1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
|
//==========================================================================
//
// mmc_spi.c
//
// Provide a disk device driver for MMC cards over SPI
//
//==========================================================================
// ####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 2004, 2006 Free Software Foundation, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later
// version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eCos; if not, write to the Free Software Foundation, Inc.,
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// As a special exception, if other files instantiate templates or use
// macros or inline functions from this file, or you compile this file
// and link it with other works to produce a work based on this file,
// this file does not by itself cause the resulting work to be covered by
// the GNU General Public License. However the source code for this file
// must still be made available in accordance with section (3) of the GNU
// General Public License v2.
//
// This exception does not invalidate any other reasons why a work based
// on this file might be covered by the GNU General Public License.
// -------------------------------------------
// ####ECOSGPLCOPYRIGHTEND####
//==========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author: bartv
// Date: 2004-04-25
//
//####DESCRIPTIONEND####
//==========================================================================
#include <pkgconf/system.h>
#include <pkgconf/devs_disk_mmc.h>
#include <cyg/infra/cyg_type.h>
#include <cyg/infra/cyg_ass.h>
#include <cyg/infra/diag.h>
#include <cyg/hal/hal_arch.h>
#include <cyg/hal/hal_if.h> // delays
#include <cyg/hal/hal_intr.h>
#include <string.h>
#include <errno.h>
#include <cyg/io/io.h>
#include <cyg/io/spi.h>
#include <cyg/io/devtab.h>
#include <cyg/io/disk.h>
#include <cyg/io/mmc_protocol.h>
// Communication parameters. First some debug support
#define DEBUG 0
#if DEBUG > 0
# define DEBUG1(format, ...) diag_printf(format, ## __VA_ARGS__)
#else
# define DEBUG1(format, ...)
#endif
#if DEBUG > 1
# define DEBUG2(format, ...) diag_printf(format, ## __VA_ARGS__)
#else
# define DEBUG2(format, ...)
#endif
// Should the SPI operations run in polled or interrupt-driven mode?
// The default value is determined by CDL, but can be overridden at
// run-time if necessary. For example if configured for
// interrupt-driven I/O then it will be impossible to perform disk
// operations during system initialization, e.g. from a static
// constructor, unless this flag is changed for the duration.
#ifdef CYGIMP_DEVS_DISK_MMC_SPI_POLLED
cyg_bool cyg_mmc_spi_polled = true;
#else
cyg_bool cyg_mmc_spi_polled = false;
#endif
// Should write operations be allowed to complete in the background,
// or must the operation complete in the foreground. The latter
// requires polling for potentially a long time, up to some 100's of
// milliseconds, but the former appears unreliable if there are other
// devices on the SPI bus. In theory the MMC card should detect that
// the chip select line is dropped and tristate the output line, but
// in practice this does not always happen.
#undef MMC_SPI_BACKGROUND_WRITES
// The size of each disk block
#define MMC_SPI_BLOCK_SIZE 512
// The number of retries during a mount operation when switching to
// IDLE mode.
#define MMC_SPI_GO_IDLE_RETRIES 16
// The number of retries during a mount operation when switching from
// idle to operational
#define MMC_SPI_OP_COND_RETRIES 128
// The number of retries when waiting for a response to any command
#define MMC_SPI_COMMAND_RETRIES 32
// Retries when waiting for a data response token during a read
#define MMC_SPI_READ_DATA_TOKEN_RETRIES 32768
// Retries during a write while waiting for completion
#define MMC_SPI_WRITE_BUSY_RETRIES 32768
// ----------------------------------------------------------------------------
// SPI-specific parts of the MMC protocol.
//
// Host supply voltage information
#define MMC_SPI_VHS 0x01 // 2.7 - 3.6V
// Check pattern
#define MMC_CMD8_CHECK_PATTERN 0xaa
//
// The main response byte. 0 indicates success, other bits
// indicate various error conditions.
#define MMC_REPLY_SUCCESS 0x00
#define MMC_REPLY_PARAMETER_ERROR (0x01 << 6)
#define MMC_REPLY_ADDRESS_ERROR (0x01 << 5)
#define MMC_REPLY_ERASE_SEQUENCE_ERROR (0x01 << 4)
#define MMC_REPLY_COM_CRC_ERROR (0x01 << 3)
#define MMC_REPLY_ILLEGAL_COMMAND (0x01 << 2)
#define MMC_REPLY_ERASE_RESET (0x01 << 1)
#define MMC_REPLY_IN_IDLE_STATE (0x01 << 0)
// A send-status command generates a second response byte
#define MMC_REPLY2_OUT_OF_RANGE (0x01 << 7)
#define MMC_REPLY2_ERASE_PARAM (0x01 << 6)
#define MMC_REPLY2_WP_VIOLATION (0x01 << 5)
#define MMC_REPLY2_CARD_ECC_FAILED (0x01 << 4)
#define MMC_REPLY2_CC_ERROR (0x01 << 3)
#define MMC_REPLY2_ERROR (0x01 << 2)
#define MMC_REPLY2_WP_ERASE_SKIP (0x01 << 1)
// Alias for the above
#define MMC_REPLY2_LOCK_UNLOCK_FAILED (0x01 << 1)
#define MMC_REPLY2_CARD_LOCKED (0x01 << 0)
// The data error token byte which may get sent if a read
// operation fails. The top 3 bits will be 0. A successful
// response will have these bits 1.
#define MMC_DATA_TOKEN_SUCCESS (0x00FE)
#define MMC_DATA_ERROR_TOKEN_CARD_LOCKED (0x01 << 4)
#define MMC_DATA_ERROR_TOKEN_OUT_OF_RANGE (0x01 << 3)
#define MMC_DATA_ERROR_TOKEN_CARD_ECC_FAILED (0x01 << 2)
#define MMC_DATA_ERROR_TOKEN_CC_ERROR (0x01 << 1)
#define MMC_DATA_ERROR_TOKEN_ERROR (0x01 << 0)
// ----------------------------------------------------------------------------
// Structures and statics.
//
// There should be an SPI device cyg_spi_mmc_dev0, probably provided by
// the HAL, possibly by the application. Because of the latter we cannot
// assume the variable will be defined in a header.
extern cyg_spi_device cyg_spi_mmc_dev0;
// When retrieving data it is necessary to send an 0xff byte stream,
// which the card will not confuse with further commands. The largest
// transfer is 512 bytes, too large a buffer to place on the stack.
static cyg_uint8 mmc_spi_ff_data[512];
#define MMC_SPI_INIT_FF_DATA() \
CYG_MACRO_START \
memset(mmc_spi_ff_data, 0x00FF, 512); \
CYG_MACRO_END
typedef enum sd_capacity_e {
STANDARD_CAPACITY,
HIGH_CAPACITY,
EXTENDED_CAPACITY
} sd_capacity_t;
// Details of a specific MMC card
typedef struct cyg_mmc_spi_disk_info_t {
cyg_spi_device* mmc_spi_dev;
cyg_uint32 mmc_saved_baudrate;
cyg_uint32 mmc_block_count;
#ifdef MMC_SPI_BACKGROUND_WRITES
cyg_bool mmc_writing;
#endif
cyg_bool mmc_read_only;
cyg_bool mmc_connected;
cyg_uint32 mmc_heads_per_cylinder;
cyg_uint32 mmc_sectors_per_head;
cyg_uint32 mmc_read_block_length;
cyg_uint32 mmc_write_block_length;
mmc_cid_register mmc_id;
sd_ocr_register_t sd_ocr;
cyg_uint32 sd_version;
sd_capacity_t sd_capacity;
cyg_uint32 sd_csd_version;
} cyg_mmc_spi_disk_info_t;
// There is no need for a hardware-specific disk controller structure.
