summaryrefslogtreecommitdiff
path: root/cpu/arm926ejs/da8xx/nand.c
blob: e1e56c435ec1f465233b1416315373d0ea2d0a0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
/*
 * NAND driver for TI DaVinci based boards.
 *
 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
 *
 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
 */

/*
 *
 * linux/drivers/mtd/nand/nand_davinci.c
 *
 * NAND Flash Driver
 *
 * Copyright (C) 2006 Texas Instruments.
 *
 * ----------------------------------------------------------------------------
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 * ----------------------------------------------------------------------------
 *
 *  Overview:
 *   This is a device driver for the NAND flash device found on the
 *   DaVinci board which utilizes the Samsung k9k2g08 part.
 *
 Modifications:
 ver. 1.0: Feb 2005, Vinod/Sudhakar
 -
 *
 */

#include <common.h>
#include <asm/io.h>

#ifdef CONFIG_CMD_NAND
#if !defined(CONFIG_NAND_LEGACY)

#include <nand.h>
#include <asm/arch/nand_defs.h>
#include <asm/arch/emif_defs.h>

/* Definitions for 4-bit hardware ECC */
#define NAND_STATUS_RETRY		5
#define NAND_TIMEOUT			100
#define NAND_ECC_BUSY			0xC
#define NAND_4BITECC_MASK		0x03FF03FF
#define EMIF_NANDFSR_ECC_STATE_MASK  	0x00000F00
#define ECC_STATE_NO_ERR		0x0
#define ECC_STATE_TOO_MANY_ERRS		0x1
#define ECC_STATE_ERR_CORR_COMP_P	0x2
#define ECC_STATE_ERR_CORR_COMP_N	0x3
#define ECC_MAX_CORRECTABLE_ERRORS	0x4

static u_char davinci_ecc_buf[NAND_MAX_OOBSIZE];

extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE];

static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct		nand_chip *this = mtd->priv;
	u_int32_t	IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;

	IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);

	if (ctrl & NAND_CTRL_CHANGE) {
		if ( ctrl & NAND_CLE )
			IO_ADDR_W |= MASK_CLE;
		if ( ctrl & NAND_ALE )
			IO_ADDR_W |= MASK_ALE;
		this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
	}

	if (cmd != NAND_CMD_NONE)
		writeb(cmd, this->IO_ADDR_W);
}

/* Set WP on deselect, write enable on select */
static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
{
#define GPIO_SET_DATA01	0x01c67018
#define GPIO_CLR_DATA01	0x01c6701c
#define GPIO_NAND_WP	(1 << 4)
#ifdef SONATA_BOARD_GPIOWP
	if (chip < 0) {
		REG(GPIO_CLR_DATA01) |= GPIO_NAND_WP;
	} else {
		REG(GPIO_SET_DATA01) |= GPIO_NAND_WP;
	}
#endif
}

#ifdef CONFIG_SYS_NAND_HW_ECC
#ifdef CONFIG_SYS_DAVINCI_BROKEN_ECC
/* Linux-compatible ECC uses MTD defaults. */
/* These layouts are not compatible with Linux or RBL/UBL. */
#ifdef CONFIG_SYS_NAND_LARGEPAGE
static struct nand_ecclayout davinci_nand_ecclayout = {
	.eccbytes = 12,
	.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
	.oobfree = {
		{.offset = 2, .length = 6},
		{.offset = 12, .length = 12},
		{.offset = 28, .length = 12},
		{.offset = 44, .length = 12},
		{.offset = 60, .length = 4}
	}
};
#elif defined(CONFIG_SYS_NAND_SMALLPAGE)
static struct nand_ecclayout davinci_nand_ecclayout = {
	.eccbytes = 3,
	.eccpos = {0, 1, 2},
	.oobfree = {
		{.offset = 6, .length = 2},
		{.offset = 8, .length = 8}
	}
};
#else
#error "Either CONFIG_SYS_NAND_LARGEPAGE or CONFIG_SYS_NAND_SMALLPAGE must be defined!"
#endif
#endif /* CONFIG_SYS_DAVINCI_BROKEN_ECC */

