summaryrefslogtreecommitdiff
path: root/board/sacsng/sacsng.c
blob: 60563d4ab2b151b89c02521c1f9ec7bb1cab71e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
/*
 * (C) Copyright 2002
 * Custom IDEAS, Inc. <www.cideas.com>
 * Gerald Van Baren <vanbaren@cideas.com>
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <asm/u-boot.h>
#include <common.h>
#include <ioports.h>
#include <mpc8260.h>
#include <i2c.h>
#include <spi.h>
#include <command.h>

#ifdef CONFIG_SHOW_BOOT_PROGRESS
#include <status_led.h>
#endif

#ifdef CONFIG_ETHER_LOOPBACK_TEST
extern void eth_loopback_test(void);
#endif /* CONFIG_ETHER_LOOPBACK_TEST */

extern int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);

#include "clkinit.h"
#include "ioconfig.h" /* I/O configuration table */

/*
 * PBI Page Based Interleaving
 *   PSDMR_PBI page based interleaving
 *   0         bank based interleaving
 * External Address Multiplexing (EAMUX) adds a clock to address cycles
 *   (this can help with marginal board layouts)
 *   PSDMR_EAMUX  adds a clock
 *   0            no extra clock
 * Buffer Command (BUFCMD) adds a clock to command cycles.
 *   PSDMR_BUFCMD adds a clock
 *   0            no extra clock
 */
#define CONFIG_PBI		PSDMR_PBI
#define PESSIMISTIC_SDRAM	0
#define EAMUX			0	/* EST requires EAMUX */
#define BUFCMD			0

/*
 * ADC/DAC Defines:
 */
#define INITIAL_SAMPLE_RATE 10016     /* Initial Daq sample rate */
#define INITIAL_RIGHT_JUST  0         /* Initial DAC right justification */
#define INITIAL_MCLK_DIVIDE 0         /* Initial MCLK Divide */
#define INITIAL_SAMPLE_64X  1         /* Initial  64x clocking mode */
#define INITIAL_SAMPLE_128X 0         /* Initial 128x clocking mode */

/*
 * ADC Defines:
 */
#define I2C_ADC_1_ADDR 0x0E           /* I2C Address of the ADC #1 */
#define I2C_ADC_2_ADDR 0x0F           /* I2C Address of the ADC #2 */

#define ADC_SDATA1_MASK 0x00020000    /* PA14 - CH12SDATA_PU   */
#define ADC_SDATA2_MASK 0x00010000    /* PA15 - CH34SDATA_PU   */

#define ADC_VREF_CAP   100            /* VREF capacitor in uF */
#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */
#define ADC_SDATA_DELAY    100        /* ADC SDATA release delay in usec */
#define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500)
				      /* Wait at least 4100 LRCLK's */

#define ADC_REG1_FRAME_START    0x80  /* Frame start */
#define ADC_REG1_GROUND_CAL     0x40  /* Ground calibration enable */
#define ADC_REG1_ANA_MOD_PDOWN  0x20  /* Analog modulator section in power down */
#define ADC_REG1_DIG_MOD_PDOWN  0x10  /* Digital modulator section in power down */

#define ADC_REG2_128x           0x80  /* Oversample at 128x */
#define ADC_REG2_CAL            0x40  /* System calibration enable */
#define ADC_REG2_CHANGE_SIGN    0x20  /* Change sign enable */
#define ADC_REG2_LR_DISABLE     0x10  /* Left/Right output disable */
#define ADC_REG2_HIGH_PASS_DIS  0x08  /* High pass filter disable */
#define ADC_REG2_SLAVE_MODE     0x04  /* Slave mode */
#define ADC_REG2_DFS            0x02  /* Digital format select */
#define ADC_REG2_MUTE           0x01  /* Mute */

#define ADC_REG7_ADDR_ENABLE    0x80  /* Address enable */
#define ADC_REG7_PEAK_ENABLE    0x40  /* Peak enable */
#define ADC_REG7_PEAK_UPDATE    0x20  /* Peak update */
#define ADC_REG7_PEAK_FORMAT    0x10  /* Peak display format */
#define ADC_REG7_DIG_FILT_PDOWN 0x04  /* Digital filter power down enable */
#define ADC_REG7_FIR2_IN_EN     0x02  /* External FIR2 input enable */
#define ADC_REG7_PSYCHO_EN      0x01  /* External pyscho filter input enable */