// The closest equivalent is probably an SPI bus, i.e. if there were
// MMC connectors attached to different SPI buses then these would
// have separate controllers with independent locking. However that
// can be handled without a cyg_mmc_spi_controller_info_t structure.
// ----------------------------------------------------------------------------
// The low-level MMC operations
// After power-on an MMC card is in idle state and needs at least 74
// clock cycles before any communication. These might be supplied
// courtesy of another SPI device, but no guarantees, so generate some
// ticks.
static void
mmc_spi_send_init(cyg_mmc_spi_disk_info_t* disk)
{
#if DEBUG > 1
cyg_spi_device *dev = disk->mmc_spi_dev;
cyg_spi_bus *bus = dev->spi_bus;
#endif
DEBUG2("%s(): dev pointer 0x%p, %d\n", __FUNCTION__, disk->mmc_spi_dev, cyg_mmc_spi_polled );
DEBUG2(" : begin pointer %p\n", bus->spi_transaction_begin );
cyg_spi_tick(disk->mmc_spi_dev, cyg_mmc_spi_polled, 10);
}
// Send the first part of a command sequence. This consists of the
// command itself, an argument, a CRC, and then waiting for a
// reply byte from the card.
static cyg_uint32
mmc_spi_send_command_start(cyg_mmc_spi_disk_info_t* disk, cyg_uint32 command, cyg_uint32 arg)
{
cyg_spi_device* dev = disk->mmc_spi_dev;
cyg_uint8 request[7];
cyg_uint8 response[7];
cyg_uint8 reply;
int i;
#ifdef MMC_SPI_BACKGROUND_WRITES
// If the last operation was a block write, those can take a while
// to complete. Rather than wait at the end of the write(), do so
// at the beginning of the next operation i.e. here. This also
// allows the chip select to be dropped while the write comples,
// so communication is possible with other devices. The polling is
// done as a sequence of transactions rather than in a single
// transaction, again to let other threads in to communicate with
// other devices.
//
// The card will send a stream of 0x00 bytes while the write
// completes. Some cards have been observed to send a byte 0x03 at
// the end, Either way, when the card sends a byte 0xff it should
// be ready for the next command.
if (disk->mmc_writing) {
DEBUG2("%s(): polling for completion of previous write\n", __FUNCTION__);
disk->mmc_writing = 0;
response[0] = 0x00;
for (i = 0; (i < MMC_SPI_WRITE_BUSY_RETRIES) && (0x00FF != response[0]); i++) {
cyg_spi_transfer(dev, cyg_mmc_spi_polled, 1, mmc_spi_ff_data, response);
}
}
#endif
request[0] = command | 0x0040;
request[1] = (arg >> 24) & 0x00FF;
request[2] = (arg >> 16) & 0x00FF;
request[3] = (arg >> 8) & 0x00FF;
request[4] = arg & 0x00FF;
// A CRC is needed for the go-idle-state command, because that
// command switches the device from MMC to SPI mode. Also, a CRC
// is needed in case of CMD8. Here we take for granted that the
// host has 2.7-3.6V range and that the check pattern is 0xaa.
// These CRCs are well-known. Once in SPI mode the card will not
// use CRCs by default.
request[5] = (command == 0x00) ? 0x0095 :
(command == SD_REQUEST_SEND_IF_COND) ? 0x87 : 0xff;
// There will need to be at least one extra byte transfer to get
// the card's response, so send that straightaway. Extra
// outgoing data like this should be 0xff so that the card
// does not confuse it with a new incoming command.
request[6] = 0x00ff;
// Lock the SPI bus. It remains locked until a subsequent call to
// mmc_spi_end_command().
cyg_spi_transaction_begin(dev);
// Transfer the whole command, and try to read the response back
// immediately.
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled, 7, request, response, 0);
DEBUG2("Sent command %02x %d: reply bytes %02x %02x %02x %02x %02x %02x %02x\n", command, arg, \
response[0], response[1], response[2], response[3], response[4], response[5], response[6]);
// The response will be a single byte with the top bit clear.
// The remaining bits are error/status flags. If the command
// involves an additional response then that will be handled
// by the calling code.
reply = response[6];
for (i = 0; (i < MMC_SPI_COMMAND_RETRIES) && (0 != (reply & 0x0080)); i++) {
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled, 1, mmc_spi_ff_data, response, 0);
reply = response[0];
DEBUG2(" loop %d, additional reply %02x\n", i, reply);
}
// Leave the interpretation of the reply code to the caller
return (cyg_uint32) reply;
}
// At the end of each command the card needs eight clocks to finish
// its processing. A tick() call takes care of that, and will have
// the side effect of dropping the chip select. Ending the transaction
// unlocks the bus for other SPI I/O operations
static void
mmc_spi_end_command(cyg_mmc_spi_disk_info_t* disk)
{
cyg_spi_device* dev = disk->mmc_spi_dev;
cyg_spi_transaction_tick(dev, cyg_mmc_spi_polled, 1);
cyg_spi_transaction_end(dev);
}
// A utility combination of the above two for simple commands which do
// not involve any other data.
static cyg_uint32
mmc_spi_send_command(cyg_mmc_spi_disk_info_t* disk, cyg_uint32 command, cyg_uint32 arg)
{
cyg_uint32 reply;
reply = mmc_spi_send_command_start(disk, command, arg);
mmc_spi_end_command(disk);
return reply;
}
// The card will return a data block when reading a disk block, or
// for certain other commands like reading card registers. Each
// data block consists of:
// 1) some number of padding bytes 0xff while the card is still
// processing the command and preparing the data
// 2) a data token byte, usually 0xFE for success
// 3) n bytes of data
// 4) two bytes of crc, which can be ignored.
//
// The data token byte is the only indication of success or failure,
// so that gets returned.
//
// When mounting certain types of card an extra delay may be needed
// before reading the first data block. This is handled by the
// extra_delay argument.
static cyg_uint32
mmc_spi_read_data(cyg_mmc_spi_disk_info_t* disk, cyg_uint8* buf, cyg_uint32 count, cyg_bool extra_delay)
{
cyg_spi_device* dev = disk->mmc_spi_dev;
int i;
cyg_uint8 response[2];
cyg_uint32 retries;
if (extra_delay) {
retries = MMC_SPI_READ_DATA_TOKEN_RETRIES * 100;
} else {
retries = MMC_SPI_READ_DATA_TOKEN_RETRIES;
}
response[0] = 0x00FF;
for (i = 0; (i < retries) && (0x00FF == response[0]); i++) {
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled, 1, mmc_spi_ff_data, response, 0);
}
if (MMC_DATA_TOKEN_SUCCESS != response[0]) {
DEBUG1("%s(): got error response %02x after %d iterations\n", __FUNCTION__, response[0], i);
return response[0];
}
// Now for the actual data. There is no way of detecting a failure from
// this point on.
