// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) ASPEED Technology Inc. */ #include #include #include #include #include #include #include #include #include #include #include enum ddr_type { DDR4_1600 = 0x0, DDR4_2400, DDR4_3200, DDR5_3200, DDR_TYPES }; enum ddr_size { DDR_SIZE_256MB, DDR_SIZE_512MB, DDR_SIZE_1GB, DDR_SIZE_2GB, DDR_SIZE_MAX, }; #define IS_DDR4(t) \ (((t) <= DDR4_3200) ? 1 : 0) struct sdrammc_ac_timing { u32 t_cl; u32 t_cwl; u32 t_bl; u32 t_rcd; /* ACT-to-read/write command delay */ u32 t_rp; /* PRE command period */ u32 t_ras; /* ACT-to-PRE command delay */ u32 t_rrd; /* ACT-to-ACT delay for different BG */ u32 t_rrd_l; /* ACT-to-ACT delay for same BG */ u32 t_faw; /* Four active window */ u32 t_rtp; /* Read-to-PRE command delay */ u32 t_wtr; /* Minimum write to read command for different BG */ u32 t_wtr_l; /* Minimum write to read command for same BG */ u32 t_wtr_a; /* Write to read command for same BG with auto precharge */ u32 t_wtp; /* Minimum write to precharge command delay */ u32 t_rtw; /* minimum read to write command */ u32 t_ccd_l; /* CAS-to-CAS delay for same BG */ u32 t_dllk; /* DLL locking time */ u32 t_cksre; /* valid clock before after self-refresh or power-down entry/exit process */ u32 t_pd; /* power-down entry to exit minimum width */ u32 t_xp; /* exit power-down to valid command delay */ u32 t_rfc; /* refresh time period */ u32 t_mrd; u32 t_refsbrd; u32 t_rfcsb; u32 t_cshsr; u32 t_zq; }; static const struct sdrammc_ac_timing ac_table[] = { [DDR4_1600] = { .t_cl = 10, .t_cwl = 9, .t_bl = 8, .t_rcd = 10, .t_rp = 10, .t_ras = 28, .t_rrd = 5, .t_rrd_l = 6, .t_faw = 28, .t_rtp = 6, .t_wtr = 2, .t_wtr_l = 6, .t_wtr_a = 0, .t_wtp = 12, .t_rtw = 0, .t_ccd_l = 5, .t_dllk = 597, .t_cksre = 8, .t_pd = 4, .t_xp = 5, .t_rfc = 880, .t_mrd = 24, .t_refsbrd = 0, .t_rfcsb = 0, .t_cshsr = 0, .t_zq = 80, }, [DDR4_2400] = { .t_cl = 15, .t_cwl = 12, .t_bl = 8, .t_rcd = 16, .t_rp = 16, .t_ras = 39, .t_rrd = 7, .t_rrd_l = 8, .t_faw = 37, .t_rtp = 10, .t_wtr = 4, .t_wtr_l = 10, .t_wtr_a = 0, .t_wtp = 19, .t_rtw = 0, .t_ccd_l = 7, .t_dllk = 768, .t_cksre = 13, .t_pd = 7, .t_xp = 8, .t_rfc = 880, .t_mrd = 24, .t_refsbrd = 0, .t_rfcsb = 0, .t_cshsr = 0, .t_zq = 80, }, [DDR4_3200] = { .t_cl = 20, .t_cwl = 16, .t_bl = 8, .t_rcd = 20, .t_rp = 20, .t_ras = 52, .t_rrd = 9, .t_rrd_l = 11, .t_faw = 48, .t_rtp = 12, .t_wtr = 4, .t_wtr_l = 12, .t_wtr_a = 0, .t_wtp = 24, .t_rtw = 0, .t_ccd_l = 8, .t_dllk = 1023, .t_cksre = 16, .t_pd = 8, .t_xp = 10, .t_rfc = 880, .t_mrd = 24, .t_refsbrd = 0, .t_rfcsb = 0, .t_cshsr = 0, .t_zq = 80, }, [DDR5_3200] = { .t_cl = 26, .t_cwl = 24, .t_bl = 16, .t_rcd = 26, .t_rp = 26, .t_ras = 52, .t_rrd = 8, .t_rrd_l = 8, .t_faw = 40, .t_rtp = 12, .t_wtr = 4, .t_wtr_l = 16, .t_wtr_a = 36, .t_wtp = 48, .t_rtw = 0, .t_ccd_l = 8, .t_dllk = 1024, .t_cksre = 9, .t_pd = 13, .t_xp = 13, .t_rfc = 880, .t_mrd = 23, .t_refsbrd = 48, .t_rfcsb = 208, .t_cshsr = 30, .t_zq = 48, }, }; struct sdrammc { u32 type; void __iomem *regs; void __iomem *phy; void __iomem *scu0; void __iomem *scu1; const struct sdrammc_ac_timing *ac; struct ram_info info; }; static size_t ast2700_sdrammc_get_vga_mem_size(struct sdrammc *sdrammc) { struct sdrammc_regs *regs = sdrammc->regs; void *scu0 = sdrammc->scu0; size_t vga_memsz[] = { SZ_32M, SZ_64M, }; u32 reg, sel, dual = 0; sel = readl(®s->gfmcfg) & 0x1; reg = readl(scu0 + SCU0_PCI_MISC70); if (reg & SCU0_PCI_MISC70_EN_PCIEVGA0) { debug("VGA0:%dMB\n", vga_memsz[sel] / SZ_1M); dual++; } reg = readl(scu0 + SCU0_PCI_MISC80); if (reg & SCU0_PCI_MISC80_EN_PCIEVGA1) { debug("VGA1:%dMB\n", vga_memsz[sel] / SZ_1M); dual++; } return vga_memsz[sel] * dual; } static int sdrammc_calc_size(struct sdrammc *sdrammc) { struct sdrammc_regs *regs = sdrammc->regs; u32 val, test_pattern = 0xdeadbeef; size_t sz; struct { u32 size; int rfc[2]; } ddr_capacity[] = { { 0x10000000UL, {208, 256} }, /* 256MB */ { 0x20000000UL, {208, 416} }, /* 512MB */ { 0x40000000UL, {208, 560} }, /* 1GB */ { 0x80000000UL, {472, 880} }, /* 2GB */ }; /* Configure ram size to max to enable whole area */ val = readl(®s->mcfg); val &= ~(0x7 << 2); writel(val | (DDR_SIZE_2GB << 2), ®s->mcfg); /* Clear basement. */ writel(0, (void *)CFG_SYS_SDRAM_BASE); for (sz = DDR_SIZE_2GB - 1; sz > DDR_SIZE_256MB; sz--) { test_pattern = (test_pattern << 4) + sz; writel(test_pattern, (void *)(CFG_SYS_SDRAM_BASE + ddr_capacity[sz].size)); if (readl((void *)CFG_SYS_SDRAM_BASE) != test_pattern) break; } /* re-configure ram size to dramc. */ val = readl(®s->mcfg); val &= ~(0x7 << 2); writel(val | ((sz + 1) << 2), ®s->mcfg); /* update rfc in ac_timing5 register. */ val = readl(®s->actime5); val &= ~(0x3ff); val |= (ddr_capacity[sz + 1].rfc[IS_DDR4(sdrammc->type)] >> 1); writel(val, ®s->actime5); /* report actual ram base and size to kernel */ sdrammc->info.base = CFG_SYS_SDRAM_BASE; sdrammc->info.size = ddr_capacity[sz + 1].size; /* reserve the VGA memory */ sdrammc->info.size -= ast2700_sdrammc_get_vga_mem_size(sdrammc); return 0; } static int sdrammc_bist(struct sdrammc *sdrammc, u32 addr, u32 size, u32 cfg, u32 timeout) { struct sdrammc_regs *regs = sdrammc->regs; u32 val; u32 err = 0; writel(0, ®s->bistcfg); writel(cfg, ®s->bistcfg); writel(addr >> 4, ®s->bist_addr); writel(size >> 4, ®s->bist_size); writel(0x89abcdef, ®s->bist_patt); writel(cfg | DRAMC_BISTCFG_START, ®s->bistcfg); while (!(readl(®s->intr_status) & DRAMC_IRQSTA_BIST_DONE)) ; writel(DRAMC_IRQSTA_BIST_DONE, ®s->intr_clear); val = readl(®s->bist_res); if (val & DRAMC_BISTRES_DONE) { if (val & DRAMC_BISTRES_FAIL) err++; } else { err++; } return err; } static void sdrammc_enable_refresh(struct sdrammc *sdrammc) { struct sdrammc_regs *regs = sdrammc->regs; /* refresh update */ clrbits_le32(®s->refctl, 0x8000); } static void sdrammc_mr_send(struct sdrammc *sdrammc, u32 ctrl, u32 op) { struct sdrammc_regs *regs = sdrammc->regs; writel(op, ®s->mrwr); writel(ctrl | DRAMC_MRCTL_CMD_START, ®s->mrctl); while (!