1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
/*
* Copyright 2004 Freescale Semiconductor.
* (C) Copyright 2003 Motorola Inc.
* Xianghua Xiao (X.Xiao@motorola.com)
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <spd.h>
#include <asm/mmu.h>
#ifdef CONFIG_SPD_EEPROM
#define ns2clk(ns) ((ns) / (2000000000 /get_bus_freq(0) + 1) + 1)
long int spd_sdram(void) {
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile ccsr_ddr_t *ddr = &immap->im_ddr;
volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm;
spd_eeprom_t spd;
unsigned int memsize,tmp,tmp1,tmp2;
unsigned char caslat;
i2c_read (SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));
if ( spd.nrows > 2 ) {
printf("DDR:Only two chip selects are supported on ADS.\n");
return 0;
}
if ( spd.nrow_addr < 12 || spd.nrow_addr > 14 || spd.ncol_addr < 8 || spd.ncol_addr > 11) {
printf("DDR:Row or Col number unsupported.\n");
return 0;
}
ddr->cs0_bnds = ((spd.row_dens>>2) - 1);
ddr->cs0_config = ( 1<<31 | (spd.nrow_addr-12)<<8 | (spd.ncol_addr-8) );
debug ("\n");
debug ("cs0_bnds = 0x%08x\n",ddr->cs0_bnds);
debug ("cs0_config = 0x%08x\n",ddr->cs0_config);
if ( spd.nrows == 2 ) {
ddr->cs1_bnds = ((spd.row_dens<<14) | ((spd.row_dens>>1) - 1));
ddr->cs1_config = ( 1<<31 | (spd.nrow_addr-12)<<8 | (spd.ncol_addr-8) );
debug ("cs1_bnds = 0x%08x\n",ddr->cs1_bnds);
debug ("cs1_config = 0x%08x\n",ddr->cs1_config);
}
memsize = spd.nrows * (4 * spd.row_dens);
if( spd.mem_type != 0x07 ) {
printf("No DDR module found!\n");
return 0;
}
switch (memsize) {
case 16:
tmp = 7; /* TLB size */
tmp1 = 1; /* TLB entry number */
tmp2 = 23; /* Local Access Window size */
break;
case 32:
tmp = 7;
tmp1 = 2;
tmp2 = 24;
break;
case 64:
tmp = 8;
tmp1 = 1;
tmp2 = 25;
break;
case 128:
tmp = 8;
tmp1 = 2;
tmp2 = 26;
break;
case 256:
tmp = 9;
tmp1 = 1;
tmp2 = 27;
break;
case 512:
tmp = 9;
tmp1 = 2;
tmp2 = 28;
break;
case 1024:
tmp = 10;
tmp1 = 1;
tmp2 = 29;
break;
default:
printf ("DDR:we only added support 16M,32M,64M,128M,256M,512M and 1G DDR I.\n");
return 0;
break;
}
/* configure DDR TLB to TLB1 Entry 4,5 */
mtspr(MAS0, TLB1_MAS0(1,4,0));
mtspr(MAS1, TLB1_MAS1(1,1,0,0,tmp));
mtspr(MAS2, TLB1_MAS2(((CFG_DDR_SDRAM_BASE>>12) & 0xfffff),0,0,0,0,0,0,0,0));
mtspr(MAS3, TLB1_MAS3(((CFG_DDR_SDRAM_BASE>>12) & 0xfffff),0,0,0,0,0,1,0,1,0,1));
asm volatile("isync;msync;tlbwe;isync");
debug ("DDR:MAS0=0x%08x\n",TLB1_MAS0(1,4,0));
debug ("DDR:MAS1=0x%08x\n",TLB1_MAS1(1,1,0,0,tmp));
debug ("DDR:MAS2=0x%08x\n",TLB1_MAS2(((CFG_DDR_SDRAM_BASE>>12) \
& 0xfffff),0,0,0,0,0,0,0,0));
debug ("DDR:MAS3=0x%08x\n",TLB1_MAS3(((CFG_DDR_SDRAM_BASE>>12) \
& 0xfffff),0,0,0,0,0,1,0,1,0,1));
if(tmp1 == 2) {
mtspr(MAS0, TLB1_MAS0(1,5,0));
mtspr(MAS1, TLB1_MAS1(1,1,0,0,tmp));
