// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2025 Linaro Limited * * Unit test for uthread */ #include #include #include #include static int count; /* A thread entry point */ static void worker(void *arg) { int loops = (int)(unsigned long)arg; int i; for (i = 0; i < loops; i++) { count++; uthread_schedule(); } } /* * uthread() - testing the uthread API * * This function creates two threads with the same entry point. The first one * receives 5 as an argument, the second one receives 10. The number indicates * the number of time the worker thread should loop on uthread_schedule() * before returning. The workers increment a global counter each time they loop. * As a result the main thread knows how many times it should call * uthread_schedule() to let the two threads proceed, and it also knows which * value the counter should have at any moment. */ static int uthread(struct unit_test_state *uts) { int i; int id1, id2; count = 0; id1 = uthread_grp_new_id(); ut_assert(id1 != 0); id2 = uthread_grp_new_id(); ut_assert(id2 != 0); ut_assert(id1 != id2); ut_assertok(uthread_create(NULL, worker, (void *)5, 0, id1)); ut_assertok(uthread_create(NULL, worker, (void *)10, 0, 0)); /* * The first call is expected to schedule the first worker, which will * schedule the second one, which will schedule back to the main thread * (here). Therefore count should be 2. */ ut_assert(uthread_schedule()); ut_asserteq(2, count); ut_assert(!uthread_grp_done(id1)); /* Four more calls should bring the count to 10 */ for (i = 0; i < 4; i++) { ut_assert(!uthread_grp_done(id1)); ut_assert(uthread_schedule()); } ut_asserteq(10, count); /* This one allows the first worker to exit */ ut_assert(uthread_schedule()); /* At this point there should be no runnable thread in group 'id1' */ ut_assert(uthread_grp_done(id1)); /* Five more calls for the second worker to finish incrementing */ for (i = 0; i < 5; i++) ut_assert(uthread_schedule()); ut_asserteq(15, count); /* Plus one call to let the second worker return from its entry point */ ut_assert(uthread_schedule()); /* Now both tasks should be done, schedule should return false */ ut_assert(!uthread_schedule()); return 0; } LIB_TEST(uthread, 0); struct mw_args { struct unit_test_state *uts; struct uthread_mutex *m; int flag; }; static int mutex_worker_ret; static int _mutex_worker(struct mw_args *args) { struct unit_test_state *uts = args->uts; ut_asserteq(-EBUSY, uthread_mutex_trylock(args->m)); ut_assertok(uthread_mutex_lock(args->m)); args->flag = 1; ut_assertok(uthread_mutex_unlock(args->m)); return 0; } static void mutex_worker(void *arg) { mutex_worker_ret = _mutex_worker((struct mw_args *)arg); } /* * thread_mutex() - testing uthread mutex operations * */ static int uthread_mutex(struct unit_test_state *uts) { struct uthread_mutex m = UTHREAD_MUTEX_INITIALIZER; struct mw_args args = { .uts = uts, .m = &m, .flag = 0 }; int id; int i; id = uthread_grp_new_id(); ut_assert(id != 0); /* Take the mutex */ ut_assertok(uthread_mutex_lock(&m)); /* Start a thread */ ut_assertok(uthread_create(NULL, mutex_worker, (void *)&args, 0, id)); /* Let the thread run for a bit */ for (i = 0; i < 100; i++) ut_assert(uthread_schedule()); /* Thread should not have set the flag due to the mutex */ ut_asserteq(0, args.flag); /* Release the mutex */ ut_assertok(uthread_mutex_unlock(&m)); /* Schedule the thread until it is done */ while (uthread_schedule()) ; /* Now the flag should be set */ ut_asserteq(1, args.flag); /* And the mutex should be available */ ut_assertok(uthread_mutex_trylock(&m)); ut_assertok(uthread_mutex_unlock(&m)); /* Of course no error are expected from the thread routine */ ut_assertok(mutex_worker_ret); return 0; } LIB_TEST(uthread_mutex, 0);