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled, count, mmc_spi_ff_data, buf, 0);
// And the CRC, which can be ignored
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled, 2, mmc_spi_ff_data, response, 0);
DEBUG2("%s(): got data and CRC %02x %02x\n", __FUNCTION__, response[0], response[1]);
return MMC_DATA_TOKEN_SUCCESS;
}
// Determine if card complies with SD Physical Spec. Version 1.x or 2.x
// If it is V1, also set information on capacity. MMC cards are recognized as SD V1.
static Cyg_ErrNo
mmc_spi_check_version(cyg_mmc_spi_disk_info_t* disk)
{
#define R7_RESPONSE_LENGTH 5
cyg_uint32 reply;
cyg_uint8 response[R7_RESPONSE_LENGTH];
cyg_spi_device* dev = disk->mmc_spi_dev;
disk->sd_version = 0;
reply = mmc_spi_send_command_start(disk, SD_REQUEST_SEND_IF_COND,
( MMC_SPI_VHS << 8 ) + MMC_CMD8_CHECK_PATTERN);
DEBUG2("SEND_IF_COND (CMD8) reply: %02x\n", reply);
if (MMC_REPLY_ILLEGAL_COMMAND & reply) { // V1 cards do not understand CMD8
disk->sd_version = 1;
disk->sd_capacity = STANDARD_CAPACITY;
mmc_spi_end_command(disk);
return ENOERR;
}
disk->sd_version = 2;
if (~MMC_REPLY_IN_IDLE_STATE & reply) { // Anything other than idle state?
DEBUG1("SEND_IF_COND (CMD8) replies error %02x\n", reply);
mmc_spi_end_command(disk);
return -EIO;
}
// Card gives no error, so the response is R7. Take the rest of it.
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled,
R7_RESPONSE_LENGTH, mmc_spi_ff_data, response, 0);
DEBUG2("%s(): R7: %02x %02x %02x %02x %02x.\n", __FUNCTION__,
response[0], response[1], response[2], response[3], response[4]);
if (0 == (MMC_SPI_VHS & response[2])) {
DEBUG1("%s(): card doesn't accept voltage %02x\n", __FUNCTION__, MMC_SPI_VHS);
mmc_spi_end_command(disk);
return -ENOTSUP;
}
mmc_spi_end_command(disk);
return ENOERR;
}
static Cyg_ErrNo
mmc_spi_sd_check_v2_capacity_class(cyg_mmc_spi_disk_info_t* disk)
{
#define R3_RESPONSE_LENGTH 4
cyg_uint32 reply;
cyg_spi_device* dev = disk->mmc_spi_dev;
reply = mmc_spi_send_command_start(disk, MMC_REQUEST_READ_OCR, 0);
if (MMC_REPLY_SUCCESS != reply) {
DEBUG1("READ_OCR (CMD58) replies error %02x\n", reply);
mmc_spi_end_command(disk);
return -EIO;
}
// Card gives no error. Take the rest of response.
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled,
R3_RESPONSE_LENGTH, mmc_spi_ff_data, disk->sd_ocr.ocr_data, 0);
DEBUG2("%s(): R3: %02x %02x %02x %02x.\n", __FUNCTION__,
disk->sd_ocr.ocr_data[0], disk->sd_ocr.ocr_data[1], disk->sd_ocr.ocr_data[2],
disk->sd_ocr.ocr_data[3]);
mmc_spi_end_command(disk);
disk->sd_capacity = (SD_OCR_REGISTER_CCS(&(disk->sd_ocr))) ?
HIGH_CAPACITY : STANDARD_CAPACITY ;
return ENOERR;
}
// Read one of the card registers, e.g. CSD or CID
static Cyg_ErrNo
mmc_spi_read_register(cyg_mmc_spi_disk_info_t* disk, cyg_uint32 command, cyg_uint8* buf, cyg_uint32 count)
{
cyg_uint32 reply;
reply = mmc_spi_send_command_start(disk, command, 0);
if (MMC_REPLY_SUCCESS != reply) {
DEBUG1("%s(): unexpected response to command %02x, reply code %02x\n",
__FUNCTION__, command, reply);
mmc_spi_end_command(disk);
return (0x00FF == reply) ? -ENODEV : -EIO;
}
reply = mmc_spi_read_data(disk, buf, count, false);
mmc_spi_end_command(disk);
if (MMC_DATA_TOKEN_SUCCESS != reply) {
DEBUG1("%s(): unexpected response to command %02x, expected 0x00FE data token, got %02x\n",
__FUNCTION__, command, reply);
return -EIO;
}
return ENOERR;
}
// Reading a disk block is just a combination of the above utilities.
// This code is also responsible for translating error codes, since
// higher-level code does not get to see the initial response vs. the
// data token byte.
static Cyg_ErrNo
mmc_spi_read_disk_block(cyg_mmc_spi_disk_info_t* disk, cyg_uint8* buf, cyg_uint32 block, cyg_bool extra_delay)
{
cyg_uint32 reply;
// First the command itself.
DEBUG2("%s(%d): sending command\n", __FUNCTION__, block);
if (STANDARD_CAPACITY == disk->sd_capacity) {
reply = mmc_spi_send_command_start(disk, MMC_REQUEST_READ_SINGLE_BLOCK, block * MMC_SPI_BLOCK_SIZE);
}
else {
reply = mmc_spi_send_command_start(disk, MMC_REQUEST_READ_SINGLE_BLOCK, block);
}
if (MMC_REPLY_SUCCESS != reply) {
DEBUG1("%s(%d): unexpected response to READ_SINGLE_BLOCK command, code %02x\n",
__FUNCTION__, block, reply);
mmc_spi_end_command(disk);
// A byte 0xFF indicates the card has been removed.
if (0x00FF == reply) {
return -ENODEV;
}
// Parameter or address error should not occur, higher-level
// code should have checked the block to ensure that it is
// in range.
if (0 != (reply & (MMC_REPLY_PARAMETER_ERROR | MMC_REPLY_ADDRESS_ERROR))) {
return -EINVAL;
}
// The disk should not be in idle state or in an erase sequence. The
// command is definitely legal and CRCs should be disabled. So everything
// else is an I/O error.
return -EIO;
}
// Now read back the data block. That code can be shared with other read
// operations, e.g. for retrieving registers.
DEBUG2("%s(%d): reading data token/data/crc\n", __FUNCTION__, block);
reply = mmc_spi_read_data(disk, buf, MMC_SPI_BLOCK_SIZE, extra_delay);
mmc_spi_end_command(disk);
if (MMC_DATA_TOKEN_SUCCESS != reply) {
DEBUG1("%s(%d): failed to retrieve data, error token %02x\n",
__FUNCTION__, block, reply);
// Possibilities are password-locked, range error, ECC failure
// if the raw data is corrupt, CC error for an internal card
// error, or some other error. A byte 0xFF indicates the card
// has been removed.
if (0x00FF == reply) {
return -ENODEV;
} else if (0 != (MMC_DATA_ERROR_TOKEN_CARD_LOCKED & reply)) {
// This should have been caught by a mount operation.
return -EPERM;
} else if (0 != (MMC_DATA_ERROR_TOKEN_OUT_OF_RANGE & reply)) {
return -EINVAL;
} else {
return -EIO;
}
}
return ENOERR;
}
// Writing a block involves a bit more work. Some of this could be
// moved into a utility routine if necessary, shared with code for
// e.g. updating the CSD register, but for now that other functionality
// is not needed.
