1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
/*
* NAND driver for TI DaVinci based boards.
*
* Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
*
* Based on Linux DaVinci NAND driver by TI. Original copyright follows:
*/
/*
*
* linux/drivers/mtd/nand/nand_dm355.c
*
* NAND Flash Driver
*
* Copyright (C) 2006 Texas Instruments.
*
* ----------------------------------------------------------------------------
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
* ----------------------------------------------------------------------------
*
* Overview:
* This is a device driver for the NAND flash device found on the
* DaVinci board which utilizes the Samsung k9k2g08 part.
*
Modifications:
ver. 1.0: Feb 2005, Vinod/Sudhakar
March 2008, Sandeep
-
*
*/
#include <common.h>
#ifdef CONFIG_CMD_NAND
#if !defined(CFG_NAND_LEGACY)
#include <asm/arch/hardware.h>
#include <nand.h>
#include <asm/arch/nand_defs.h>
#include <asm/arch/emif_defs.h>
#define CSL_EMIF_1_REGS (0x68000000)
#define NAND4BITECCLOAD (CSL_EMIF_1_REGS + 0xBC)
#define NAND4BITECC1 (CSL_EMIF_1_REGS + 0xC0)
#define NAND4BITECC2 (CSL_EMIF_1_REGS + 0xC4)
#define NAND4BITECC3 (CSL_EMIF_1_REGS + 0xC8)
#define NAND4BITECC4 (CSL_EMIF_1_REGS + 0xCC)
#define NANDERRADD1 (CSL_EMIF_1_REGS + 0xD0)
#define NANDERRADD2 (CSL_EMIF_1_REGS + 0xD4)
#define NANDERRVAL1 (CSL_EMIF_1_REGS + 0xD8)
#define NANDERRVAL2 (CSL_EMIF_1_REGS + 0xDC)
/* Definitions for 4-bit hardware ECC */
#define NAND_4BITECC_MASK 0x03FF03FF
#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
#define ECC_STATE_NO_ERR 0x0
#define ECC_STATE_TOO_MANY_ERRS 0x1
#define ECC_STATE_ERR_CORR_COMP_P 0x2
#define ECC_STATE_ERR_CORR_COMP_N 0x3
#define ECC_MAX_CORRECTABLE_ERRORS 0x4
extern struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE];
static void nand_dm350evm_hwcontrol(struct mtd_info *mtd, int cmd)
{
struct nand_chip *this = mtd->priv;
u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
u_int32_t IO_ADDR_R = (u_int32_t)this->IO_ADDR_R;
IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
switch (cmd) {
case NAND_CTL_SETCLE:
IO_ADDR_W |= MASK_CLE;
break;
case NAND_CTL_SETALE:
IO_ADDR_W |= MASK_ALE;
break;
}
this->IO_ADDR_W = (void *)IO_ADDR_W;
}
/*
* Instead of placing the spare data at the end of the page, the 4-bit ECC
* hardware generator requires that the page be subdivided into 4 subpages,
* each with its own spare data area. This structure defines the format of
* each of these subpages.
*/
static struct page_layout_item nand_dm355_hw10_512_layout[] = {
{.type = ITEM_TYPE_DATA,.length = 512},
{.type = ITEM_TYPE_OOB,.length = 6,},
{.type = ITEM_TYPE_ECC,.length = 10,},
{.type = 0,.length = 0,},
};
static struct nand_oobinfo nand_dm355_hw10_512_oobinfo = {
.useecc = MTD_NANDECC_AUTOPLACE,
/*
* We actually have 40 bytes of ECC per page, but the nand_oobinfo
* structure definition limits us to a maximum of 32 bytes. This
* doesn't matter, because out page_layout_item structure definition
* determines where our ECC actually goes in the flash page.