(readl(®s->intr_status) & DRAMC_IRQSTA_MR_DONE)) ; writel(DRAMC_IRQSTA_MR_DONE, ®s->intr_clear); } static void sdrammc_config_mrs(struct sdrammc *sdrammc) { const struct sdrammc_ac_timing *ac = sdrammc->ac; struct sdrammc_regs *regs = sdrammc->regs; u32 mr0_cas, mr0_rtp, mr0_val; u32 mr6_tccd_l, mr6_val; u32 mr2_cwl, mr2_val; u32 mr1_val; u32 mr3_val; u32 mr4_val; u32 mr5_val; if (!IS_DDR4(sdrammc->type)) return; //------------------------------------------------------------------- // CAS Latency (Table-15) //------------------------------------------------------------------- switch (ac->t_cl) { case 9: mr0_cas = 0x00; //5'b00000; break; case 10: mr0_cas = 0x01; //5'b00001; break; case 11: mr0_cas = 0x02; //5'b00010; break; case 12: mr0_cas = 0x03; //5'b00011; break; case 13: mr0_cas = 0x04; //5'b00100; break; case 14: mr0_cas = 0x05; //5'b00101; break; case 15: mr0_cas = 0x06; //5'b00110; break; case 16: mr0_cas = 0x07; //5'b00111; break; case 18: mr0_cas = 0x08; //5'b01000; break; case 20: mr0_cas = 0x09; //5'b01001; break; case 22: mr0_cas = 0x0a; //5'b01010; break; case 24: mr0_cas = 0x0b; //5'b01011; break; case 23: mr0_cas = 0x0c; //5'b01100; break; case 17: mr0_cas = 0x0d; //5'b01101; break; case 19: mr0_cas = 0x0e; //5'b01110; break; case 21: mr0_cas = 0x0f; //5'b01111; break; case 25: mr0_cas = 0x10; //5'b10000; break; case 26: mr0_cas = 0x11; //5'b10001; break; case 27: mr0_cas = 0x12; //5'b10010; break; case 28: mr0_cas = 0x13; //5'b10011; break; case 30: mr0_cas = 0x15; //5'b10101; break; case 32: mr0_cas = 0x17; //5'b10111; break; } //------------------------------------------------------------------- // WR and RTP (Table-14) //------------------------------------------------------------------- switch (ac->t_rtp) { case 5: mr0_rtp = 0x0; //4'b0000; break; case 6: mr0_rtp = 0x1; //4'b0001; break; case 7: mr0_rtp = 0x2; //4'b0010; break; case 8: mr0_rtp = 0x3; //4'b0011; break; case 9: mr0_rtp = 0x4; //4'b0100; break; case 10: mr0_rtp = 0x5; //4'b0101; break; case 12: mr0_rtp = 0x6; //4'b0110; break; case 11: mr0_rtp = 0x7; //4'b0111; break; case 13: mr0_rtp = 0x8; //4'b1000; break; } //------------------------------------------------------------------- // CAS Write Latency (Table-21) //------------------------------------------------------------------- switch (ac->t_cwl) { case 9: mr2_cwl = 0x0; // 3'b000; // 1600 break; case 10: mr2_cwl = 0x1; // 3'b001; // 1866 break; case 11: mr2_cwl = 0x2; // 3'b010; // 2133 break; case 12: mr2_cwl = 0x3; // 3'b011; // 2400 break; case 14: mr2_cwl = 0x4; // 3'b100; // 2666 break; case 16: mr2_cwl = 0x5; // 3'b101; // 2933/3200 break; case 18: mr2_cwl = 0x6; // 3'b110; break; case 20: mr2_cwl = 0x7; // 3'b111; break; } //------------------------------------------------------------------- // tCCD_L and tDLLK //------------------------------------------------------------------- switch (ac->t_ccd_l) { case 4: mr6_tccd_l = 0x0; //3'b000; // rate <= 1333 break; case 5: mr6_tccd_l = 0x1; //3'b001; // 1333 < rate <= 1866 break; case 6: mr6_tccd_l = 0x2; //3'b010; // 1866 < rate <= 2400 break; case 7: mr6_tccd_l = 0x3; //3'b011; // 2400 < rate <= 2666 break; case 8: mr6_tccd_l = 