static Cyg_ErrNo
mmc_spi_write_disk_block(cyg_mmc_spi_disk_info_t* disk, const cyg_uint8* buf, cyg_uint32 block)
{
cyg_spi_device* dev = disk->mmc_spi_dev;
cyg_uint32 reply;
cyg_uint8 extra[4];
int i;
// First, send the command itself and get the initial response
DEBUG2("%s(): sending command\n", __FUNCTION__);
if (STANDARD_CAPACITY == disk->sd_capacity) {
reply = mmc_spi_send_command_start(disk, MMC_REQUEST_WRITE_BLOCK, block * MMC_SPI_BLOCK_SIZE);
}
else {
reply = mmc_spi_send_command_start(disk, MMC_REQUEST_WRITE_BLOCK, block );
}
if (MMC_REPLY_SUCCESS != reply) {
DEBUG1("%s(): unexpected response to WRITE_BLOCK command, code %02x\n",
__FUNCTION__, reply);
mmc_spi_end_command(disk);
if (0x00FF == reply) {
return -ENODEV;
}
// Parameter or address error should not occur, higher-level
// code should have checked the block to ensure that it is
// in range.
if (0 != (reply & (MMC_REPLY_PARAMETER_ERROR | MMC_REPLY_ADDRESS_ERROR))) {
return -EINVAL;
}
// The disk should not be in idle state or in an erase sequence. The
// command is definitely legal and CRCs should be disabled. So everything
// else is an I/O error.
return -EIO;
}
// The card is now expecting a data block. This consists of a single byte
// 0x00FE, then the data itself, and a dummy CRC. The reply from the card
// does not contain any useful information.
DEBUG2("%s(): sending data token/data/crc\n", __FUNCTION__);
extra[0] = 0x00FE;
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled, 1, extra, (cyg_uint8*)0, 0);
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled, MMC_SPI_BLOCK_SIZE, buf, (cyg_uint8*)0, 0);
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled, 2, mmc_spi_ff_data, (cyg_uint8*)0, 0);
// The card should respond immediately with a data response token.
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled, 1, mmc_spi_ff_data, extra, 0);
DEBUG2("%s(): got data response token %02x\n", __FUNCTION__, extra[0]);
// The bottom five bits contain the response. 00101 indicates success,
// anything else is a CRC error. Everything else will have been checked
// before the data got transferred.
if (0x05 != (extra[0] & 0x1F)) {
DEBUG1("%s(): invalid data response token %02x\n", __FUNCTION__, extra[0]);
mmc_spi_end_command(disk);
if (0x00FF == extra[0]) {
return -ENODEV;
}
return -EIO;
}
#ifdef MMC_SPI_BACKGROUND_WRITES
// Mark the card as writing. The next operation will poll for completion.
disk->mmc_writing = true;
#else
// The card is now busy doing the write and will output a stream of 0's
// while busy. The timeout should really be calculated using the CSD
// register settings.
//
// It should be legal to drop the chip select here, i.e. to end
// the current transaction and start a new one for each poll
// operation. That would allow other SPI devices to be accessed.
// However it appears that this does not work with all MMC cards.
extra[0] = 0x00;
for (i = 0; (i < MMC_SPI_WRITE_BUSY_RETRIES) && (0x00 == extra[0]); i++) {
cyg_spi_transaction_transfer(dev, cyg_mmc_spi_polled, 1, mmc_spi_ff_data, extra, 0);
DEBUG2("%s(): polling for ! busy, got response %02x\n", __FUNCTION__, extra[0]);
}
#endif
// Assume that the loop did in fact terminate.
mmc_spi_end_command(disk);
return ENOERR;
}
// MMC sockets will default to a slow clockrate. During a successful mount
// the SPI device settings will be changed to the fastest supported by the
// card, as per the CSD register. This will need to be undone during an
// unmount, or if the final stages of a mount are unsuccessful.
static void
mmc_spi_restore_baud(cyg_mmc_spi_disk_info_t* disk)
{
cyg_uint32 len = sizeof(cyg_uint32);
(void) cyg_spi_set_config(disk->mmc_spi_dev, CYG_IO_SET_CONFIG_SPI_CLOCKRATE, (void*) &(disk->mmc_saved_baudrate), &len);
}
// check_for_disk() tries to communicate with an MMC card that is not
// currently mounted. It performs the appropriate initialization so
// that read and write operations are possible, checks the disk format,
// distinguishes between read-only and read-write cards, calculates the
// card size, stores the unique id, etc.
//
// The main error conditions are ENODEV (no card), EIO (card not
// responding sensibly to requests), ENOTDIR (wrong format), or EPERM
// (card is password-locked).
static Cyg_ErrNo
mmc_spi_check_for_disk(cyg_mmc_spi_disk_info_t* disk)
{
cyg_spi_device* dev = disk->mmc_spi_dev;
int i;
cyg_uint32 reply;
Cyg_ErrNo code;
mmc_csd_register csd;
#ifdef MMC_SPI_BACKGROUND_WRITES
// If we have unmounted a disk and are remounting it, assume that
// any writes have completed.
disk->mmc_writing = false;
#endif
reply = 0x00ff;
for (i = 0; (i < MMC_SPI_GO_IDLE_RETRIES) && (0x01 != reply); i++) {
// Allow platform HALs to provide additional initialization,
// if the hardware needs it.
#ifdef HAL_MMC_SPI_INIT
HAL_MMC_SPI_INIT(dev, reply);
if (! reply) {
return -ENODEV;
}
#endif
// MMC cards generic initialization. The card may have just
// been plugged in so there is no guarantee that any previous
// init() calls or other traffic will have affected this card.
mmc_spi_send_init(disk);
// Now set the card to idle state. This involves the GO_IDLE_STATE
// command which will be accepted irrespective of whether the card is
// currently in MMC or SPI mode, and will leave the card in SPI mode.
reply = mmc_spi_send_command(disk, MMC_REQUEST_GO_IDLE_STATE, 0);
// The card should reply with 0x01. FF suggests that there is
// no card. Any other response indicates some synchronization
// problem. For example the card might still be responding to
// some request from a previous session which aborted at an
// inconvenient moment. Some dummy traffic is generated in the
// hope that this gets things back in sync.
if (0x01 != reply) {
DEBUG1("%s(): loop %d, card did not enter idle state, code %02x\n",
__FUNCTION__, i, reply);
if (0x0ff != reply) {
cyg_spi_transfer(dev, cyg_mmc_spi_polled, 128, mmc_spi_ff_data, (cyg_uint8*) 0);
}
}
}
if (0x0ff == reply) {
DEBUG1("%s(): unable to get a response from the MMC card: code %02x\n",
__FUNCTION__, reply);
// A working card should be returning some data
return -ENODEV;
}
if (0x01 != reply) {
DEBUG1("%s(): card did not enter idle state, code %02x\n", __FUNCTION__, reply);
return -EIO;
}
// Determine if card complies with SD Physical Spec Version 1 or 2 or later.
reply = mmc_spi_check_version(disk);
if (ENOERR != reply) {
DEBUG1("%s(): can't determine card's version, code %02x\n", __FUNCTION__, reply);
return reply;
}
DEBUG2("%s(): card version %u\n", __FUNCTION__, disk->sd_version);
// Next, wait for the card to initialize. This involves repeatedly
// trying the SEND_OP_COND command until we get a reply that is
// not idle.