mtspr(MAS2, TLB1_MAS2((((CFG_DDR_SDRAM_BASE+(memsize*1024*1024)/2)>>12) \
& 0xfffff),0,0,0,0,0,0,0,0));
mtspr(MAS3, TLB1_MAS3((((CFG_DDR_SDRAM_BASE+(memsize*1024*1024)/2)>>12) \
& 0xfffff),0,0,0,0,0,1,0,1,0,1));
asm volatile("isync;msync;tlbwe;isync");
debug ("DDR:MAS0=0x%08x\n",TLB1_MAS0(1,5,0));
debug ("DDR:MAS1=0x%08x\n",TLB1_MAS1(1,1,0,0,tmp));
debug ("DDR:MAS2=0x%08x\n",TLB1_MAS2((((CFG_DDR_SDRAM_BASE \
+(memsize*1024*1024)/2)>>12) & 0xfffff),0,0,0,0,0,0,0,0));
debug ("DDR:MAS3=0x%08x\n",TLB1_MAS3((((CFG_DDR_SDRAM_BASE \
+(memsize*1024*1024)/2)>>12) & 0xfffff),0,0,0,0,0,1,0,1,0,1));
}
#if defined(CONFIG_RAM_AS_FLASH)
ecm->lawbar2 = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
ecm->lawar2 = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & tmp2));
debug ("DDR:LAWBAR2=0x%08x\n",ecm->lawbar2);
debug ("DDR:LARAR2=0x%08x\n",ecm->lawar2);
#else
ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
ecm->lawar1 = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & tmp2));
debug ("DDR:LAWBAR1=0x%08x\n",ecm->lawbar1);
debug ("DDR:LARAR1=0x%08x\n",ecm->lawar1);
#endif
tmp = 20000/(((spd.clk_cycle & 0xF0) >> 4) * 10 + (spd.clk_cycle & 0x0f));
debug ("DDR:Module maximum data rate is: %dMhz\n",tmp);
/* find the largest CAS */
if(spd.cas_lat & 0x40) {
caslat = 7;
} else if (spd.cas_lat & 0x20) {
caslat = 6;
} else if (spd.cas_lat & 0x10) {
caslat = 5;
} else if (spd.cas_lat & 0x08) {
caslat = 4;
} else if (spd.cas_lat & 0x04) {
caslat = 3;
} else if (spd.cas_lat & 0x02) {
caslat = 2;
} else if (spd.cas_lat & 0x01) {
caslat = 1;
} else {
printf("DDR:no valid CAS Latency information.\n");
return 0;
}
tmp1 = get_bus_freq(0)/1000000;
if(tmp1<230 && tmp1>=90 && tmp>=230) {
/* 90~230 range, treated as DDR 200 */
if(spd.clk_cycle3 == 0xa0) caslat -= 2;
else if(spd.clk_cycle2 == 0xa0) caslat--;
} else if(tmp1<280 && tmp1>=230 && tmp>=280) {
/* 230-280 range, treated as DDR 266 */
if(spd.clk_cycle3 == 0x75) caslat -= 2;
else if(spd.clk_cycle2 == 0x75) caslat--;
} else if(tmp1<350 && tmp1>=280 && tmp>=350) {
/* 280~350 range, treated as DDR 333 */
if(spd.clk_cycle3 == 0x60) caslat -= 2;
else if(spd.clk_cycle2 == 0x60) caslat--;
} else if(tmp1<90 || tmp1 >=350) { /* DDR rate out-of-range */
printf("DDR:platform frequency is not fit for DDR rate\n");
return 0;
}
/* note: caslat must also be programmed into ddr->sdram_mode
register */
/* note: WRREC(Twr) and WRTORD(Twtr) are not in SPD,use
conservative value here */
ddr->timing_cfg_1 = (((ns2clk(spd.trp/4) & 0x07) << 28 ) | \
((ns2clk(spd.tras) & 0x0f ) << 24 ) | \
((ns2clk(spd.trcd/4) & 0x07) << 20 ) | \
((caslat & 0x07)<< 16 ) | \
(((ns2clk(spd.sset[6]) - 8) & 0x0f) << 12 ) | \
( 0x300 ) | \
((ns2clk(spd.trrd/4) & 0x07) << 4) | 1);
debug ("DDR:timing_cfg_1=0x%08x\n",ddr->timing_cfg_1);
