1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2013, Google Inc.
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <fdtdec.h>
#include <asm/types.h>
#include <asm/byteorder.h>
#include <linux/errno.h>
#include <asm/types.h>
#include <asm/unaligned.h>
#include <dm.h>
#else
#include "fdt_host.h"
#include "mkimage.h"
#include <fdt_support.h>
#endif
#include <u-boot/rsa-mod-exp.h>
#include <u-boot/rsa.h>
/* Default public exponent for backward compatibility */
#define RSA_DEFAULT_PUBEXP 65537
/**
* rsa_verify_padding() - Verify RSA message padding is valid
*
* Verify a RSA message's padding is consistent with PKCS1.5
* padding as described in the RSA PKCS#1 v2.1 standard.
*
* @msg: Padded message
* @pad_len: Number of expected padding bytes
* @algo: Checksum algo structure having information on DER encoding etc.
* @return 0 on success, != 0 on failure
*/
static int rsa_verify_padding(const uint8_t *msg, const int pad_len,
struct checksum_algo *algo)
{
int ff_len;
int ret;
/* first byte must be 0x00 */
ret = *msg++;
/* second byte must be 0x01 */
ret |= *msg++ ^ 0x01;
/* next ff_len bytes must be 0xff */
ff_len = pad_len - algo->der_len - 3;
ret |= *msg ^ 0xff;
ret |= memcmp(msg, msg+1, ff_len-1);
msg += ff_len;
/* next byte must be 0x00 */
ret |= *msg++;
/* next der_len bytes must match der_prefix */
ret |= memcmp(msg, algo->der_prefix, algo->der_len);
return ret;
}
/**
* rsa_verify_key() - Verify a signature against some data using RSA Key
*
* Verify a RSA PKCS1.5 signature against an expected hash using
* the RSA Key properties in prop structure.
*
* @prop: Specifies key
* @sig: Signature
* @sig_len: Number of bytes in signature
* @hash: Pointer to the expected hash
* @key_len: Number of bytes in rsa key
* @algo: Checksum algo structure having information on DER encoding etc.
* @return 0 if verified, -ve on error
*/
static int rsa_verify_key(struct key_prop *prop, const uint8_t *sig,
const uint32_t sig_len, const uint8_t *hash,
const uint32_t key_len, struct checksum_algo *algo)
{
int pad_len;
int ret;
#if !defined(USE_HOSTCC)
struct udevice *mod_exp_dev;
#endif
if (!prop || !sig || !hash || !algo)
return -EIO;
if (sig_len != (prop->num_bits / 8)) {
debug("Signature is of incorrect length %d\n", sig_len);
return -EINVAL;
}
debug("Checksum algorithm: %s", algo->name);
/* Sanity check for stack size */
if (sig_len > RSA_MAX_SIG_BITS / 8) {
debug("Signature length %u exceeds maximum %d\n", sig_len,
RSA_MAX_SIG_BITS / 8);
return -EINVAL;
}
uint8_t buf[sig_len];
#if !defined(USE_HOSTCC)
ret = uclass_get_device(UCLASS_MOD_EXP, 0, &mod_exp_dev);
if (ret) {
printf("RSA: Can't find Modular Exp implementation\n");
return -EINVAL;
}
ret = rsa_mod_exp(mod_exp_dev, sig, sig_len, prop, buf);
#else
ret = rsa_mod_exp_sw(sig, sig_len, prop, buf);
#endif
if (ret) {
debug("Error in Modular exponentation\n");
return ret;
}
pad_len = key_len - algo->checksum_len;
/* Check pkcs1.5 padding bytes. */
ret = rsa_verify_padding(buf, pad_len, algo);
if (ret) {
debug("In RSAVerify(): Padding check failed!\n");
return -EINVAL;
}
/* Check hash. */
if (memcmp((uint8_t *)buf + pad_len, hash, sig_len - pad_len)) {
debug("In RSAVerify(): Hash check failed!\n");
return -EACCES;
}
return 0;
}
/**
* rsa_verify_with_keynode() - Verify a signature against some data using
* information in node with prperties of RSA Key like modulus, exponent etc.
*
* Parse sign-node and fill a key_prop structure with properties of the
* key. Verify a RSA PKCS1.5 signature against an expected hash using
* the properties parsed
*
* @info: Specifies key and FIT information
* @hash: Pointer to the expected hash
* @sig: Signature
* @sig_len: Number of bytes in signature
* @node: Node having the RSA Key properties
* @return 0 if verified, -ve on error
*/
static int rsa_verify_with_keynode(struct image_sign_info *info,
const void *hash, uint8_t *sig,
uint sig_len, int node)
{
const void *blob = info->fdt_blob;
struct key_prop prop;
int length;
int ret = 0;
if (node < 0) {
debug("%s: Skipping invalid node", __func__);
return -EBADF;
}
prop.num_bits = fdtdec_get_int(blob, node, "rsa,num-bits", 0);
prop.n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0);
prop.public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length);
if (!prop.public_exponent || length < sizeof(uint64_t))
prop.public_exponent = NULL;
prop.exp_len = sizeof(uint64_t);
prop.modulus = fdt_getprop(blob, node, "rsa,modulus", NULL);
prop.rr = fdt_getprop(blob, node, "rsa,r-squared", NULL);
if (!prop.num_bits || !prop.modulus) {
debug("%s: Missing RSA key info", __func__);
return -EFAULT;
}
ret = rsa_verify_key(&prop, sig, sig_len, hash,
info->crypto->key_len, info->checksum);
return ret;
}
int rsa_verify(struct image_sign_info *info,
const struct image_region region[], int region_count,
uint8_t *sig, uint sig_len)
{
const void *blob = info->fdt_blob;
/* Reserve memory for maximum checksum-length */
uint8_t hash[info->crypto->key_len];
int ndepth, noffset;
int sig_node, node;
char name[100];
int ret;
/*
* Verify that the checksum-length does not exceed the
* rsa-signature-length
*/
if (info->checksum->checksum_len >
info->crypto->key_len) {
debug("%s: invlaid checksum-algorithm %s for %s\n",
__func__, info->checksum->name, info->crypto->name);
return -EINVAL;
}
sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME);
if (sig_node < 0) {
debug("%s: No signature node found\n", __func__);
return -ENOENT;
}
/* Calculate checksum with checksum-algorithm */
ret = info->checksum->calculate(info->checksum->name,
region, region_count, hash);
if (ret < 0) {
debug("%s: Error in checksum calculation\n", __func__);
return -EINVAL;
}
/* See if we must use a particular key */
if (info->required_keynode != -1) {
ret = rsa_verify_with_keynode(info, hash, sig, sig_len,
info->required_keynode);
if (!ret)
return ret;
}
/* Look for a key that matches our hint */
snprintf(name, sizeof(name), "key-%s", info->keyname);
node = fdt_subnode_offset(blob, sig_node, name);
ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node);
if (!ret)
return ret;
/* No luck, so try each of the keys in turn */
for (ndepth = 0, noffset = fdt_next_node(info->fit, sig_node, &ndepth);
(noffset >= 0) && (ndepth > 0);
noffset = fdt_next_node(info->fit, noffset, &ndepth)) {
if (ndepth == 1 && noffset != node) {
ret = rsa_verify_with_keynode(info, hash, sig, sig_len,
noffset);
if (!ret)
break;
}
}
return ret;
}
|