static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
{
	emifregs	emif_addr;
	int		dummy;
	int		region = CONFIG_NAND_CS;

	emif_addr = (emifregs)DAVINCI_ASYNC_EMIF_CNTRL_BASE;

	dummy = emif_addr->NANDF1ECC;
	dummy = emif_addr->NANDF2ECC;
	dummy = emif_addr->NANDF3ECC;
	dummy = emif_addr->NANDF4ECC;

	emif_addr->NANDFCR |= (1 << (8 + region - 1)) | (1 << (region - 1));
}

static u_int32_t nand_davinci_readecc(struct mtd_info *mtd, u_int32_t region)
{
	u_int32_t	ecc = 0;
	emifregs	emif_base_addr;

	emif_base_addr = (emifregs)DAVINCI_ASYNC_EMIF_CNTRL_BASE;

	if (region == 1)
		ecc = emif_base_addr->NANDF1ECC;
	else if (region == 2)
		ecc = emif_base_addr->NANDF2ECC;
	else if (region == 3)
		ecc = emif_base_addr->NANDF3ECC;
	else if (region == 4)
		ecc = emif_base_addr->NANDF4ECC;

	return(ecc);
}

static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
{
	u_int32_t		tmp;
#ifdef CONFIG_SYS_DAVINCI_BROKEN_ECC
	/*
	 * This is not how you should read ECCs on large page Davinci devices.
	 * The region parameter gets you ECCs for flash chips on different chip
	 * selects, not the 4x512 byte pages in a 2048 byte page.
	 *
	 * Preserved for backwards compatibility though.
	 */

	int			region, n;
	struct nand_chip	*this = mtd->priv;

	n = (this->ecc.size/512);

	region = CONFIG_NAND_CS;
	while (n--) {
		tmp = nand_davinci_readecc(mtd, region);
		*ecc_code++ = tmp;
		*ecc_code++ = tmp >> 16;
		*ecc_code++ = ((tmp >> 8) & 0x0f) | ((tmp >> 20) & 0xf0);
		region++;
	}
#else
	const int region = CONFIG_NAND_CS;

	tmp = nand_davinci_readecc(mtd, region);

	/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
	 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
	tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);

	/* Invert so that erased block ECC is correct */
	tmp = ~tmp;

	*ecc_code++ = tmp;
	*ecc_code++ = tmp >>  8;
	*ecc_code++ = tmp >> 16;
#endif /* CONFIG_SYS_DAVINCI_BROKEN_ECC */
	return(0);
}

#ifdef CONFIG_SYS_DAVINCI_BROKEN_ECC
static void nand_davinci_gen_true_ecc(u_int8_t *ecc_buf)
{
	u_int32_t	tmp = ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xf0) << 20) | ((ecc_buf[2] & 0x0f) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~( P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

static int nand_davinci_compare_ecc(u_int8_t *ecc_nand, u_int8_t *ecc_calc, u_int8_t *page_data)
{
	u_int32_t	i;
	u_int8_t	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u_int8_t	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u_int8_t	ecc_bit[24];
	u_int8_t	ecc_sum = 0;
	u_int8_t	find_bit = 0;
	u_int32_t	find_byte = 0;
	int		is_ecc_ff;

	is_ecc_ff = ((*ecc_nand == 0xff) && (*(ecc_nand + 1) == 0xff) && (*(ecc_nand + 2) == 0xff));

	nand_davinci_gen_true_ecc(ecc_nand);
	nand_davinci_gen_true_ecc(ecc_calc);

	for (i = 0; i <= 2; i++) {
		*(ecc_nand + i) = ~(*(ecc_nand + i));
		*(ecc_calc + i) = ~(*(ecc_calc + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i] = *ecc_nand % 2;
		*ecc_nand = *ecc_nand / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i] = *(ecc_nand + 1) % 2;
		*(ecc_nand + 1) = *(ecc_nand + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i] = *(ecc_nand + 2) % 2;
		*(ecc_nand + 2) = *(ecc_nand + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i] = *ecc_calc % 2;
		*ecc_calc = *ecc_calc / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i] = *(ecc_calc + 1) % 2;
		*(ecc_calc + 1) = *(ecc_calc + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i] = *(ecc_calc + 2) % 2;
		*(ecc_calc + 2) = *(ecc_calc + 2) / 2;
	}