/*
 * DAC Defines:
 */

#define I2C_DAC_ADDR 0x11             /* I2C Address of the DAC */

#define DAC_RST_MASK 0x00008000       /* PA16 - DAC_RST*  */
#define DAC_RESET_DELAY    100        /* DAC reset delay in usec */
#define DAC_INITIAL_DELAY 5000        /* DAC initialization delay in usec */

#define DAC_REG1_AMUTE   0x80         /* Auto-mute */

#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit  */
#define DAC_REG1_I2S_24_BIT       (1 << 4) /* Fmt 1: I2S up to 24 bit       */
#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */
#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */
#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */
#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */

#define DAC_REG1_DEM_NO           (0 << 2) /* No      De-emphasis  */
#define DAC_REG1_DEM_44KHZ        (1 << 2) /* 44.1KHz De-emphasis  */
#define DAC_REG1_DEM_48KHZ        (2 << 2) /* 48KHz   De-emphasis  */
#define DAC_REG1_DEM_32KHZ        (3 << 2) /* 32KHz   De-emphasis  */

#define DAC_REG1_SINGLE 0             /*   4- 50KHz sample rate  */
#define DAC_REG1_DOUBLE 1             /*  50-100KHz sample rate  */
#define DAC_REG1_QUAD   2             /* 100-200KHz sample rate  */
#define DAC_REG1_DSD    3             /* Direct Stream Data, DSD */

#define DAC_REG5_INVERT_A   0x80      /* Invert channel A */
#define DAC_REG5_INVERT_B   0x40      /* Invert channel B */
#define DAC_REG5_I2C_MODE   0x20      /* Control port (I2C) mode */
#define DAC_REG5_POWER_DOWN 0x10      /* Power down mode */
#define DAC_REG5_MUTEC_A_B  0x08      /* Mutec A=B */
#define DAC_REG5_FREEZE     0x04      /* Freeze */
#define DAC_REG5_MCLK_DIV   0x02      /* MCLK divide by 2 */
#define DAC_REG5_RESERVED   0x01      /* Reserved */

/* ------------------------------------------------------------------------- */

/*
 * Check Board Identity:
 */

int checkboard(void)
{
    printf ("SACSng\n");

    return 0;
}

/* ------------------------------------------------------------------------- */

long int initdram(int board_type)
{
    volatile immap_t *immap  = (immap_t *)CFG_IMMR;
    volatile memctl8260_t *memctl = &immap->im_memctl;
    volatile uchar c = 0;
    volatile uchar *ramaddr = (uchar *)(CFG_SDRAM_BASE + 0x8);
    uint  psdmr = CFG_PSDMR;
    int   i;
    uint   psrt = 14;					/* for no SPD */
    uint   chipselects = 1;				/* for no SPD */
    uint   sdram_size = CFG_SDRAM0_SIZE * 1024 * 1024;	/* for no SPD */
    uint   or = CFG_OR2_PRELIM;				/* for no SPD */
#ifdef SDRAM_SPD_ADDR
    uint   data_width;
    uint   rows;
    uint   banks;
    uint   cols;
    uint   caslatency;
    uint   width;
    uint   rowst;
    uint   sdam;
    uint   bsma;
    uint   sda10;
    u_char spd_size;
    u_char data;
    u_char cksum;
    int    j;
#endif

#ifdef SDRAM_SPD_ADDR
    /* Keep the compiler from complaining about potentially uninitialized vars */
    data_width = chipselects = rows = banks = cols = caslatency = psrt = 0;