0x4; //3'b100; // 2666 < rate <= 3200 break; } /* * mr0_val = * mr0_rtp[3], // 13 * mr0_cas[4], // 12 * mr0_rtp[2:0], // 13,11-9: WR and RTP * 1'b0, // 8: DLL reset * 1'b0, // 7: TM * mr0_cas[3:1], // 6-4,2: CAS latency * 1'b0, // 3: sequential * mr0_cas[0], * 2'b00 // 1-0: burst length */ mr0_val = ((mr0_cas & 0x1) << 2) | (((mr0_cas >> 1) & 0x7) << 4) | (((mr0_cas >> 4) & 0x1) << 12) | ((mr0_rtp & 0x7) << 9) | (((mr0_rtp >> 3) & 0x1) << 13); /* * 3'b2 //[10:8]: rtt_nom, 000:disable,001:rzq/4,010:rzq/2,011:rzq/6,100:rzq/1,101:rzq/5,110:rzq/3,111:rzq/7 * 1'b0 //[7]: write leveling enable * 2'b0 //[6:5]: reserved * 2'b0 //[4:3]: additive latency * 2'b0 //[2:1]: output driver impedance * 1'b1 //[0]: enable dll */ mr1_val = 0x201; /* * [10:9]: rtt_wr, 00:dynamic odt off, 01:rzq/2, 10:rzq/1, 11: hi-z * [8]: 0 */ mr2_val = ((mr2_cwl & 0x7) << 3) | 0x200; mr3_val = 0; mr4_val = 0; /* * mr5_val = { * 1'b0, // 13: RFU * 1'b0, // 12: read DBI * 1'b0, // 11: write DBI * 1'b1, // 10: Data mask * 1'b0, // 9: C/A parity persistent error * 3'b000, // 8-6: RTT_PARK (disable) * 1'b1, // 5: ODT input buffer during power down mode * 1'b0, // 4: C/A parity status * 1'b0, // 3: CRC error clear * 3'b0 // 2-0: C/A parity latency mode * }; */ mr5_val = 0x420; /* * mr6_val = { * 1'b0, // 13, 9-8: RFU * mr6_tccd_l[2:0], // 12-10: tCCD_L * 2'b0, // 13, 9-8: RFU * 1'b0, // 7: VrefDQ training enable * 1'b0, // 6: VrefDQ training range * 6'b0 // 5-0: VrefDQ training value * }; */ mr6_val = ((mr6_tccd_l & 0x7) << 10); writel((mr1_val << 16) + mr0_val, ®s->mr01); writel((mr3_val << 16) + mr2_val, ®s->mr23); writel((mr5_val << 16) + mr4_val, ®s->mr45); writel(mr6_val, ®s->mr67); /* Power-up initialization sequence */ sdrammc_mr_send(sdrammc, MR_ADDR(3), 0); sdrammc_mr_send(sdrammc, MR_ADDR(6), 0); sdrammc_mr_send(sdrammc, MR_ADDR(5), 0); sdrammc_mr_send(sdrammc, MR_ADDR(4), 0); sdrammc_mr_send(sdrammc, MR_ADDR(2), 0); sdrammc_mr_send(sdrammc, MR_ADDR(1), 0); sdrammc_mr_send(sdrammc, MR_ADDR(0), 0); } static void sdrammc_exit_self_refresh(struct sdrammc *sdrammc) { struct sdrammc_regs *regs = sdrammc->regs; /* exit self-refresh after phy init */ setbits_le32(®s->mctl, DRAMC_MCTL_SELF_REF_START); /* query if self-ref done */ while (!(readl(®s->intr_status) & DRAMC_IRQSTA_REF_DONE)) ; /* clear status */ writel(DRAMC_IRQSTA_REF_DONE, ®s->intr_clear); udelay(1); } /* user-customized functions for the vendor PHY init code */ #define DWC_PHY_IMEM_OFST 0x50000 #define DWC_PHY_DMEM_OFST 0x58000 #define DWC_PHY_MB_START_STREAM_MSG 0x8 #define DWC_PHY_MB_TRAIN_SUCCESS 0x7 #define DWC_PHY_MB_TRAIN_FAIL 0xff #define dwc_ddrphy_apb_wr(addr, data) \ writew((data), sdrammc->phy + ((addr) << 1)) #define dwc_ddrphy_apb_rd(addr) \ readw(sdrammc->phy + ((addr) << 1)) #define dwc_ddrphy_apb_wr_32b(addr, data) \ writel((data), sdrammc->phy + ((addr) << 1)) #define dwc_ddrphy_apb_rd_32b(addr) \ readl(sdrammc->phy + ((addr) << 1)) void dwc_get_mailbox(struct sdrammc *sdrammc, const int mode, u32 *mbox) { u32 val; /* 1. Poll the UctWriteProtShadow, looking for