	for (i = 0; i< 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
		case 0:
			/* Not reached because this function is not called if
			   ECC values are equal */
			return 0;
		case 1:
			/* Uncorrectable error */
			MTDDEBUG (MTD_DEBUG_LEVEL0,
			          "ECC UNCORRECTED_ERROR 1\n");
			return(-1);
		case 12:
			/* Correctable error */
			find_byte = (ecc_bit[23] << 8) +
				(ecc_bit[21] << 7) +
				(ecc_bit[19] << 6) +
				(ecc_bit[17] << 5) +
				(ecc_bit[15] << 4) +
				(ecc_bit[13] << 3) +
				(ecc_bit[11] << 2) +
				(ecc_bit[9]  << 1) +
				ecc_bit[7];

			find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

			MTDDEBUG (MTD_DEBUG_LEVEL0, "Correcting single bit ECC "
			          "error at offset: %d, bit: %d\n",
			          find_byte, find_bit);

			page_data[find_byte] ^= (1 << find_bit);

			return(0);
		default:
			if (is_ecc_ff) {
				if (ecc_calc[0] == 0 && ecc_calc[1] == 0 && ecc_calc[2] == 0)
					return(0);
			}
			MTDDEBUG (MTD_DEBUG_LEVEL0,
			          "UNCORRECTED_ERROR default\n");
			return(-1);
	}
}
#endif /* CONFIG_SYS_DAVINCI_BROKEN_ECC */

static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
{
	struct nand_chip *this = mtd->priv;
#ifdef CONFIG_SYS_DAVINCI_BROKEN_ECC
	int			block_count = 0, i, rc;

	block_count = (this->ecc.size/512);
	for (i = 0; i < block_count; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			rc = nand_davinci_compare_ecc(read_ecc, calc_ecc, dat);
			if (rc < 0) {
				return(rc);
			}
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat += 512;
	}
#else
	u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
					  (read_ecc[2] << 16);
	u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
					  (calc_ecc[2] << 16);
	u_int32_t diff = ecc_calc ^ ecc_nand;

	if (diff) {
		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
			/* Correctable error */
			if ((diff >> (12 + 3)) < this->ecc.size) {
				uint8_t find_bit = 1 << ((diff >> 12) & 7);
				uint32_t find_byte = diff >> (12 + 3);

				dat[find_byte] ^= find_bit;
				MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
					 "bit ECC error at offset: %d, bit: "
					 "%d\n", find_byte, find_bit);
				return 1;
			} else {
				return -1;
			}
		} else if (!(diff & (diff - 1))) {
			/* Single bit ECC error in the ECC itself,
			   nothing to fix */
			MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
				 "ECC.\n");
			return 1;
		} else {
			/* Uncorrectable error */
			MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
			return -1;
		}
	}
#endif /* CONFIG_SYS_DAVINCI_BROKEN_ECC */
	return(0);
}
#endif /* CONFIG_SYS_NAND_HW_ECC */

#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC
/* flash bbt decriptors */
static uint8_t nand_davinci_bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t nand_davinci_mirror_pattern[] = { '1', 't', 'b', 'B' };

static struct nand_bbt_descr nand_davinci_bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
	| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs = 2,
	.len = 4,
	.veroffs = 16,
	.maxblocks = 4,
	.pattern = nand_davinci_bbt_pattern
};

static struct nand_bbt_descr nand_davinci_bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
	| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs = 2,
	.len = 4,
	.veroffs = 16,
	.maxblocks = 4,
	.pattern = nand_davinci_mirror_pattern
};

static struct nand_ecclayout nand_davinci_4bit_layout = {
	.eccbytes = 10,
	.eccpos = {6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
		   22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
		   38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
		   54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
		},
	.oobfree = {
			{.offset = 0, .length = 6},
			{.offset = 16, .length = 6},
			{.offset = 32, .length = 6},
			{.offset = 48, .length = 6},
		}
};