*/
.eccbytes = 32,
.eccpos = {6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54, 55,
},
.oobfree = {{0, 6}, {16, 6}, {32, 6}, {48, 6}},
};
static int nand_dm355_hw10_512_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *this = mtd->priv;
int block;
/* Get block number */
block = ((int)ofs) >> this->bbt_erase_shift;
if (this->bbt)
this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
/* Do we have a flash based bad block table ? */
if (this->options & NAND_USE_FLASH_BBT)
return nand_update_bbt(mtd, ofs);
return 0;
}
static void nand_dm355_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct nand_chip *this = mtd->priv;
emifregs emif_addr = (emifregs)CSL_EMIF_1_REGS;
u32 val;
switch (mode) {
case NAND_ECC_WRITE:
case NAND_ECC_READ:
/*
* Start a new ECC calculation for reading or writing 512 bytes
* of data.
*/
val = (emif_addr->NANDFCR & ~(3 << 4));
val |= (1 << 4) | (1 << 12);
emif_addr->NANDFCR = val;
break;
case NAND_ECC_WRITEOOB:
case NAND_ECC_READOOB:
/*
* Terminate ECC calculation by performing a dummy read of an
* ECC register. Our hardware ECC generator supports including
* the OOB in the ECC calculation, but the NAND core code
* doesn't really support that. We will only calculate the ECC
* on the data; errors in the non-ECC bytes in the OOB will not
* be detected or corrected.
*/
val = emif_addr->NANDF1ECC;
break;
case NAND_ECC_WRITESYN:
case NAND_ECC_READSYN:
/*
* Our ECC calculation has already been terminated, so no need
* to do anything here.
*/
break;
default:
break;
}
}
static u32 nand_dm355_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
{
emifregs emif_addr = (emifregs)CSL_EMIF_1_REGS;
ecc[0] = (*(dv_reg_p) NAND4BITECC1) & NAND_4BITECC_MASK;
ecc[1] = (*(dv_reg_p) NAND4BITECC2) & NAND_4BITECC_MASK;
ecc[2] = (*(dv_reg_p) NAND4BITECC3) & NAND_4BITECC_MASK;
ecc[3] = (*(dv_reg_p) NAND4BITECC4) & NAND_4BITECC_MASK;
return 0;
}
static int nand_dm355_4bit_calculate_ecc(struct mtd_info *mtd,
const u_char * dat,
u_char * ecc_code)
{
unsigned int hw_4ecc[4] = { 0, 0, 0, 0 };
unsigned int const1 = 0, const2 = 0;
unsigned char count1 = 0;
/*
* Since the NAND_HWECC_SYNDROME option is enabled, this routine is
* only called just after the data and oob have been written. The
* ECC value calculated by the hardware ECC generator is available
* for us to read.
*/
nand_dm355_4bit_readecc(mtd, hw_4ecc);
/*Convert 10 bit ecc value to 8 bit */
for (count1 = 0; count1 < 2; count1++) {
const2 = count1 * 5;
const1 = count1 * 2;
/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
ecc_code[const2] = hw_4ecc[const1] & 0xFF;
/*
* Take 2 bits as LSB bits from val1 (count1=0) or val5
* (count1=1) and 6 bits from val2 (count1=0) or val5 (count1=1)
*/
ecc_code[const2 + 1] =
((hw_4ecc[const1] >> 8) & 0x3) | ((hw_4ecc[const1] >> 14) &
0xFC);
/*
* Take 4 bits from val2 (count1=0) or val5 (count1=1) and
* 4 bits from val3 (count1=0) or val6 (count1=1)
*/
ecc_code[const2 + 2] =
((hw_4ecc[const1] >> 22) & 0xF) |
((hw_4ecc[const1 + 1] << 4) & 0xF0);
/*
* Take 6 bits from val3(count1=0) or val6 (count1=1) and
* 2 bits from val4 (count1=0) or val7 (count1=1)
*/
ecc_code[const2 + 3] =
((hw_4ecc[const1 + 1] >> 4) & 0x3F) |
((hw_4ecc[const1 + 1] >> 10) & 0xC0);
/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
ecc_code[const2 + 4] = (hw_4ecc[const1 + 1] >> 18) & 0xFF;
}
return 0;
}
static int nand_dm355_4bit_compare_ecc(struct mtd_info *mtd, u8 * read_ecc, /* read from NAND */
u8 * page_data)
{
struct nand_chip *this = mtd->priv;
struct nand_dm355_info *info = this->priv;
unsigned short ecc_10bit[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
int i;
unsigned int hw_4ecc[4] = { 0, 0, 0, 0 }, iserror = 0;
unsigned short *pspare = NULL, *pspare1 = NULL;
unsigned int numErrors, errorAddress, errorValue;
emifregs emif_addr = (emifregs)CSL_EMIF_1_REGS;
u32 val;
/*
* Check for an ECC where all bytes are 0xFF. If this is the case, we
* will assume we are looking at an erased page and we should ignore the
* ECC.