reply = 0x00ff;
for (i = 0; (i < MMC_SPI_OP_COND_RETRIES) && ((0x00ff == reply) || (0 != (MMC_REPLY_IN_IDLE_STATE & reply))); i++) {
#ifdef CYGPKG_DEVS_DISK_MMC_SPI_IDLE_RETRIES_WAIT
CYGACC_CALL_IF_DELAY_US(CYGPKG_DEVS_DISK_MMC_SPI_IDLE_RETRIES_WAIT);
#endif
if (1 == disk->sd_version) {
reply = mmc_spi_send_command(disk, MMC_REQUEST_SEND_OP_COND, 0);
}
else {
reply = mmc_spi_send_command(disk, SD_REQUEST_APP_CMD, 0);
reply &= ~MMC_REPLY_IN_IDLE_STATE;
if (MMC_REPLY_SUCCESS != reply) {
DEBUG1("%s(): card doesn't accept APP_CMD: reply code %02x\n",
__FUNCTION__, reply);
return -EIO;
}
reply = mmc_spi_send_command(disk, SD_REQUEST_SD_SEND_OP_COND, SD_ARGUMENT_HCS);
}
}
if (MMC_REPLY_SUCCESS != reply) {
DEBUG1("%s(): card has not entered operational state: reply code %02x\n",
__FUNCTION__, reply);
return (0x00FF == reply) ? -ENODEV : -EIO;
}
// The card has now generated sufficient responses that we don't need to
// worry about a missing card anymore.
// In case of V2 card, determine its capacity class
if (2 == disk->sd_version) {
reply = mmc_spi_sd_check_v2_capacity_class(disk);
if (MMC_REPLY_SUCCESS != reply) {
DEBUG1("%s(): can't establish card's capacity class: reply code %02x\n",
__FUNCTION__, reply);
return -EIO;
}
}
DEBUG2("%s capacity card.\n", (STANDARD_CAPACITY == disk->sd_capacity) ?
"Standard" : (HIGH_CAPACITY == disk->sd_capacity) ? "High" : "Extended" );
// Get hold of the card's unique ID and store it, to allow disk changes
// to be detected.
code = mmc_spi_read_register(disk, MMC_REQUEST_SEND_CID, (cyg_uint8*) &(disk->mmc_id), 16);
if (code) {
mmc_spi_end_command(disk);
return code;
}
DEBUG2("CID data: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", \
disk->mmc_id.cid_data[ 0], disk->mmc_id.cid_data[ 1], disk->mmc_id.cid_data[ 2], disk->mmc_id.cid_data[ 3], \
disk->mmc_id.cid_data[ 4], disk->mmc_id.cid_data[ 5], disk->mmc_id.cid_data[ 6], disk->mmc_id.cid_data[ 7], \
disk->mmc_id.cid_data[ 8], disk->mmc_id.cid_data[ 9], disk->mmc_id.cid_data[10], disk->mmc_id.cid_data[11], \
disk->mmc_id.cid_data[12], disk->mmc_id.cid_data[13], disk->mmc_id.cid_data[14], disk->mmc_id.cid_data[15]);
#if DEBUG > 0
DEBUG1("CID data: register\n");
DEBUG1(" : Manufacturer ID : MID = 0x%02x\n", MMC_CID_REGISTER_MID(&(disk->mmc_id)) & 0xff);
DEBUG1(" : OEM/Application ID : OID = 0x%04x\n", MMC_CID_REGISTER_OID(&(disk->mmc_id)) & 0xffff);
DEBUG1(" : Product name : PNM = 0x%02x%02x%02x%02x%02x%02x\n",
MMC_CID_REGISTER_PNM(&(disk->mmc_id))[0] & 0xff,
MMC_CID_REGISTER_PNM(&(disk->mmc_id))[1] & 0xff,
MMC_CID_REGISTER_PNM(&(disk->mmc_id))[2] & 0xff,
MMC_CID_REGISTER_PNM(&(disk->mmc_id))[3] & 0xff,
MMC_CID_REGISTER_PNM(&(disk->mmc_id))[4] & 0xff,
MMC_CID_REGISTER_PNM(&(disk->mmc_id))[5] & 0xff);
DEBUG1(" : Product revision : PRV = 0x%02x\n", MMC_CID_REGISTER_PRV(&(disk->mmc_id)) & 0xff);
DEBUG1(" : Product serial number : PSN = 0x%08x\n", MMC_CID_REGISTER_PSN(&(disk->mmc_id)) & 0xffffffff);
DEBUG1(" : Manufacturing date : MDT = 0x%02x\n", MMC_CID_REGISTER_MDT(&(disk->mmc_id)) & 0xff);
DEBUG1(" : 7-bit CRC checksum : CRC = 0x%02x\n", MMC_CID_REGISTER_CRC(&(disk->mmc_id)) & 0xff);
#endif
// And retrieve the card's configuration data.
code = mmc_spi_read_register(disk, MMC_REQUEST_SEND_CSD, (cyg_uint8*) &csd, 16);
if (code) {
mmc_spi_end_command(disk);
return code;
}
DEBUG2("CSD data: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", \
csd.csd_data[ 0], csd.csd_data[ 1], csd.csd_data[ 2], csd.csd_data[3], \
csd.csd_data[ 4], csd.csd_data[ 5], csd.csd_data[ 6], csd.csd_data[7], \
csd.csd_data[ 8], csd.csd_data[ 9], csd.csd_data[10], csd.csd_data[11], \
csd.csd_data[12], csd.csd_data[13], csd.csd_data[14], csd.csd_data[15]);
disk->sd_csd_version = MMC_CSD_REGISTER_CSD_STRUCTURE(&csd) + 1 ;
// Optionally dump the whole CSD register. This takes a lot of
// code but gives a lot of info about the card. If the info looks
// correct then we really are interacting properly with an MMC card.