    /*
     * Read the SDRAM SPD EEPROM via I2C.
     */
    i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1);
    spd_size = data;
    cksum    = data;
    for(j = 1; j < 64; j++) {	/* read only the checksummed bytes */
	/* note: the I2C address autoincrements when alen == 0 */
	i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1);
	     if(j ==  5) chipselects = data & 0x0F;
	else if(j ==  6) data_width  = data;
	else if(j ==  7) data_width |= data << 8;
	else if(j ==  3) rows        = data & 0x0F;
	else if(j ==  4) cols        = data & 0x0F;
	else if(j == 12) {
	    /*
	     * Refresh rate: this assumes the prescaler is set to
	     * approximately 1uSec per tick.
	     */
	    switch(data & 0x7F) {
		default:
		case 0:  psrt =  14 ; /*  15.625uS */  break;
		case 1:  psrt =   2;  /*   3.9uS   */  break;
		case 2:  psrt =   6;  /*   7.8uS   */  break;
		case 3:  psrt =  29;  /*  31.3uS   */  break;
		case 4:  psrt =  60;  /*  62.5uS   */  break;
		case 5:  psrt = 120;  /* 125uS     */  break;
	    }
	}
	else if(j == 17) banks       = data;
	else if(j == 18) {
	    caslatency = 3; /* default CL */
#if(PESSIMISTIC_SDRAM)
		 if((data & 0x04) != 0) caslatency = 3;
	    else if((data & 0x02) != 0) caslatency = 2;
	    else if((data & 0x01) != 0) caslatency = 1;
#else
		 if((data & 0x01) != 0) caslatency = 1;
	    else if((data & 0x02) != 0) caslatency = 2;
	    else if((data & 0x04) != 0) caslatency = 3;
#endif
	    else {
		printf ("WARNING: Unknown CAS latency 0x%02X, using 3\n",
			data);
	    }
	}
	else if(j == 63) {
	    if(data != cksum) {
		printf ("WARNING: Configuration data checksum failure:"
			" is 0x%02x, calculated 0x%02x\n",
			data, cksum);
	    }
	}
	cksum += data;
    }

    /* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */
    if(caslatency < 2) {
	printf("WARNING: CL was %d, forcing to 2\n", caslatency);
	caslatency = 2;
    }
    if(rows > 14) {
	printf("WARNING: This doesn't look good, rows = %d, should be <= 14\n", rows);
	rows = 14;
    }
    if(cols > 11) {
	printf("WARNING: This doesn't look good, columns = %d, should be <= 11\n", cols);
	cols = 11;
    }

    if((data_width != 64) && (data_width != 72))
    {
	printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n",
	    data_width);
    }
    width = 3;		/* 2^3 = 8 bytes = 64 bits wide */
    /*
     * Convert banks into log2(banks)
     */
    if     (banks == 2)	banks = 1;
    else if(banks == 4)	banks = 2;
    else if(banks == 8)	banks = 3;

    sdram_size = 1 << (rows + cols + banks + width);

#if(CONFIG_PBI == 0)	/* bank-based interleaving */
    rowst = ((32 - 6) - (rows + cols + width)) * 2;
#else
    rowst = 32 - (rows + banks + cols + width);
#endif

    or = ~(sdram_size - 1)    |	/* SDAM address mask	*/
	  ((banks-1) << 13)   |	/* banks per device	*/
	  (rowst << 9)        |	/* rowst		*/
	  ((rows - 9) << 6);	/* numr			*/

    memctl->memc_or2 = or;

    /*
     * SDAM specifies the number of columns that are multiplexed
     * (reference AN2165/D), defined to be (columns - 6) for page
     * interleave, (columns - 8) for bank interleave.
     *
     * BSMA is 14 - max(rows, cols).  The bank select lines come
     * into play above the highest "address" line going into the
     * the SDRAM.
     */
#if(CONFIG_PBI == 0)	/* bank-based interleaving */
    sdam = cols - 8;
    bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
    sda10 = sdam + 2;
#else
    sdam = cols - 6;
    bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
    sda10 = sdam;
#endif
#if(PESSIMISTIC_SDRAM)
    psdmr = (CONFIG_PBI              |\
	     PSDMR_RFEN              |\
	     PSDMR_RFRC_16_CLK       |\
	     PSDMR_PRETOACT_8W       |\
	     PSDMR_ACTTORW_8W        |\
	     PSDMR_WRC_4C            |\
	     PSDMR_EAMUX             |\
	     PSDMR_BUFCMD)           |\
	     caslatency              |\
	     ((caslatency - 1) << 6) |	/* LDOTOPRE is CL - 1 */ \
	     (sdam << 24)            |\
	     (bsma << 21)            |\
	     (sda10 << 18);
#else
    psdmr = (CONFIG_PBI              |\
	     PSDMR_RFEN              |\
	     PSDMR_RFRC_7_CLK        |\
	     PSDMR_PRETOACT_3W       |	/* 1 for 7E parts (fast PC-133) */ \
	     PSDMR_ACTTORW_2W        |	/* 1 for 7E parts (fast PC-133) */ \
	     PSDMR_WRC_1C            |	/* 1 clock + 7nSec */
	     EAMUX                   |\
	     BUFCMD)                 |\
	     caslatency              |\
	     ((caslatency - 1) << 6) |	/* LDOTOPRE is CL - 1 */ \
	     (sdam << 24)            |\
	     (bsma << 21)            |\
	     (sda10 << 18);
#endif
#endif