*/
for (i = 0; i < 10; i++) {
if (read_ecc[i] != 0xFF)
break;
}
if (i == 10)
return 0;
/* Convert 8 bit in to 10 bit */
pspare = (unsigned short *)&read_ecc[2];
pspare1 = (unsigned short *)&read_ecc[0];
/* Take 10 bits from 0th and 1st bytes */
ecc_10bit[0] = (*pspare1) & 0x3FF; /* 10 */
/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
ecc_10bit[1] = (((*pspare1) >> 10) & 0x3F)
| (((pspare[0]) << 6) & 0x3C0); /* 6 + 4 */
/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
ecc_10bit[2] = ((pspare[0]) >> 4) & 0x3FF; /* 10 */
/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
ecc_10bit[3] = (((pspare[0]) >> 14) & 0x3)
| ((((pspare[1])) << 2) & 0x3FC); /* 2 + 8 */
/* Take 8 bits from 5th byte and 2 bits from 6th byte */
ecc_10bit[4] = ((pspare[1]) >> 8)
| ((((pspare[2])) << 8) & 0x300); /* 8 + 2 */
/* Take 6 bits from 6th byte and 4 bits from 7th byte */
ecc_10bit[5] = (pspare[2] >> 2) & 0x3FF; /* 10 */
/* Take 4 bits from 7th byte and 6 bits from 8th byte */
ecc_10bit[6] = (((pspare[2]) >> 12) & 0xF)
| ((((pspare[3])) << 4) & 0x3F0); /* 4 + 6 */
/*Take 2 bits from 8th byte and 8 bits from 9th byte */
ecc_10bit[7] = ((pspare[3]) >> 6) & 0x3FF; /* 10 */
/*
* Write the parity values in the NAND Flash 4-bit ECC Load register.
* Write each parity value one at a time starting from 4bit_ecc_val8
* to 4bit_ecc_val1.
*/
for (i = 7; i >= 0; i--)
{
*(dv_reg_p)NAND4BITECCLOAD = ecc_10bit[i];
}
/*
* Perform a dummy read to the EMIF Revision Code and Status register.
* This is required to ensure time for syndrome calculation after
* writing the ECC values in previous step.
*/
val = emif_addr->ERCSR;
/*
* Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
* A syndrome value of 0 means no bit errors. If the syndrome is
* non-zero then go further otherwise return.
*/
nand_dm355_4bit_readecc(mtd, hw_4ecc);
if (hw_4ecc[0] == ECC_STATE_NO_ERR && hw_4ecc[1] == ECC_STATE_NO_ERR &&
hw_4ecc[2] == ECC_STATE_NO_ERR && hw_4ecc[3] == ECC_STATE_NO_ERR)
return 0;
/*
* Clear any previous address calculation by doing a dummy read of an
* error address register.
*/
val = *(dv_reg_p)NANDERRADD1;
/*
* Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
* register to 1.