static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
{
	u32 val, region;
	emifregs emif_addr;
	emif_addr = (emifregs)DAVINCI_ASYNC_EMIF_CNTRL_BASE;
	region = CONFIG_NAND_CS - 1;

	switch (mode) {
	case NAND_ECC_WRITE:
	case NAND_ECC_READ:
		/*
		 * Start a new ECC calculation for reading or writing 512 bytes
		 *  of data.
		 */
		val = (emif_addr->NANDFCR & ~(3 << 4));
		val |= (region << 4) | (1 << region) | (1 << 12);
		emif_addr->NANDFCR = val;
		break;
	case NAND_ECC_READSYN:
		val = emif_addr->NAND4BITECC1;
		break;
	default:
		break;
	}
}

static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
{
	emifregs emif_addr;

	emif_addr = (emifregs)DAVINCI_ASYNC_EMIF_CNTRL_BASE;

	ecc[0] = emif_addr->NAND4BITECC1 & NAND_4BITECC_MASK;
	ecc[1] = emif_addr->NAND4BITECC2 & NAND_4BITECC_MASK;
	ecc[2] = emif_addr->NAND4BITECC3 & NAND_4BITECC_MASK;
	ecc[3] = emif_addr->NAND4BITECC4 & NAND_4BITECC_MASK;

	return 0;
}

static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
					   const uint8_t *dat,
					   uint8_t *ecc_code)
{
	unsigned int hw_4ecc[4] = { 0, 0, 0, 0 };
	unsigned int const1 = 0, const2 = 0;
	unsigned char count1 = 0;

	/*
	 * Since the NAND_HWECC_SYNDROME option is enabled, this routine is
	 * only called just after the data and oob have been written.  The
	 * ECC value calculated by the hardware ECC generator is available
	 * for us to read.
	 */
	nand_davinci_4bit_readecc(mtd, hw_4ecc);

	/*Convert 10 bit ecc value to 8 bit */
	for (count1 = 0; count1 < 2; count1++) {
		const2 = count1 * 5;
		const1 = count1 * 2;

		/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
		ecc_code[const2] = hw_4ecc[const1] & 0xFF;

		/*
		 * Take 2 bits as LSB bits from val1 (count1=0) or val5
		 * (count1=1) and 6 bits from val2 (count1=0) or val5 (count1=1)
		 */
		ecc_code[const2 + 1] =
		    ((hw_4ecc[const1] >> 8) & 0x3) | ((hw_4ecc[const1] >> 14) &
						      0xFC);

		/*
		 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
		 * 4 bits from val3 (count1=0) or val6 (count1=1)
		 */
		ecc_code[const2 + 2] =
		    ((hw_4ecc[const1] >> 22) & 0xF) |
		    ((hw_4ecc[const1 + 1] << 4) & 0xF0);

		/*
		 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
		 * 2 bits from val4 (count1=0) or  val7 (count1=1)
		 */
		ecc_code[const2 + 3] =
		    ((hw_4ecc[const1 + 1] >> 4) & 0x3F) |
		    ((hw_4ecc[const1 + 1] >> 10) & 0xC0);

		/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
		ecc_code[const2 + 4] = (hw_4ecc[const1 + 1] >> 18) & 0xFF;
	}
	return 0;
}

static int nand_davinci_4bit_compare_ecc(struct mtd_info *mtd,
					 uint8_t *read_ecc, /* read from NAND */
					 uint8_t *page_data)
{
	struct nand_chip *this = mtd->priv;
	unsigned short ecc_10bit[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
	int i;
	unsigned int hw_4ecc[4] = { 0, 0, 0, 0 }, iserror = 0;
	unsigned short *pspare = NULL, *pspare1 = NULL;
	unsigned int numErrors, errorAddress, errorValue;
	emifregs emif_addr;
	u32 val;

	emif_addr = (emifregs)DAVINCI_ASYNC_EMIF_CNTRL_BASE;