    /*
     * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35):
     *
     * "At system reset, initialization software must set up the
     *  programmable parameters in the memory controller banks registers
     *  (ORx, BRx, P/LSDMR). After all memory parameters are configured,
     *  system software should execute the following initialization sequence
     *  for each SDRAM device.
     *
     *  1. Issue a PRECHARGE-ALL-BANKS command
     *  2. Issue eight CBR REFRESH commands
     *  3. Issue a MODE-SET command to initialize the mode register
     *
     * Quote from Micron MT48LC8M16A2 data sheet:
     *
     *  "...the SDRAM requires a 100uS delay prior to issuing any
     *  command other than a COMMAND INHIBIT or NOP.  Starting at some
     *  point during this 100uS period and continuing at least through
     *  the end of this period, COMMAND INHIBIT or NOP commands should
     *  be applied."
     *
     *  "Once the 100uS delay has been satisfied with at least one COMMAND
     *  INHIBIT or NOP command having been applied, a /PRECHARGE command/
     *  should be applied.  All banks must then be precharged, thereby
     *  placing the device in the all banks idle state."
     *
     *  "Once in the idle state, /two/ AUTO REFRESH cycles must be
     *  performed.  After the AUTO REFRESH cycles are complete, the
     *  SDRAM is ready for mode register programming."
     *
     *  (/emphasis/ mine, gvb)
     *
     *  The way I interpret this, Micron start up sequence is:
     *  1. Issue a PRECHARGE-BANK command (initial precharge)
     *  2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged")
     *  3. Issue two (presumably, doing eight is OK) CBR REFRESH commands
     *  4. Issue a MODE-SET command to initialize the mode register
     *
     *  --------
     *
     *  The initial commands are executed by setting P/LSDMR[OP] and
     *  accessing the SDRAM with a single-byte transaction."
     *
     * The appropriate BRx/ORx registers have already been set when we
     * get here. The SDRAM can be accessed at the address CFG_SDRAM_BASE.
     */

    memctl->memc_mptpr = CFG_MPTPR;
    memctl->memc_psrt  = psrt;

    memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
    *ramaddr = c;

    memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
    for (i = 0; i < 8; i++)
	*ramaddr = c;

    memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
    *ramaddr = c;

    memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
    *ramaddr = c;

    /*
     * Do it a second time for the second set of chips if the DIMM has
     * two chip selects (double sided).
     */
    if(chipselects > 1) {
	ramaddr += sdram_size;

	memctl->memc_br3 = CFG_BR3_PRELIM + sdram_size;
	memctl->memc_or3 = or;

	memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
	*ramaddr = c;

	memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
	for (i = 0; i < 8; i++)
	    *ramaddr = c;

	memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
	*ramaddr = c;

	memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
	*ramaddr = c;
    }

    /* return total ram size */
    return (sdram_size * chipselects);
}

/*-----------------------------------------------------------------------
 * Board Control Functions
 */
void board_poweroff (void)
{
    while (1);		/* hang forever */
}


#ifdef CONFIG_MISC_INIT_R
/* ------------------------------------------------------------------------- */
int misc_init_r(void)
{
    /*
     * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
     */
    volatile ioport_t *iopa = ioport_addr((immap_t *)CFG_IMMR, 0 /* port A */);
    volatile ioport_t *iop  = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT);

    int  reg;          /* I2C register value */
    char *ep;          /* Environment pointer */
    char str_buf[12] ; /* sprintf output buffer */
    int  sample_rate;  /* ADC/DAC sample rate */
    int  sample_64x;   /* Use  64/4 clocking for the ADC/DAC */
    int  sample_128x;  /* Use 128/4 clocking for the ADC/DAC */
    int  right_just;   /* Is the data to the DAC right justified? */
    int  mclk_divide;  /* MCLK Divide */
    int  quiet;        /* Quiet or minimal output mode */

    quiet = 0;
    if ((ep = getenv("quiet")) != NULL) {
	quiet = simple_strtol(ep, NULL, 10);
    }
    else {
	setenv("quiet", "0");
    }