a 0 */ while (dwc_ddrphy_apb_rd(0xd0004) & BIT(0)) ; /* 2. When a 0 is seen, read the UctWriteOnlyShadow register to get the major message number. */ *mbox = dwc_ddrphy_apb_rd(0xd0032) & 0xffff; /* 3. If reading a streaming or SMBus message, also read the UctDatWriteOnlyShadow register. */ if (mode) { val = (dwc_ddrphy_apb_rd(0xd0034)) & 0xffff; *mbox |= (val << 16); } /* 4. Write the DctWriteProt to 0 to acknowledge the reception of the message */ dwc_ddrphy_apb_wr(0xd0031, 0); /* 5. Poll the UctWriteProtShadow, looking for a 1 */ while (!(dwc_ddrphy_apb_rd(0xd0004) & BIT(0))) ; /* 6. When a 1 is seen, write the DctWriteProt to 1 to complete the protocol */ dwc_ddrphy_apb_wr(0xd0031, 1); } uint32_t dwc_readMsgBlock(struct sdrammc *sdrammc, const u32 addr_half) { u32 data_word; data_word = dwc_ddrphy_apb_rd_32b((addr_half >> 1) << 1); if (addr_half & 0x1) data_word = data_word >> 16; else data_word &= 0xffff; return data_word; } int dwc_ddrphy_phyinit_userCustom_H_readMsgBlock(struct sdrammc *sdrammc, int train2D) { u32 msg; if (IS_DDR4(sdrammc->type)) { /* DWC_PHY_DDR4_MB_RESULT */ msg = dwc_readMsgBlock(sdrammc, 0x5800a); if (msg & 0xff) debug("%s: Training Failure index (0x%x)\n", __func__, msg); else debug("%s: %dD Training Passed\n", __func__, train2D ? 2 : 1); } else { /* DWC_PHY_DDR5_MB_RESULT */ msg = dwc_readMsgBlock(sdrammc, 0x58007); if (msg & 0xff00) debug("%s: Training Failure index (0x%x)\n", __func__, msg); else debug("%s: DDR5 1D/2D Training Passed\n", __func__); /* DWC_PHY_DDR5_MB_RESULT_ADR */ msg = dwc_readMsgBlock(sdrammc, 0x5800a); debug("%s: Result Address Offset (0x%x)\n", __func__, msg); } return 0; } void dwc_ddrphy_phyinit_userCustom_A_bringupPower(void) { /* do nothing */ } void dwc_ddrphy_phyinit_userCustom_B_startClockResetPhy(struct sdrammc *sdrammc) { struct sdrammc_regs *regs = sdrammc->regs; /* * 1. Drive PwrOkIn to 0. Note: Reset, DfiClk, and APBCLK can be X. * 2. Start DfiClk and APBCLK * 3. Drive Reset to 1 and PRESETn_APB to 0. * Note: The combination of PwrOkIn=0 and Reset=1 signals a cold reset to the PHY. */ writel(DRAMC_MCTL_PHY_RESET, ®s->mctl); udelay(2); /* * 5. Drive PwrOkIn to 1. Once the PwrOkIn is asserted (and Reset is still asserted), * DfiClk synchronously switches to any legal input frequency. */ writel(DRAMC_MCTL_PHY_RESET | DRAMC_MCTL_PHY_POWER_ON, ®s->mctl); udelay(2); /* * 7. Drive Reset to 0. Note: All DFI and APB inputs must be driven at valid reset states * before the deassertion of Reset. */ writel(DRAMC_MCTL_PHY_POWER_ON, ®s->mctl); udelay(2); /* * 9. Drive PRESETn_APB to 1 to de-assert reset on the ABP bus. * 10. The PHY is now in the reset state and is ready to accept APB transactions. */ } void dwc_ddrphy_phyinit_userCustom_overrideUserInput(void) { /* do nothing */ } void dwc_ddrphy_phyinit_userCustom_customPostTrain(void) { /* do nothing */ } void dwc_ddrphy_phyinit_userCustom_E_setDfiClk(struct sdrammc *sdrammc) { dwc_ddrphy_apb_wr(0xd0031, 1); /* DWC_DCTWRITEPROT */ dwc_ddrphy_apb_wr(0xd0033, 1); /* DWC_UCTWRITEPROT */ } void