	/*
	 * Check for an ECC where all bytes are 0xFF.  If this is the case, we
	 * will assume we are looking at an erased page and we should ignore the
	 * ECC.
	 */
	for (i = 0; i < 10; i++) {
		if (read_ecc[i] != 0xFF)
			break;
	}
	if (i == 10)
		return 0;

	/* Convert 8 bit in to 10 bit */
	pspare = (unsigned short *)&read_ecc[2];
	pspare1 = (unsigned short *)&read_ecc[0];
	/* Take 10 bits from 0th and 1st bytes */
	ecc_10bit[0] = (*pspare1) & 0x3FF;	/* 10 */
	/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
	ecc_10bit[1] = (((*pspare1) >> 10) & 0x3F)
	    | (((pspare[0]) << 6) & 0x3C0);	/* 6 + 4 */
	/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
	ecc_10bit[2] = ((pspare[0]) >> 4) & 0x3FF;	/* 10 */
	/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
	ecc_10bit[3] = (((pspare[0]) >> 14) & 0x3)
	    | ((((pspare[1])) << 2) & 0x3FC);	/* 2 + 8 */
	/* Take 8 bits from 5th byte and 2 bits from 6th byte */
	ecc_10bit[4] = ((pspare[1]) >> 8)
	    | ((((pspare[2])) << 8) & 0x300);	/* 8 + 2 */
	/* Take 6 bits from 6th byte and 4 bits from 7th byte */
	ecc_10bit[5] = (pspare[2] >> 2) & 0x3FF;	/* 10 */
	/* Take 4 bits from 7th byte and 6 bits from 8th byte */
	ecc_10bit[6] = (((pspare[2]) >> 12) & 0xF)
	    | ((((pspare[3])) << 4) & 0x3F0);	/* 4 + 6 */
	/*Take 2 bits from 8th byte and 8 bits from 9th byte */
	ecc_10bit[7] = ((pspare[3]) >> 6) & 0x3FF;	/* 10 */

	/*
	 * Write the parity values in the NAND Flash 4-bit ECC Load register.
	 * Write each parity value one at a time starting from 4bit_ecc_val8
	 * to 4bit_ecc_val1.
	 */
	for (i = 7; i >= 0; i--)
		emif_addr->NAND4BITECCLOAD = ecc_10bit[i];

	/*
	 * Perform a dummy read to the EMIF Revision Code and Status register.
	 * This is required to ensure time for syndrome calculation after
	 * writing the ECC values in previous step.
	 */

	val = emif_addr->NANDFSR;

	/*
	 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
	 * A syndrome value of 0 means no bit errors. If the syndrome is
	 * non-zero then go further otherwise return.
	 */
	nand_davinci_4bit_readecc(mtd, hw_4ecc);

	if (hw_4ecc[0] == ECC_STATE_NO_ERR && hw_4ecc[1] == ECC_STATE_NO_ERR &&
	    hw_4ecc[2] == ECC_STATE_NO_ERR && hw_4ecc[3] == ECC_STATE_NO_ERR)
		return 0;

	/*
	 * Clear any previous address calculation by doing a dummy read of an
	 * error address register.
	 */
	val = emif_addr->NANDERRADD1;

	/*
	 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
	 * register to 1.
	 */
	emif_addr->NANDFCR |= 1 << 13;

	/*
	 * Wait for the corr_state field (bits 8 to 11)in the
	 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
	 */

	do {
		iserror = emif_addr->NANDFSR;
		iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
		iserror = iserror >> 8;
	} while ((ECC_STATE_NO_ERR != iserror) &&
		 (ECC_STATE_TOO_MANY_ERRS != iserror) &&
		 (ECC_STATE_ERR_CORR_COMP_P != iserror) &&
		 (ECC_STATE_ERR_CORR_COMP_N != iserror));


	/*
	 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
	 * corrected (five or more errors).  The number of errors
	 * calculated (err_num field) differs from the number of errors
	 * searched.  ECC_STATE_ERR_CORR_COMP_P (0x2) means error
	 * correction complete (errors on bit 8 or 9).
	 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
	 * complete (error exists).
	 */

	udelay (this->chip_delay);
	udelay (this->chip_delay);
	udelay (this->chip_delay);
	udelay (this->chip_delay);

	if (iserror == ECC_STATE_NO_ERR || iserror == 5)
		return 0;
	else if (iserror == ECC_STATE_TOO_MANY_ERRS)
		return -1;

	numErrors = ((emif_addr->NANDFSR >> 16) & 0x3) + 1;