#if DEBUG > 0
DEBUG1("CSD data: structure 0x%02x, version 0x%02x\n", MMC_CSD_REGISTER_CSD_STRUCTURE(&csd), MMC_CSD_REGISTER_SPEC_VERS(&csd));
if (0 != MMC_CSD_REGISTER_FILE_FORMAT_GROUP(&csd)) {
DEBUG1(" : Reserved (unknown), FILE_FORMAT_GROUP %d, FILE_FORMAT %d\n", \
MMC_CSD_REGISTER_FILE_FORMAT_GROUP(&csd), MMC_CSD_REGISTER_FILE_FORMAT(&csd));
} else if (0 == MMC_CSD_REGISTER_FILE_FORMAT(&csd)) {
DEBUG1(" : Partioned disk, FILE_FORMAT_GROUP 0, FILE_FORMAT 0\n");
} else if (1 == MMC_CSD_REGISTER_FILE_FORMAT(&csd)) {
DEBUG1(" : FAT disk, FILE_FORMAT_GROUP 0, FILE_FORMAT 1\n");
} else if (2 == MMC_CSD_REGISTER_FILE_FORMAT(&csd)) {
DEBUG1(" : Universal File format, FILE_FORMAT_GROUP 0, FILE_FORMAT 2\n");
} else {
DEBUG1(" : Others/Unknown disk, FILE_FORMAT_GROUP 0, FILE_FORMAT 3\n");
}
{
static const cyg_uint32 mantissa_speeds_x10[16] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 };
static const cyg_uint32 exponent_speeds_div10[8] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 };
cyg_uint32 speed = mantissa_speeds_x10[MMC_CSD_REGISTER_TRAN_SPEED_MANTISSA(&csd)] *
exponent_speeds_div10[MMC_CSD_REGISTER_TRAN_SPEED_EXPONENT(&csd)];
speed /= 1000;
DEBUG1(" : TRAN_SPEED %d %d -> %d kbit/s\n", \
MMC_CSD_REGISTER_TRAN_SPEED_MANTISSA(&csd), MMC_CSD_REGISTER_TRAN_SPEED_EXPONENT(&csd), speed);
}
DEBUG1(" : READ_BL_LEN block length 2^%d (%d)\n", MMC_CSD_REGISTER_READ_BL_LEN(&csd), \
0x01 << MMC_CSD_REGISTER_READ_BL_LEN(&csd));
if (1 == disk->sd_csd_version) {
DEBUG1(" : C_SIZE %d, C_SIZE_MULT %d\n", \
MMC_CSD_REGISTER_C_SIZE(&csd), MMC_CSD_REGISTER_C_SIZE_MULT(&csd));
{
cyg_uint32 block_len = 0x01 << MMC_CSD_REGISTER_READ_BL_LEN(&csd);
cyg_uint32 mult = 0x01 << (MMC_CSD_REGISTER_C_SIZE_MULT(&csd) + 2);
cyg_uint32 size = block_len * mult * (MMC_CSD_REGISTER_C_SIZE(&csd) + 1);
cyg_uint32 sizeK = (cyg_uint32) (size / 1024);
cyg_uint32 sizeM = sizeK / 1024;
sizeK -= (sizeM * 1024);
DEBUG1(" : total card size %dM%dK\n", sizeM, sizeK);
}
}
else {
DEBUG1(" : C_SIZE %d\n", SD_CSD_V2_REGISTER_C_SIZE(&csd));
{
cyg_uint32 sizeK = 512 * (SD_CSD_V2_REGISTER_C_SIZE(&csd) + 1 ) ;
cyg_uint32 sizeM = sizeK / 1024;
sizeK -= (sizeM * 1024);
DEBUG1(" : total card size %uM%uK\n", sizeM, sizeK);
}
}
DEBUG1(" : WR_BL_LEN block length 2^%d (%d)\n", \
MMC_CSD_REGISTER_WRITE_BL_LEN(&csd), 0x01 << MMC_CSD_REGISTER_WRITE_BL_LEN(&csd));
if ( 1 == disk->sd_csd_version) {
static cyg_uint32 taac_mantissa_speeds_x10[16] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 };
static cyg_uint32 taac_exponent_speeds_div10[8] = { 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000 };
cyg_uint32 taac_speed = taac_mantissa_speeds_x10[MMC_CSD_REGISTER_TAAC_MANTISSA(&csd)] *
taac_exponent_speeds_div10[MMC_CSD_REGISTER_TAAC_EXPONENT(&csd)];
taac_speed /= 100;
DEBUG1(" : asynchronous read access time TAAC %d %d -> %d ns\n", \
MMC_CSD_REGISTER_TAAC_MANTISSA(&csd), MMC_CSD_REGISTER_TAAC_EXPONENT(&csd), taac_speed);
}
if ( 1 == disk->sd_csd_version) {
DEBUG1(" : synchronous read access time NSAC %d * 100 cycles\n", \
MMC_CSD_REGISTER_NSAC(&csd));
}
DEBUG1(" : typical write program time %d * read time\n", MMC_CSD_REGISTER_R2W_FACTOR(&csd));
DEBUG1(" : CCC command classes 0x%04x\n", MMC_CSD_REGISTER_CCC(&csd));
DEBUG1(" : READ_BL_PARTIAL %d, WRITE_BLK_MISALIGN %d, READ_BLK_MISALIGN %d, DSR_IMP %d\n", \
MMC_CSD_REGISTER_READ_BL_PARTIAL(&csd), MMC_CSD_REGISTER_WRITE_BLK_MISALIGN(&csd), \
MMC_CSD_REGISTER_READ_BLK_MISALIGN(&csd), MMC_CSD_REGISTER_DSR_IMP(&csd));
DEBUG1(" : WR_BL_PARTIAL %d\n", MMC_CSD_REGISTER_WR_BL_PARTIAL(&csd));
if ( 1 == disk->sd_csd_version) {
static cyg_uint8 min_currents[8] = { 1, 1, 5, 10, 25, 35, 60, 100 };
static cyg_uint8 max_currents[8] = { 1, 5, 10, 25, 35, 45, 80, 200 };
DEBUG1(" : read current min %dmA, max %dmA\n", \
min_currents[MMC_CSD_REGISTER_VDD_R_CURR_MIN(&csd)], \
max_currents[MMC_CSD_REGISTER_VDD_R_CURR_MAX(&csd)]);
DEBUG1(" : write current min %dmA, max %dmA\n", \
min_currents[MMC_CSD_REGISTER_VDD_W_CURR_MIN(&csd)], \
max_currents[MMC_CSD_REGISTER_VDD_W_CURR_MAX(&csd)]);
}
if ( 1 == disk->sd_csd_version) {
DEBUG1(" : erase sector size %d, erase group size %d\n", \
MMC_CSD_REGISTER_SECTOR_SIZE(&csd) + 1, MMC_CSD_REGISTER_ERASE_GRP_SIZE(&csd) + 1);
DEBUG1(" : write group enable %d, write group size %d\n", \
MMC_CSD_REGISTER_WR_GRP_ENABLE(&csd), MMC_CSD_REGISTER_WR_GRP_SIZE(&csd) + 1);
}
DEBUG1(" : copy bit %d\n", MMC_CSD_REGISTER_COPY(&csd));
DEBUG1(" : permanent write protect %d, temporary write protect %d\n", \
MMC_CSD_REGISTER_PERM_WRITE_PROTECT(&csd), MMC_CSD_REGISTER_TMP_WRITE_PROTECT(&csd));
if ( 1 == disk->sd_csd_version) {
DEBUG1(" : ecc %d, default ecc %d\n", MMC_CSD_REGISTER_ECC(&csd), MMC_CSD_REGISTER_DEFAULT_ECC(&csd));
}
DEBUG1(" : crc 0x%08x\n", MMC_CSD_REGISTER_CRC(&csd));
#endif
if ( 1 == disk->sd_csd_version) {
// There is information available about the file format, e.g.
// partitioned vs. simple FAT. With the current version of the
// generic disk code this needs to be known statically, via
// the mbr field of the disk channel structure. If the card
// is inappropriately formatted, reject the mount request.
if ((0 != MMC_CSD_REGISTER_FILE_FORMAT_GROUP(&csd)) ||
(0 != MMC_CSD_REGISTER_FILE_FORMAT(&csd))) {
return -ENOTDIR;
}
} // According to Spec V3.01, host should not use these two fields in CSD V2 cards
// Look for a write-protect bit (permanent or temporary), and set
// the disk as read-only or read-write as appropriate. The
// temporary write-protect could be cleared by rewriting the CSD
// register (including recalculating the CRC) but the effort
// involves does not seem worth-while.
if ((0 != MMC_CSD_REGISTER_PERM_WRITE_PROTECT(&csd)) || (0 != MMC_CSD_REGISTER_TMP_WRITE_PROTECT(&csd))) {
disk->mmc_read_only = true;
} else {
disk->mmc_read_only = false;
}
DEBUG1("Disk read-only flag %d\n", disk->mmc_read_only);
// Calculate the disk size, primarily for assertion purposes.
if ( 1 == disk->sd_csd_version) {
// By design MMC cards are limited to 4GB, which still doesn't
// quite fit into 32 bits.
disk->mmc_block_count = (((cyg_uint64)(0x01 << MMC_CSD_REGISTER_READ_BL_LEN(&csd))) *
((cyg_uint64)(0x01 << (MMC_CSD_REGISTER_C_SIZE_MULT(&csd) + 2))) *
((cyg_uint64)(MMC_CSD_REGISTER_C_SIZE(&csd) + 1))) / (cyg_uint64)MMC_SPI_BLOCK_SIZE;
}
else {
disk->mmc_block_count = 1024 * ( SD_CSD_V2_REGISTER_C_SIZE(&csd) + 1 ) ;
}
DEBUG1("Disk blockcount %u (0x%08x)\n", disk->mmc_block_count, disk->mmc_block_count);
// Assume for now that the block length is 512 bytes. This is
// probably a safe assumption since we have just got the card
// initialized out of idle state. If it ever proves to be a problem
// the SET_BLOCK_LEN command can be used.