ddr->timing_cfg_2 = 0x00000800;
debug ("DDR:timing_cfg_2=0x%08x\n",ddr->timing_cfg_2);
/* only DDR I is supported, DDR I and II have different mode-register-set definition */
/* burst length is always 4 */
switch(caslat) {
case 2:
ddr->sdram_mode = 0x52; /* 1.5 */
break;
case 3:
ddr->sdram_mode = 0x22; /* 2.0 */
break;
case 4:
ddr->sdram_mode = 0x62; /* 2.5 */
break;
case 5:
ddr->sdram_mode = 0x32; /* 3.0 */
break;
default:
printf("DDR:only CAS Latency 1.5,2.0,2.5,3.0 is supported.\n");
return 0;
}
debug ("DDR:sdram_mode=0x%08x\n",ddr->sdram_mode);
switch(spd.refresh) {
case 0x00:
case 0x80:
tmp = ns2clk(15625);
break;
case 0x01:
case 0x81:
tmp = ns2clk(3900);
break;
case 0x02:
case 0x82:
tmp = ns2clk(7800);
break;
case 0x03:
case 0x83:
tmp = ns2clk(31300);
break;
case 0x04:
case 0x84:
tmp = ns2clk(62500);
break;
case 0x05:
case 0x85:
tmp = ns2clk(125000);
break;
default:
tmp = 0x512;
break;
}
/* set BSTOPRE to 0x100 for page mode, if auto-charge is used, set BSTOPRE = 0 */
ddr->sdram_interval = ((tmp & 0x3fff) << 16) | 0x100;
debug ("DDR:sdram_interval=0x%08x\n",ddr->sdram_interval);
/* is this an ECC DDR chip? */
#if defined(CONFIG_DDR_ECC)
if(spd.config == 0x02) {
ddr->err_disable = 0x0000000d;
ddr->err_sbe = 0x00ff0000;
}
debug ("DDR:err_disable=0x%08x\n",ddr->err_disable);
debug ("DDR:err_sbe=0x%08x\n",ddr->err_sbe);
#endif
asm("sync;isync;msync");
udelay(500);
#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
/* Setup the clock control (8555 and later)
* SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
* SDRAM_CLK_CNTL[5-7] = Clock Adjust == 3 (3/4 cycle late)
*/
ddr->sdram_clk_cntl = 0x83000000;
#endif
/* Figure out the settings for the sdram_cfg register. Build up
* the entire register in 'tmp' before writing since the write into
* the register will actually enable the memory controller, and all
* settings must be done before enabling.
*
* sdram_cfg[0] = 1 (ddr sdram logic enable)
* sdram_cfg[1] = 1 (self-refresh-enable)
* sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM)
*/
tmp = 0xc2000000;
/* sdram_cfg[3] = RD_EN - registered DIMM enable
* A value of 0x26 indicates micron registered DIMMS (micron.com)
*/
if (spd.mod_attr == 0x26) {
tmp |= 0x10000000;
}
#if defined(CONFIG_DDR_ECC)
/* If the user wanted ECC (enabled via sdram_cfg[2]) */
if (spd.config == 0x02) {
tmp |= 0x20000000;
}
#endif
/*
* REV1 uses 1T timing.
* REV2 may use 1T or 2T as configured by the user.
*/
{
uint pvr = get_pvr();
if (pvr != PVR_85xx_REV1) {
#if defined(CONFIG_DDR_2T_TIMING)
/*
* Enable 2T timing by setting sdram_cfg[16].
*/
tmp |= 0x8000;
#endif
}
}
ddr->sdram_cfg = tmp;
asm("sync;isync;msync");
udelay(500);
debug ("DDR:sdram_cfg=0x%08x\n",ddr->sdram_cfg);
return (memsize*1024*1024);
}
#endif /* CONFIG_SPD_EEPROM */
|