	/* Read the error address, error value and correct */
	for (i = 0; i < numErrors; i++) {
		if (i > 1) {
			errorAddress =
			    ((emif_addr->NANDERRADD2 >>
			      (16 * (i & 1))) & 0x3FF);
			errorAddress = ((512 + 7) - errorAddress);
			errorValue =
			    ((emif_addr->NANDERRVAL2 >>
			      (16 * (i & 1))) & 0xFF);
		} else {
			errorAddress =
			    ((emif_addr->NANDERRADD1 >>
			      (16 * (i & 1))) & 0x3FF);
			errorAddress = ((512 + 7) - errorAddress);
			errorValue =
			    ((emif_addr->NANDERRVAL1 >>
			      (16 * (i & 1))) & 0xFF);
		}
		/* xor the corrupt data with error value */
		if (errorAddress < 512)
			page_data[errorAddress] ^= errorValue;
	}

	return numErrors;
}

static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
					  uint8_t *read_ecc, uint8_t *calc_ecc)
{
	int r;

	/*
	 * dat points to 512 bytes of data.  read_ecc points to the start of the
	 * ECC code exactly...  The calc_ecc pointer is not needed since
	 * our caclulated ECC is already latched in the hardware ECC generator.
	 */
	r = nand_davinci_4bit_compare_ecc(mtd, read_ecc, dat);

	return r;
}

static int
davinci_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *nand,
				   uint8_t *buf, int page)
{
	int i, eccsize = nand->ecc.size;
	int eccbytes = nand->ecc.bytes;
	int eccsteps = nand->ecc.steps;
	uint8_t *p = buf;
	uint8_t *oob = nand->oob_poi;

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		nand->ecc.hwctl(mtd, NAND_ECC_READ);
		nand->read_buf(mtd, p, eccsize);

		nand->ecc.hwctl(mtd, NAND_ECC_READSYN);

		if (nand->ecc.prepad) {
			nand->read_buf(mtd, oob, nand->ecc.prepad);
			oob += nand->ecc.prepad;
		}

		nand->read_buf(mtd, oob, eccbytes);
		stat = nand->ecc.correct(mtd, p, oob, NULL);

		if (stat == -1)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;

		oob += eccbytes;

		if (nand->ecc.postpad) {
			nand->read_buf(mtd, oob, nand->ecc.postpad);
			oob += nand->ecc.postpad;
		}
	}

	/* Calculate remaining oob bytes */
	i = mtd->oobsize - (oob - nand->oob_poi);
	if (i)
		nand->read_buf(mtd, oob, i);

	return 0;
}

static void davinci_write_page_syndrome(struct mtd_info *mtd,
				    struct nand_chip *nand, const uint8_t *buf)
{
	int i, eccsize = nand->ecc.size;
	int eccbytes = nand->ecc.bytes;
	int eccsteps = nand->ecc.steps;
	const uint8_t *p = buf;
	uint8_t *oob = nand->oob_poi;

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {

		nand->ecc.hwctl(mtd, NAND_ECC_WRITE);
		nand->write_buf(mtd, p, eccsize);

		/* Calculate ECC without prepad */
		nand->ecc.calculate(mtd, p, oob + nand->ecc.prepad);

		if (nand->ecc.prepad) {
			nand->write_buf(mtd, oob, nand->ecc.prepad);
			oob += nand->ecc.prepad;
		}
		nand->write_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (nand->ecc.postpad) {
			nand->write_buf(mtd, oob, nand->ecc.postpad);
			oob += nand->ecc.postpad;
		}
	}

	/* Calculate remaining oob bytes */
	i = mtd->oobsize - (oob - nand->oob_poi);
	if (i)
		nand->write_buf(mtd, oob, i);
}

static int
davinci_std_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
				   uint8_t *buf, int page)
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;

	chip->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & chip->pagemask);

	chip->read_buf(mtd, oob, mtd->oobsize);

	chip->cmdfunc (mtd, NAND_CMD_READ0, 0x0, page & chip->pagemask);