// Nevertheless store the underlying block sizes
disk->mmc_read_block_length = 0x01 << MMC_CSD_REGISTER_READ_BL_LEN(&csd);
disk->mmc_write_block_length = 0x01 << MMC_CSD_REGISTER_WRITE_BL_LEN(&csd);
// The CSD contains the maximum supported transfer speed. Adjust
// the SPI device to match, saving the old value for an unmount
// operation. It is assumed that the SPI bus driver will munge
// the supplied speed to something appropriate.
{
static const cyg_uint32 mantissa_speeds_x10[16] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 };
static const cyg_uint32 exponent_speeds_div10[8] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 };
cyg_uint32 speed, len;
len = sizeof(cyg_uint32);
if (cyg_spi_get_config(dev, CYG_IO_GET_CONFIG_SPI_CLOCKRATE, (void*) &disk->mmc_saved_baudrate, &len)) {
DEBUG1("Failed to retrieve current SPI device clockrate\n");
return -EIO;
}
speed = mantissa_speeds_x10[MMC_CSD_REGISTER_TRAN_SPEED_MANTISSA(&csd)] * exponent_speeds_div10[MMC_CSD_REGISTER_TRAN_SPEED_EXPONENT(&csd)];
if (speed > disk->mmc_saved_baudrate) {
DEBUG1("Old SPI speed %d, switching to %d\n", disk->mmc_saved_baudrate, speed);
cyg_spi_set_config(dev, CYG_IO_SET_CONFIG_SPI_CLOCKRATE, (void*) &speed, &len);
} else {
DEBUG1("Old SPI speed %d already greater than max speed %d, leaving it alone\n",
disk->mmc_saved_baudrate, speed);
}
}
// Read the partition table off the card. This is a way of
// checking that the card is not password-locked. It also
// provides information about the "disk geometry" which is
// needed by higher-level code.
// FIXME: the higher-level code should be made to use LBA
// addressing instead.
{
cyg_uint8 data[MMC_SPI_BLOCK_SIZE];
cyg_uint8* partition;
cyg_uint32 lba_first, lba_size, lba_end, head, cylinder, sector;
code = mmc_spi_read_disk_block(disk, data, 0, true);
if (code) {
mmc_spi_restore_baud(disk);
return code;
}
#if DEBUG > 1
{
cyg_uint8 *ptr_data;
DEBUG2("MBR dump\n");
for (i = 0; i < MMC_SPI_BLOCK_SIZE; i += 16) {
ptr_data = &data[i];
DEBUG2(" %04x: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
i,
ptr_data[ 0], ptr_data[ 1], ptr_data[ 2], ptr_data[ 3],
ptr_data[ 4], ptr_data[ 5], ptr_data[ 6], ptr_data[ 7],
ptr_data[ 8], ptr_data[ 9], ptr_data[10], ptr_data[11],
ptr_data[12], ptr_data[13], ptr_data[14], ptr_data[15]);
}
}
#endif
#if DEBUG > 0
DEBUG1("Read block 0 (partition table)\n");
DEBUG1("Signature 0x%02x 0x%02x, should be 0x55 0xaa\n", data[0x1fe], data[0x1ff]);
// There should be four 16-byte partition table entries at offsets
// 0x1be, 0x1ce, 0x1de and 0x1ee. The numbers are stored little-endian
for (i = 0; i < 4; i++) {
partition = &(data[0x1be + (0x10 * i)]);
DEBUG1("Partition %d: boot %02x, first CHS %02x, last CHS %02x, first sector %02x %02x %02x, file system %02x, last sector %02x %02x %02x\n", i, \
partition[0], \
((partition[2] & 0xC0) << 2) | partition[3], ((partition[6] & 0xC0) << 2) | partition[7], \
partition[1], partition[2], partition[3], partition[4], \
partition[5], partition[6], partition[7]);
DEBUG1(" : first sector (linear) %02x %02x %02x %02x, sector count %02x %02x %02x %02x\n", \
partition[11], partition[10], partition[9], partition[8], \
partition[15], partition[14], partition[13], partition[12]);
}
#endif
if ((0x0055 != data[0x1fe]) || (0x00aa != data[0x1ff])) {
mmc_spi_restore_baud(disk);
return -ENOTDIR;
}
partition = &(data[0x1be]);
lba_first = (partition[11] << 24) | (partition[10] << 16) | (partition[9] << 8) | partition[8];
lba_size = (partition[15] << 24) | (partition[14] << 16) | (partition[13] << 8) | partition[12];
lba_end = lba_first + lba_size - 1;
// First sector in c/h/s format
cylinder = ((partition[2] & 0xC0) << 2) | partition[3];
head = partition[1];
sector = partition[2] & 0x3F;
// lba_start == (((cylinder * Nh) + head) * Ns) + sector - 1, where (Nh == heads/cylinder) and (Ns == sectors/head)
// Strictly speaking we should be solving some simultaneous
// equations here for lba_start/lba_end, but that gets messy.
// The first partition is at the start of the card so cylinder will be 0,
// and we can ignore Nh.
CYG_ASSERT(0 == cylinder, "Driver assumption - partition 0 is at start of card\n");
CYG_ASSERT(0 != head, "Driver assumption - partition table is sensible\n");
disk->mmc_sectors_per_head = ((lba_first + 1) - sector) / head;
// Now for lba_end.
cylinder = ((partition[6] & 0xC0) << 2) | partition[7];
head = partition[5];
sector = partition[6] & 0x3F;
disk->mmc_heads_per_cylinder = ((((lba_end + 1) - sector) / disk->mmc_sectors_per_head) - head) / cylinder;
}
return ENOERR;
}
// Check that the current card is the one that was previously
// accessed. This may fail if the card has been removed and the
// slot is empty, or if the card has been removed and a different
// one inserted. It may pass incorrectly if a card is removed,
// modified elsewhere, and reinserted without eCos noticing.
// There is no way around that without some way of detecting
// disk removal in hardware.