*/
emif_addr->NANDFCR |= (1 << 13);
/*
* Wait for the corr_state field (bits 8 to 11)in the
* NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
*/
do {
iserror = emif_addr->NANDFSR & 0xC00;
} while (iserror);
iserror = emif_addr->NANDFSR;
iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
iserror = iserror >> 8;
if (iserror == ECC_STATE_NO_ERR)
return 0;
else if (iserror == ECC_STATE_TOO_MANY_ERRS)
{
printf("too many erros to be corrected!\n");
return -1;
}
#if 1
numErrors = ((emif_addr->NANDFSR >> 16) & 0x3) + 1;
/* Read the error address, error value and correct */
for (i = 0; i < numErrors; i++) {
if (i > 1) {
errorAddress =
((*(dv_reg_p)(NANDERRADD2) >>
(16 * (i & 1))) & 0x3FF);
errorAddress = ((512 + 7) - errorAddress);
errorValue =
((*(dv_reg_p)(NANDERRVAL2) >>
(16 * (i & 1))) & 0xFF);
} else {
errorAddress =
((*(dv_reg_p)(NANDERRADD1) >>
(16 * (i & 1))) & 0x3FF);
errorAddress = ((512 + 7) - errorAddress);
errorValue =
((*(dv_reg_p)(NANDERRVAL1) >>
(16 * (i & 1))) & 0xFF);
}
/* xor the corrupt data with error value */
if (errorAddress < 512)
page_data[errorAddress] ^= errorValue;
}
#else
numErrors = ((emif_addr->NANDFSR >> 16) & 0x3);
// bit 9:0
errorAddress = 519 - (*(dv_reg_p)NANDERRADD1 & (0x3FF));
errorValue = (*(dv_reg_p)NANDERRVAL1) & (0x3FF);
page_data[errorAddress] ^= (char)errorValue;
if(numErrors == 0)
return numErrors;
else {
// bit 25:16
errorAddress = 519 - ( (*(dv_reg_p)NANDERRADD1 & (0x3FF0000))>>16 );
errorValue = (*(dv_reg_p)NANDERRVAL1) & (0x3FF);
page_data[errorAddress] ^= (char)errorValue;
if(numErrors == 1)
return numErrors;
else {
// bit 9:0
errorAddress = 519 - (*(dv_reg_p)NANDERRADD2 & (0x3FF));
errorValue = (*(dv_reg_p)NANDERRVAL2) & (0x3FF);
page_data[errorAddress] ^= (char)errorValue;
if (numErrors == 2)
return numErrors;
else {
// bit 25:16
errorAddress = 519 - ( (*(dv_reg_p)NANDERRADD2 & (0x3FF0000))>>16 );
errorValue = (*(dv_reg_p)NANDERRVAL2) & (0x3FF);
page_data[errorAddress] ^= (char)errorValue;
}
}
}
#endif
return numErrors;
}
static int nand_dm355_4bit_correct_data(struct mtd_info *mtd, u_char * dat,
u_char * read_ecc, u_char * calc_ecc)
{
int r = 0;
/*
* dat points to 512 bytes of data. read_ecc points to the start of the
* oob area for this subpage, so the ecc values start at offset 6.
* The calc_ecc pointer is not needed since our caclulated ECC is
* already latched in the hardware ECC generator.
*/
#if 1
r = nand_dm355_4bit_compare_ecc(mtd, read_ecc + 6, dat);
#endif
return r;
}
int board_nand_init(struct nand_chip *nand)
{
nand->chip_delay = 0;
nand->eccmode = NAND_ECC_HW10_512;
nand->options = NAND_HWECC_SYNDROME | NAND_USE_FLASH_BBT;
nand->autooob = &nand_dm355_hw10_512_oobinfo;
nand->layout = nand_dm355_hw10_512_layout;
nand->calculate_ecc = nand_dm355_4bit_calculate_ecc;
nand->correct_data = nand_dm355_4bit_correct_data;
nand->enable_hwecc = nand_dm355_4bit_enable_hwecc;
nand->block_markbad = nand_dm355_hw10_512_block_markbad;
/* Set address of hardware control function */
nand->hwcontrol = nand_dm350evm_hwcontrol;
return 0;
}
#else
#error "U-Boot legacy NAND support not available for DaVinci chips"
#endif
#endif /* CFG_USE_NAND */
|