    /*
     * SACSng custom initialization:
     *    Start the ADC and DAC clocks, since the Crystal parts do not
     *    work on the I2C bus until the clocks are running.
     */

    sample_rate = INITIAL_SAMPLE_RATE;
    if ((ep = getenv("DaqSampleRate")) != NULL) {
	sample_rate = simple_strtol(ep, NULL, 10);
    }

    sample_64x  = INITIAL_SAMPLE_64X;
    sample_128x = INITIAL_SAMPLE_128X;
    if ((ep = getenv("Daq64xSampling")) != NULL) {
	sample_64x = simple_strtol(ep, NULL, 10);
	if (sample_64x) {
	    sample_128x = 0;
	}
	else {
	    sample_128x = 1;
	}
    }
    else {
	if ((ep = getenv("Daq128xSampling")) != NULL) {
	    sample_128x = simple_strtol(ep, NULL, 10);
	    if (sample_128x) {
		sample_64x = 0;
	    }
	    else {
		sample_64x = 1;
	    }
	}
    }

    /*
     * Stop the clocks and wait for at least 1 LRCLK period
     * to make sure the clocking has really stopped.
     */
    Daq_Stop_Clocks();
    udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);

    /*
     * Initialize the clocks with the new rates
     */
    Daq_Init_Clocks(sample_rate, sample_64x);
    sample_rate = Daq_Get_SampleRate();

    /*
     * Start the clocks and wait for at least 1 LRCLK period
     * to make sure the clocking has become stable.
     */
    Daq_Start_Clocks(sample_rate);
    udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);

    sprintf(str_buf, "%d", sample_rate);
    setenv("DaqSampleRate", str_buf);

    if (sample_64x) {
	setenv("Daq64xSampling",  "1");
	setenv("Daq128xSampling", NULL);
    }
    else {
	setenv("Daq64xSampling",  NULL);
	setenv("Daq128xSampling", "1");
    }

    /* 
     * Display the ADC/DAC clocking information 
     */
    if (!quiet) {
        Daq_Display_Clocks();
    }

    /*
     * Determine the DAC data justification
     */

    right_just = INITIAL_RIGHT_JUST;
    if ((ep = getenv("DaqDACRightJustified")) != NULL) {
	right_just = simple_strtol(ep, NULL, 10);
    }

    sprintf(str_buf, "%d", right_just);
    setenv("DaqDACRightJustified", str_buf);

    /*
     * Determine the DAC MCLK Divide
     */

    mclk_divide = INITIAL_MCLK_DIVIDE;
    if ((ep = getenv("DaqDACMClockDivide")) != NULL) {
	mclk_divide = simple_strtol(ep, NULL, 10);
    }

    sprintf(str_buf, "%d", mclk_divide);
    setenv("DaqDACMClockDivide", str_buf);

    /*
     * Initializing the I2C address in the Crystal A/Ds:
     *
     * 1) Wait for VREF cap to settle (10uSec per uF)
     * 2) Release pullup on SDATA
     * 3) Write the I2C address to register 6
     * 4) Enable address matching by setting the MSB in register 7
     */
    
    if (!quiet) {
        printf("Initializing the ADC...\n");
    }
    udelay(ADC_INITIAL_DELAY);		/* 10uSec per uF of VREF cap */

    iopa->pdat &= ~ADC_SDATA1_MASK;     /* release SDATA1 */
    udelay(ADC_SDATA_DELAY);		/* arbitrary settling time */

    i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR);	/* set address */
    i2c_reg_write(I2C_ADC_1_ADDR, 0x07,         /* turn on ADDREN */
		  ADC_REG7_ADDR_ENABLE);

    i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */
		  (sample_64x ? 0 : ADC_REG2_128x) |
		  ADC_REG2_HIGH_PASS_DIS |
		  ADC_REG2_SLAVE_MODE);

    reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
    if(reg != I2C_ADC_1_ADDR)
	printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
	       reg, I2C_ADC_1_ADDR);

    iopa->pdat &= ~ADC_SDATA2_MASK;	/* release SDATA2 */
    udelay(ADC_SDATA_DELAY);		/* arbitrary settling time */

    i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR);	/* set address (do not set ADDREN yet) */

    i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */
		  (sample_64x ? 0 : ADC_REG2_128x) |
		  ADC_REG2_HIGH_PASS_DIS |
		  ADC_REG2_SLAVE_MODE);

    reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
    if(reg != I2C_ADC_2_ADDR)
	printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
	       reg, I2C_ADC_2_ADDR);

    i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */
		  ADC_REG1_FRAME_START |
		  ADC_REG1_GROUND_CAL);

    i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */
		  (sample_64x ? 0 : ADC_REG2_128x) |
		  ADC_REG2_CAL |
		  ADC_REG2_HIGH_PASS_DIS |
		  ADC_REG2_SLAVE_MODE);

    udelay(ADC_CAL_DELAY);		/* a minimum of 4100 LRCLKs */
    i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00);	/* remove GNDCAL */

    /*
     * Now that we have synchronized the ADC's, enable address
     * selection on the second ADC as well as the first.
     */
    i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);

    /*
     * Initialize the Crystal DAC
     *
     * Two of the config lines are used for I2C so we have to set them
     * to the proper initialization state without inadvertantly
     * sending an I2C "start" sequence.  When we bring the I2C back to
     * the normal state, we send an I2C "stop" sequence.
     */
    if (!quiet) {
	printf("Initializing the DAC...\n");
    }

    /*
     * Bring the I2C clock and data lines low for initialization
     */
    I2C_SCL(0);
    I2C_DELAY;
    I2C_SDA(0);
    I2C_ACTIVE;
    I2C_DELAY;

    /* Reset the DAC */
    iopa->pdat &= ~DAC_RST_MASK;
    udelay(DAC_RESET_DELAY);

    /* Release the DAC reset */
    iopa->pdat |=  DAC_RST_MASK;
    udelay(DAC_INITIAL_DELAY);

    /*
     * Cause the DAC to:
     *     Enable control port (I2C mode)
     *     Going into power down
     */
    i2c_reg_write(I2C_DAC_ADDR, 0x05,
		  DAC_REG5_I2C_MODE |
		  DAC_REG5_POWER_DOWN);

    /*
     * Cause the DAC to:
     *     Enable control port (I2C mode)
     *     Going into power down
     *         . MCLK divide by 1
     *         . MCLK divide by 2
     */
    i2c_reg_write(I2C_DAC_ADDR, 0x05,
		  DAC_REG5_I2C_MODE |
		  DAC_REG5_POWER_DOWN |
		  (mclk_divide ? DAC_REG5_MCLK_DIV : 0));

    /*
     * Cause the DAC to:
     *     Auto-mute disabled
     *         . Format 0, left  justified 24 bits
     *         . Format 3, right justified 24 bits
     *     No de-emphasis
     *         . Single speed mode
     *         . Double speed mode
     */
    i2c_reg_write(I2C_DAC_ADDR, 0x01,
		  (right_just ? DAC_REG1_RIGHT_JUST_24BIT :
				DAC_REG1_LEFT_JUST_24_BIT) |
		  DAC_REG1_DEM_NO |
		  (sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));

    sprintf(str_buf, "%d",
	    sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
    setenv("DaqDACFunctionalMode", str_buf);

    /*
     * Cause the DAC to:
     *     Enable control port (I2C mode)
     *     Remove power down
     *         . MCLK divide by 1
     *         . MCLK divide by 2
     */
    i2c_reg_write(I2C_DAC_ADDR, 0x05,
		  DAC_REG5_I2C_MODE |
		  (mclk_divide ? DAC_REG5_MCLK_DIV : 0));

    /*
     * Create a I2C stop condition:
     *     low->high on data while clock is high.
     */
    I2C_SCL(1);
    I2C_DELAY;
    I2C_SDA(1);
    I2C_DELAY;
    I2C_TRISTATE;

    if (!quiet) {
        printf("\n");
    }

#ifdef CONFIG_ETHER_LOOPBACK_TEST
    /*
     * Run the Ethernet loopback test
     */
    eth_loopback_test ();
#endif /* CONFIG_ETHER_LOOPBACK_TEST */