dwc_ddrphy_phyinit_userCustom_G_waitFwDone(struct sdrammc *sdrammc) { u32 mbox, msg = 0; while (msg != DWC_PHY_MB_TRAIN_SUCCESS && msg != DWC_PHY_MB_TRAIN_FAIL) { dwc_get_mailbox(sdrammc, 0, &mbox); msg = mbox & 0xffff; } } void dwc_ddrphy_phyinit_userCustom_J_enterMissionMode(struct sdrammc *sdrammc) { struct sdrammc_regs *regs = sdrammc->regs; u32 val; /* * 1. Set the PHY input clocks to the desired frequency. * 2. Initialize the PHY to mission mode by performing DFI Initialization. * Please see the DFI specification for more information. See the DFI frequency bus encoding in section . * Note: The PHY training firmware initializes the DRAM state. if skip * training is used, the DRAM state is not initialized. */ writel(0xffffffff, (void *)®s->intr_mask); writel(0x0, (void *)®s->dcfg); if (!IS_DDR4(sdrammc->type)) { dwc_ddrphy_apb_wr(0xd0000, 0); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */ dwc_ddrphy_apb_wr(0x20240, 0x3900); /* DWC_DDRPHYA_MASTER0_base0_D5ACSMPtr0lat0 */ dwc_ddrphy_apb_wr(0x900da, 8); /* DWC_DDRPHYA_INITENG0_base0_SequenceReg0b59s0 */ dwc_ddrphy_apb_wr(0xd0000, 1); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */ } /* phy init start */ val = readl((void *)®s->mctl); val = val | DRAMC_MCTL_PHY_INIT_START; writel(val, (void *)®s->mctl); /* wait phy complete */ while (1) { val = readl(®s->intr_status) & DRAMC_IRQSTA_PHY_INIT_DONE; if (val == DRAMC_IRQSTA_PHY_INIT_DONE) break; } writel(0xffff, (void *)®s->intr_clear); while (readl((void *)®s->intr_status)) ; if (!IS_DDR4(sdrammc->type)) { dwc_ddrphy_apb_wr(0xd0000, 0); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */ dwc_ddrphy_apb_wr(0x20240, 0x4300); /* DWC_DDRPHYA_MASTER0_base0_D5ACSMPtr0lat0 */ dwc_ddrphy_apb_wr(0x900da, 0); /* DWC_DDRPHYA_INITENG0_base0_SequenceReg0b59s0 */ dwc_ddrphy_apb_wr(0xd0000, 1); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */ } } int dwc_ddrphy_phyinit_userCustom_D_loadIMEM(struct sdrammc *sdrammc, const int train2D) { u32 imem_ofst, imem_size; u32 pb_type; if (IS_DDR4(sdrammc->type)) pb_type = (train2D) ? PBT_DDR4_2D_PMU_TRAIN_IMEM : PBT_DDR4_PMU_TRAIN_IMEM; else pb_type = PBT_DDR5_PMU_TRAIN_IMEM; fmc_hdr_get_prebuilt(pb_type, &imem_ofst, &imem_size); memcpy(sdrammc->phy + (DWC_PHY_IMEM_OFST << 1), (void *)(0x20000000 + imem_ofst), imem_size); return 0; } int dwc_ddrphy_phyinit_userCustom_F_loadDMEM(struct sdrammc *sdrammc, const int pState, const int train2D) { u32 dmem_ofst, dmem_size; u32 pb_type; if (IS_DDR4(sdrammc->type)) pb_type = (train2D) ? PBT_DDR4_2D_PMU_TRAIN_DMEM : PBT_DDR4_PMU_TRAIN_DMEM; else pb_type = PBT_DDR5_PMU_TRAIN_DMEM; fmc_hdr_get_prebuilt(pb_type, &dmem_ofst, &dmem_size); memcpy(sdrammc->phy + (DWC_PHY_DMEM_OFST << 1), (void *)(0x20000000 + dmem_ofst), dmem_size); return 0; } static void sdrammc_dwc_phy_init(struct sdrammc *sdrammc) { /* enable ddr phy free-run clock */ writel(SCU0_CLKGATE1_CLR_DDRPHY, sdrammc->scu0 + SCU0_CLKGATE1_CLR); /* include the vendor-provided PHY init code */ if (IS_DDR4(sdrammc->type)) { #include "dwc_ddrphy_phyinit_ddr4-3200-nodimm-train2D.c" } else { #include "dwc_ddrphy_phyinit_ddr5-3200-nodimm-train2D.c" } } static void sdrammc_config_ac_timing(struct sdrammc *sdrammc) { const struct sdrammc_ac_timing *ac = sdrammc->ac; struct sdrammc_regs *regs = sdrammc->regs; u32 actime; #define ACTIME1(ccd, rrd_l, rrd, mrd) \ (((ccd) << 24) | \ (((rrd_l) >> 1) << 16) | \ (((rrd) >> 1) << 8) | \ ((mrd) >> 1)) #define ACTIME2(faw, rp, ras, rcd) \ ((((faw) >> 1) << 24) | \ (((rp) >> 1) << 16) | \ (((ras) >> 1) << 8) | \ ((rcd) >> 1)) #define ACTIME3(wtr, rtw, wtp, rtp) \ ((((wtr) >> 1) << 24) | \ (((rtw) >> 1) << 16) | \ (((wtp) >> 1) << 8) | \ ((rtp) >> 1)) #define ACTIME4(wtr_a, wtr_l) \ ((((wtr_a) >> 1) << 8) | \ ((wtr_l) >> 1)) #define ACTIME5(refsbrd, rfcsb, rfc) \ ((((refsbrd) >> 1) << 20) | \ (((rfcsb) >> 1) << 10) | \ ((rfc) >> 1)) #define ACTIME6(cshsr, pd, xp, cksre) \ ((((cshsr) >> 1) << 24) | \ (((pd) >> 1) << 16) | \ (((xp) >> 1) << 8) | \ ((cksre) >> 1)) #define ACTIME7(zqcs, dllk) \ ((((zqcs) >> 1) << 10) | \ ((dllk) >> 1)) actime = ACTIME1(ac->t_ccd_l, ac->t_rrd_l, ac->t_rrd, ac->t_mrd); writel(actime, ®s->actime1); actime = ACTIME2(ac->t_faw, ac->t_rp, ac->t_ras, ac->t_rcd); writel(actime, ®s->actime2); actime = ACTIME3(ac->t_cwl + ac->t_bl / 2 + ac->t_wtr, ac->t_cl - ac->t_cwl + (ac->t_bl / 2) + 2, ac->t_cwl + ac->t_bl / 2 + ac->t_wtp, ac->t_rtp); writel(actime, ®s->actime3); actime = ACTIME4(ac->t_cwl + ac->t_bl / 2 + ac->t_wtr_a, ac->t_cwl + ac->t_bl / 2 + ac->t_wtr_l); writel(actime, ®s->actime4); actime = ACTIME5(ac->t_refsbrd, ac->t_rfcsb, ac->t_rfc); writel(actime, ®s->actime5); actime = ACTIME6(ac->t_cshsr, ac->t_pd, ac->t_xp, ac->t_cksre); writel(actime, ®s->actime6); actime = ACTIME7(ac->t_zq, ac->t_dllk); writel(actime, ®s->actime7); } static void sdrammc_config_registers(struct sdrammc *sdrammc) { const struct sdrammc_ac_timing *ac = sdrammc->ac; struct sdrammc_regs *regs = sdrammc->regs; u32 reg; u32 dram_size = 5; u32 t_phy_wrdata; u32 t_phy_wrlat; u32 t_phy_rddata_en; u32 t_phy_odtlat; u32 t_phy_odtext; if (IS_DDR4(sdrammc->type)) { t_phy_wrlat = ac->t_cwl - 5 - 4; t_phy_rddata_en = ac->t_cl - 5 - 4; t_phy_wrdata = 2; t_phy_odtlat = ac->t_cwl - 5 - 4; t_phy_odtext = 0; } else { t_phy_wrlat = ac->t_cwl - 13 - 3; t_phy_rddata_en = ac->t_cl - 13 - 3; t_phy_wrdata = 6; t_phy_odtlat = 0; t_phy_odtext = 0; } writel(0x20 + (dram_size << 2) + !!!IS_DDR4(sdrammc->type), ®s->mcfg); reg = (t_phy_odtext << 20) + (t_phy_odtlat << 16) + (t_phy_rddata_en << 10) + (t_phy_wrdata << 6) + t_phy_wrlat; writel(reg, ®s->dfi_timing); writel(0, ®s->dctl); writel(0x40b48200, ®s->refctl); writel(0x42aa1800, ®s->zqctl); writel(0, ®s->arbctl); if (!IS_DDR4(sdrammc->type)) writel(0, ®s->refmng_ctl); writel(0xffffffff, ®s->intr_mask); } static void sdrammc_init(struct sdrammc *sdrammc) { u32 reg; reg = readl(sdrammc->scu1 + SCU1_HWSTRAP1); if (reg & SCU1_HWSTRAP1_DDR4) { if (IS_ENABLED(CONFIG_ASPEED_DDR_1600)) sdrammc->type = DDR4_1600; else if (IS_ENABLED(CONFIG_ASPEED_DDR_2400)) sdrammc->type = DDR4_2400; else if (IS_ENABLED(CONFIG_ASPEED_DDR_3200)) sdrammc->type = DDR4_3200; } else { sdrammc->type = DDR5_3200; } sdrammc->ac = &ac_table[sdrammc->type]; sdrammc_config_ac_timing(sdrammc); sdrammc_config_registers(sdrammc); } static int ast2700_sdrammc_probe(struct udevice *dev) { struct sdrammc *sdrammc = dev_get_priv(dev); struct sdrammc_regs *regs = sdrammc->regs; u32 bistcfg; u32 reg; int rc; /* skip DRAM init if already done */ reg = readl(sdrammc->scu0 + SCU0_VGA0_SCRATCH); if (reg & SCU0_VGA0_SCRATCH_DRAM_INIT) goto out; /* unlock DRAM controller */ writel(DRAMC_UNLK_KEY, ®s->prot_key); sdrammc_init(sdrammc); sdrammc_dwc_phy_init(sdrammc); sdrammc_exit_self_refresh(sdrammc); sdrammc_config_mrs(sdrammc); sdrammc_enable_refresh(sdrammc); bistcfg = FIELD_PREP(DRAMC_BISTCFG_PMODE, BIST_PMODE_CRC) | FIELD_PREP(DRAMC_BISTCFG_BMODE, BIST_BMODE_RW_SWITCH) | DRAMC_BISTCFG_ENABLE; rc = sdrammc_bist(sdrammc, 0, 0x10000, bistcfg, 0x200000); if (rc) { debug("bist test failed, type=%d\n", sdrammc->type); return rc; } /* set DRAM init flag */ reg |= SCU0_VGA0_SCRATCH_DRAM_INIT; writel(reg, sdrammc->scu0 + SCU0_VGA0_SCRATCH); out: sdrammc_calc_size(sdrammc); return 0; } static int ast2700_sdrammc_of_to_plat(struct udevice *dev) { struct sdrammc *sdrammc = dev_get_priv(dev); u32 phandle; ofnode node; int rc; sdrammc->regs = (struct sdrammc_regs *)devfdt_get_addr_index(dev, 0); if (sdrammc->regs == (void *)FDT_ADDR_T_NONE) { debug("cannot map DRAM register\n"); return -ENODEV; } sdrammc->phy = (void *)devfdt_get_addr_index(dev, 1); if (sdrammc->phy == (void *)FDT_ADDR_T_NONE) { debug("cannot map PHY memory\n"); return -ENODEV; } rc = ofnode_read_u32(dev_ofnode(dev), "aspeed,scu0", &phandle); if (rc) { debug("cannot find SCU0 handle\n"); return -ENODEV; } node = ofnode_get_by_phandle(phandle); if (!ofnode_valid(node)) { debug("cannot get SCU0 node\n"); return -ENODEV; } sdrammc->scu0 = (void *)ofnode_get_addr(node); if (sdrammc->scu0 == (void *)FDT_ADDR_T_NONE) { debug("cannot map SCU0 register\n"); return -ENODEV; } rc = ofnode_read_u32(dev_ofnode(dev), "aspeed,scu1", &phandle); if (rc) { debug("cannot find SCU1 handle\n"); return -ENODEV; } node = ofnode_get_by_phandle(phandle); if (!ofnode_valid(node)) { debug("cannot get SCU1 node\n"); return -ENODEV; } sdrammc->scu1 = (void *)ofnode_get_addr(node); if (sdrammc->scu1 == (void *)FDT_ADDR_T_NONE) { debug("cannot map SCU1 register\n"); return -ENODEV; } return 0; } static int ast2700_sdrammc_get_info(struct udevice *dev, struct ram_info *info) { struct sdrammc *sdrammc = dev_get_priv(dev); *info = sdrammc->info; return 0; } static struct ram_ops ast2700_sdrammc_ops = { .get_info = ast2700_sdrammc_get_info, }; static const struct udevice_id ast2700_sdrammc_ids[] = { { .compatible = "aspeed,ast2700-sdrammc" }, { } }; U_BOOT_DRIVER(sdrammc_ast2700) = { .name = "aspeed_ast2700_sdrammc", .id = UCLASS_RAM, .of_match = ast2700_sdrammc_ids, .ops = &ast2700_sdrammc_ops, .of_to_plat = ast2700_sdrammc_of_to_plat, .probe = ast2700_sdrammc_probe, .priv_auto = sizeof(struct sdrammc), };