	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);

		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);

		if (chip->ecc.prepad)
			oob += chip->ecc.prepad;

		stat = chip->ecc.correct(mtd, p, oob, NULL);

		if (stat == -1)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;

		oob += eccbytes;

		if (chip->ecc.postpad) {
			oob += chip->ecc.postpad;
		}
	}

	/* Calculate remaining oob bytes */
	i = mtd->oobsize - (oob - chip->oob_poi);
	if (i)
		chip->read_buf(mtd, oob, i);

	return 0;
}

static void davinci_std_write_page_syndrome(struct mtd_info *mtd,
				    struct nand_chip *chip, const uint8_t *buf)
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int offset = 0;
	const uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {

		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
		chip->write_buf(mtd, p, eccsize);

		/* Calculate ECC without prepad */
		chip->ecc.calculate(mtd, p, oob + chip->ecc.prepad);

		if (chip->ecc.prepad) {
			offset = ((chip->ecc.steps - eccsteps) * chunk);
			memcpy(&davinci_ecc_buf[offset], oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}


		offset = (((chip->ecc.steps - eccsteps) * chunk) + chip->ecc.prepad);
		memcpy(&davinci_ecc_buf[offset], oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			offset = (((chip->ecc.steps - eccsteps) * chunk) +
				  (chip->ecc.prepad + eccbytes));
			memcpy(&davinci_ecc_buf[offset], oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	/* Write the sparebytes into the page once
	 * all eccsteps have been covered
	 */
	for (i = 0; i < mtd->oobsize; i++)
		writeb(davinci_ecc_buf[i], chip->IO_ADDR_W);

	/* Calculate remaining oob bytes */
	i = mtd->oobsize - (oob - chip->oob_poi);
	if (i)
		chip->write_buf(mtd, oob, i);
}

static int davinci_std_write_oob_syndrome(struct mtd_info *mtd,
				   struct nand_chip *chip, int page)
{
	int pos, status = 0;
	const uint8_t *bufpoi = chip->oob_poi;

	pos = mtd->writesize;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);

	chip->write_buf(mtd, bufpoi, mtd->oobsize);

	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -1 : 0;
}

static int davinci_std_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
				  int page, int sndcmd)
{
	uint8_t *buf = chip->oob_poi;
	uint8_t *bufpoi = buf;

	chip->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & chip->pagemask);

	chip->read_buf(mtd, bufpoi, mtd->oobsize);

	return 1;
}

#endif

static int nand_davinci_dev_ready(struct mtd_info *mtd)
{
	emifregs	emif_addr;

	emif_addr = (emifregs)DAVINCI_ASYNC_EMIF_CNTRL_BASE;

	return(emif_addr->NANDFSR & 0x1);
}

static int nand_davinci_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
{
	while(!nand_davinci_dev_ready(mtd)) {;}
	*NAND_CE0CLE = NAND_STATUS;
	return(*NAND_CE0DATA);
}

static void nand_flash_init(void)
{
	u_int32_t	acfg1 = 0x3ffffffc;
	u_int32_t	acfg2 = 0x3ffffffc;
	u_int32_t	acfg3 = 0x3ffffffc;
	u_int32_t	acfg4 = 0x3ffffffc;
	emifregs	emif_regs;

	/*------------------------------------------------------------------*
	 *  NAND FLASH CHIP TIMEOUT @ 459 MHz                               *
	 *                                                                  *
	 *  AEMIF.CLK freq   = PLL1/6 = 459/6 = 76.5 MHz                    *
	 *  AEMIF.CLK period = 1/76.5 MHz = 13.1 ns                         *
	 *                                                                  *
	 *------------------------------------------------------------------*/
	 acfg1 = 0
		| (0 << 31 )	/* selectStrobe */
		| (0 << 30 )	/* extWait */
		| (1 << 26 )	/* writeSetup	10 ns */
		| (3 << 20 )	/* writeStrobe	40 ns */
		| (1 << 17 )	/* writeHold	10 ns */
		| (1 << 13 )	/* readSetup	10 ns */
		| (5 << 7 )	/* readStrobe	60 ns */
		| (1 << 4 )	/* readHold	10 ns */
		| (3 << 2 )	/* turnAround	?? ns */
		| (0 << 0 )	/* asyncSize	8-bit bus */
		;