#ifdef CONFIG_SHOW_BOOT_PROGRESS
    /*
     * Turn off the RED fail LED now that we are up and running.
     */
    status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
#endif

    return 0;
}

#ifdef CONFIG_SHOW_BOOT_PROGRESS
/*
 * Show boot status: flash the LED if something goes wrong, indicating
 * that last thing that worked and thus, by implication, what is broken.
 *
 * This stores the last OK value in RAM so this will not work properly
 * before RAM is initialized.  Since it is being used for indicating
 * boot status (i.e. after RAM is initialized), that is OK.
 */
static void flash_code(uchar number, uchar modulo, uchar digits)
{
    int   j;

    /*
     * Recursively do upper digits.
     */
    if(digits > 1) {
	flash_code(number / modulo, modulo, digits - 1);
    }

    number = number % modulo;

    /*
     * Zero is indicated by one long flash (dash).
     */
    if(number == 0) {
	status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
	udelay(1000000);
	status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
	udelay(200000);
    } else {
	/*
	 * Non-zero is indicated by short flashes, one per count.
	 */
	for(j = 0; j < number; j++) {
	    status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
	    udelay(100000);
	    status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
	    udelay(200000);
	}
    }
    /*
     * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total
     */
    udelay(700000);
}

static int last_boot_progress;

void show_boot_progress (int status)
{
    int i,j;
    if(status > 0) {
	last_boot_progress = status;
    } else {
        /* 
	 * If a specific failure code is given, flash this code
	 * else just use the last success code we've seen
	 */
	if(status < -1)
	    last_boot_progress = -status;
	
	/* 
	 * Flash this code 5 times
	 */
	for(j=0; j<5; j++) {
	    /*
	     * Houston, we have a problem.
	     * Blink the last OK status which indicates where things failed.
	     */
	    status_led_set(STATUS_LED_RED, STATUS_LED_ON);
	    flash_code(last_boot_progress, 5, 3);

	    /* 
	     * Delay 5 seconds between repetitions, 
	     * with the fault LED blinking 
	     */
	    for(i=0; i<5; i++) {
	    	status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
	    	udelay(500000);
	    	status_led_set(STATUS_LED_RED, STATUS_LED_ON);
	    	udelay(500000);
	    }
	}

	/*
	 * Reset the board to retry initialization.
	 */
	do_reset (NULL, 0, 0, NULL);
    }
}
#endif /* CONFIG_SHOW_BOOT_PROGRESS */


/*
 * The following are used to control the SPI chip selects for the SPI command.
 */
#if (CONFIG_COMMANDS & CFG_CMD_SPI)

#define SPI_ADC_CS_MASK	0x00000800
#define SPI_DAC_CS_MASK	0x00001000

void spi_adc_chipsel(int cs)
{
    volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */);

    if(cs)
	iopd->pdat &= ~SPI_ADC_CS_MASK;	/* activate the chip select */
    else
	iopd->pdat |=  SPI_ADC_CS_MASK;	/* deactivate the chip select */
}

void spi_dac_chipsel(int cs)
{
    volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */);

    if(cs)
	iopd->pdat &= ~SPI_DAC_CS_MASK;	/* activate the chip select */
    else
	iopd->pdat |=  SPI_DAC_CS_MASK;	/* deactivate the chip select */
}

/*
 * The SPI command uses this table of functions for controlling the SPI
 * chip selects: it calls the appropriate function to control the SPI
 * chip selects.
 */
spi_chipsel_type spi_chipsel[] = {
	spi_adc_chipsel,
	spi_dac_chipsel
};
int spi_chipsel_cnt = sizeof(spi_chipsel) / sizeof(spi_chipsel[0]);

#endif /* CFG_CMD_SPI */

#endif /* CONFIG_MISC_INIT_R */

#ifdef CONFIG_POST
/*
 * Returns 1 if keys pressed to start the power-on long-running tests
 * Called from board_init_f().
 */
int post_hotkeys_pressed(void)
{
	return 0;	/* No hotkeys supported */
}

#endif