NETC TIMER */ netc_reg_write(priv->ierb, IERB_T0FAUXR, 7); return 0; } static int netc_ierb_init(struct udevice *dev) { struct netc_blk_ctrl *priv = dev_get_priv(dev); int err; if (netc_ierb_is_locked(priv)) { err = netc_unlock_ierb_with_warm_reset(priv); if (err) { dev_err(dev, "Unlock IERB failed.\n"); return err; } } err = imx95_ierb_init(dev); if (err) return err; err = netc_lock_ierb(priv); if (err) { dev_err(dev, "Lock IERB failed.\n"); return err; } return 0; } static int netc_prb_check_error(struct netc_blk_ctrl *priv) { if (netc_reg_read(priv->prb, PRB_NETCSR) & NETCSR_ERROR) return -1; return 0; } static const struct udevice_id netc_blk_ctrl_match[] = { { .compatible = "nxp,imx95-netc-blk-ctrl" }, {}, }; static int netc_blk_ctrl_probe(struct udevice *dev) { struct netc_blk_ctrl *priv = dev_get_priv(dev); struct clk *ipg_clk; fdt_addr_t regs; int err; ipg_clk = devm_clk_get_optional(dev, "ipg"); if (IS_ERR(ipg_clk)) { dev_err(dev, "Set ipg clock failed\n"); return PTR_ERR(ipg_clk); } err = clk_prepare_enable(ipg_clk); if (err) { dev_err(dev, "Enable ipg clock failed\n"); return PTR_ERR(ipg_clk); } regs = dev_read_addr_name(dev, "ierb"); if (regs == FDT_ADDR_T_NONE) { dev_err(dev, "Missing IERB resource\n"); return -EINVAL; } priv->ierb = (void __iomem *)regs; regs = dev_read_addr_name(dev, "prb"); if (regs == FDT_ADDR_T_NONE) { dev_err(dev, "Missing PRB resource\n"); return -EINVAL; } priv->prb = (void __iomem *)regs; regs = dev_read_addr_name(dev, "netcmix"); if (regs == FDT_ADDR_T_NONE) { dev_err(dev, "Missing NETCMIX resource\n"); return -EINVAL; } priv->netcmix = (void __iomem *)regs; err = imx95_netcmix_init(dev); if (err) { dev_err(dev, "Initializing NETCMIX failed\n"); return err; } err = netc_ierb_init(dev); if (err) { dev_err(dev, "Initializing IERB failed\n"); return err; } if (netc_prb_check_error(priv) < 0) dev_warn(dev, "The current IERB configuration is invalid\n"); return 0; } U_BOOT_DRIVER(netc_blk_ctrl_drv) = { .name = "netc_blk_ctrl", .id = UCLASS_SIMPLE_BUS, .of_match = netc_blk_ctrl_match, .probe = netc_blk_ctrl_probe, .priv_auto = sizeof(struct netc_blk_ctrl), .flags = DM_FLAG_PRE_RELOC, };