	emif_regs = (emifregs)DAVINCI_ASYNC_EMIF_CNTRL_BASE;

	emif_regs->AWCCR |= 0x10000000;
	emif_regs->AB1CR = acfg1;	/* 0x08244128 */;
	emif_regs->AB2CR = acfg2;
	emif_regs->AB3CR = acfg3;
	emif_regs->AB4CR = acfg4;
	emif_regs->NANDFCR = 0x00000202;
}

int board_nand_init(struct nand_chip *nand)
{
	nand->IO_ADDR_R   = (void  __iomem *)NAND_CE0DATA;
	nand->IO_ADDR_W   = (void  __iomem *)NAND_CE0DATA;
	nand->chip_delay  = 0;
	nand->select_chip = nand_davinci_select_chip;
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
	nand->options	  = NAND_USE_FLASH_BBT;
#endif
#ifdef CONFIG_SYS_NAND_HW_ECC
	nand->ecc.mode = NAND_ECC_HW;
#ifdef CONFIG_SYS_DAVINCI_BROKEN_ECC
	nand->ecc.layout  = &davinci_nand_ecclayout;
#ifdef CONFIG_SYS_NAND_LARGEPAGE
	nand->ecc.size = 2048;
	nand->ecc.bytes = 12;
#elif defined(CONFIG_SYS_NAND_SMALLPAGE)
	nand->ecc.size = 512;
	nand->ecc.bytes = 3;
#else
#error "Either CONFIG_SYS_NAND_LARGEPAGE or CONFIG_SYS_NAND_SMALLPAGE must be defined!"
#endif
#else
	nand->ecc.size = 512;
	nand->ecc.bytes = 3;
#endif /* CONFIG_SYS_DAVINCI_BROKEN_ECC */
	nand->ecc.calculate = nand_davinci_calculate_ecc;
	nand->ecc.correct  = nand_davinci_correct_data;
	nand->ecc.hwctl  = nand_davinci_enable_hwecc;
#else
	nand->ecc.mode = NAND_ECC_SOFT;
#endif /* CONFIG_SYS_NAND_HW_ECC */

#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC
	nand->ecc.mode = NAND_ECC_HW_SYNDROME;
	nand->ecc.size = 512;
	nand->ecc.bytes = 10;
	nand->ecc.prepad = 6;
	nand->bbt_td = &nand_davinci_bbt_main_descr;
	nand->bbt_md = &nand_davinci_bbt_mirror_descr;
	nand->ecc.layout = &nand_davinci_4bit_layout;
	nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
	nand->ecc.correct = nand_davinci_4bit_correct_data;
	nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
#ifdef CFG_DAVINCI_STD_NAND_LAYOUT
	nand->options |= NAND_USE_FLASH_BBT;
	nand->ecc.read_page = davinci_std_read_page_syndrome;
	nand->ecc.write_page = davinci_std_write_page_syndrome;
	nand->ecc.read_oob = davinci_std_read_oob_syndrome;
	nand->ecc.write_oob = davinci_std_write_oob_syndrome;
#else
	nand->ecc.read_page = davinci_read_page_syndrome;
	nand->ecc.write_page = davinci_write_page_syndrome;
	nand->options |= NAND_USE_FLASH_BBT | NAND_USE_DATA_ADJACENT_OOB;
#endif
#endif
	/* Set address of hardware control function */
	nand->cmd_ctrl = nand_davinci_hwcontrol;

	nand->dev_ready = nand_davinci_dev_ready;
	nand->waitfunc = nand_davinci_waitfunc;

	nand_flash_init();

	return(0);
}

#else
#error "U-Boot legacy NAND support not available for DaVinci chips"
#endif
#endif	/* CONFIG_CMD_NAND */