//
// Re-reading the cid may actually be overkill. If a new card
// has been plugged in then it will not have been initialized so
// it will respond with 0xff anyway. It is very unlikely that
// an init sequence will have happened by accident.
static cyg_bool
mmc_spi_disk_changed(cyg_mmc_spi_disk_info_t* disk)
{
mmc_cid_register cid;
Cyg_ErrNo code;
code = mmc_spi_read_register(disk, MMC_REQUEST_SEND_CID, (cyg_uint8*) &cid, 16);
if (-ENODEV == code) {
return true;
}
if (0 != memcmp(&cid, &(disk->mmc_id), sizeof(mmc_cid_register))) {
return true;
}
return false;
}
// ----------------------------------------------------------------------------
// No hardware initialization is performed here. Even if a card is
// currently plugged in it may get removed before it gets mounted, so
// there is no point looking at the card here. It is still necessary
// to invoke the callback init function so that higher-level code gets
// a chance to do its bit.
static cyg_bool
mmc_spi_disk_init(struct cyg_devtab_entry* tab)
{
disk_channel* chan = (disk_channel*) tab->priv;
MMC_SPI_INIT_FF_DATA();
return (*chan->callbacks->disk_init)(tab);
}
// lookup() is called during a mount() operation, so this is the right
// place to check whether or not there is a card.
static char*
mmc_spi_disk_lookup_itoa(cyg_uint32 num, char* where)
{
if (0 == num) {
*where++ = '0';
} else {
char local[10]; // 2^32 just fits into 10 places
int index = 9;
while (num > 0) {
local[index--] = (num % 10) + '0';
num /= 10;
}
for (index += 1; index < 10; index++) {
*where++ = local[index];
}
}
return where;
}
static Cyg_ErrNo
mmc_spi_disk_lookup(struct cyg_devtab_entry** tab, struct cyg_devtab_entry *sub_tab, const char* name)
{
disk_channel* chan = (disk_channel*) (*tab)->priv;
cyg_mmc_spi_disk_info_t* disk = (cyg_mmc_spi_disk_info_t*) chan->dev_priv;
Cyg_ErrNo result;
DEBUG2("%s(): target name=%s\n", __FUNCTION__, name );
DEBUG2(" : device name=%s dep_name=%s\n", tab[0]->name, tab[0]->dep_name );
// DEBUG2(" : sub name=%s dep_name=%s\n", sub_tab->name, sub_tab->dep_name );
if (disk->mmc_connected) {
// There was a card plugged in last time we looked. Is it still there?
if (mmc_spi_disk_changed(disk)) {
// The old card is gone. Either there is no card plugged in, or
// it has been replaced with a different one. If the latter the
// existing mounts must be removed before anything sensible
// can be done.
disk->mmc_connected = false;
(*chan->callbacks->disk_disconnected)(chan);
if (0 != chan->info->mounts) {
return -ENODEV;
}
}
}
if ((0 != chan->info->mounts) && !disk->mmc_connected) {
// There are still mount points to an old card. We cannot accept
// new mount requests until those have been cleaned out.
return -ENODEV;
}
if (!disk->mmc_connected) {
cyg_disk_identify_t ident;
cyg_uint32 id_data;
char* where;
int i;
// The world is consistent and the higher-level code does not
// know anything about the current card, if any. Is there a
// card?
result = mmc_spi_check_for_disk(disk);
if (ENOERR != result) {
return result;
}
// A card has been found. Tell the higher-level code about it.
// This requires an identify structure, although it is not
// entirely clear what purpose that serves.
disk->mmc_connected = true;
// Serial number, up to 20 characters; The CID register contains
// various fields which can be used for this.
where = &(ident.serial[0]);
id_data = disk->mmc_id.cid_data[0]; // 1-byte manufacturer id -> 3 chars, 17 left
where = mmc_spi_disk_lookup_itoa(id_data, where);
id_data = (disk->mmc_id.cid_data[1] << 8) + disk->mmc_id.cid_data[2]; // 2-byte OEM ID, 5 chars, 12 left
where = mmc_spi_disk_lookup_itoa(id_data, where);
id_data = (disk->mmc_id.cid_data[10] << 24) + (disk->mmc_id.cid_data[11] << 16) +
(disk->mmc_id.cid_data[12] << 8) + disk->mmc_id.cid_data[13];
where = mmc_spi_disk_lookup_itoa(id_data, where); // 4-byte OEM ID, 10 chars, 2 left
// And terminate the string with a couple of places to spare.
*where = '\0';
// Firmware revision number. There is a one-byte product
// revision number in the CID, BCD-encoded
id_data = disk->mmc_id.cid_data[9] >> 4;
if (id_data <= 9) {
ident.firmware_rev[0] = id_data + '0';
} else {
ident.firmware_rev[0] = id_data - 10 + 'A';
}
id_data = disk->mmc_id.cid_data[9] & 0x0F;
if (id_data <= 9) {
ident.firmware_rev[1] = id_data + '0';
} else {
ident.firmware_rev[1] = id_data - 10 + 'A';
}
ident.firmware_rev[2] = '\0';
// Model number. There is a six-byte product name in the CID.
for (i = 0; i < 6; i++) {
if ((disk->mmc_id.cid_data[i + 3] >= 0x20) && (disk->mmc_id.cid_data[i+3] <= 0x7E)) {
ident.model_num[i] = disk->mmc_id.cid_data[i + 3];
} else {
break;
}
}
ident.model_num[i] = '\0';
// We don't have no cylinders, heads, or sectors, but
// higher-level code may interpret partition data using C/H/S
// addressing rather than LBA. Hence values for some of these
// settings were calculated above.
ident.cylinders_num = 1;
ident.heads_num = disk->mmc_heads_per_cylinder;
ident.sectors_num = disk->mmc_sectors_per_head;
ident.lba_sectors_num = disk->mmc_block_count;
ident.phys_block_size = disk->mmc_write_block_length/512;
ident.max_transfer = disk->mmc_write_block_length;
DEBUG1("Calling disk_connected(): serial %s, firmware %s, model %s, heads %d, sectors %d, lba_sectors_num %d, phys_block_size %d\n", \
ident.serial, ident.firmware_rev, ident.model_num, ident.heads_num, ident.sectors_num,
ident.lba_sectors_num, ident.phys_block_size);
(*chan->callbacks->disk_connected)(*tab, &ident);
// We now have a valid card and higher-level code knows about it. Fall through.
}
// And leave it to higher-level code to finish the lookup, taking
// into accounts partitions etc.
return (*chan->callbacks->disk_lookup)(tab, sub_tab, name);
}
static Cyg_ErrNo
mmc_spi_disk_read(disk_channel* chan, void* buf_arg, cyg_uint32 blocks, cyg_uint32 first_block)
{
cyg_mmc_spi_disk_info_t* disk = (cyg_mmc_spi_disk_info_t*) chan->dev_priv;
cyg_uint32 i;
cyg_uint8* buf = (cyg_uint8*) buf_arg;
Cyg_ErrNo code = ENOERR;
DEBUG1("%s(): first block %d, buf %p, len %lu blocks (%lu bytes)\n",
__FUNCTION__, first_block, buf, (unsigned long)blocks,
(unsigned long)blocks*512);
if (! disk->mmc_connected) {
return -ENODEV;
}
if ((first_block + blocks) >= disk->mmc_block_count) {
return -EINVAL;
}
for (i = 0; (i < blocks) && (ENOERR == code); i++) {
code = mmc_spi_read_disk_block(disk, buf, first_block + i, false);
buf += MMC_SPI_BLOCK_SIZE;
}
return code;
}
static Cyg_ErrNo
mmc_spi_disk_write(disk_channel* chan, const void* buf_arg, cyg_uint32 blocks, cyg_uint32 first_block)
{
cyg_mmc_spi_disk_info_t* disk = (cyg_mmc_spi_disk_info_t*) chan->dev_priv;
cyg_uint32 i;
const cyg_uint8* buf = (cyg_uint8*) buf_arg;
Cyg_ErrNo code = ENOERR;
DEBUG1("%s(): first block %d, buf %p, len %lu blocks (%lu bytes)\n",
__FUNCTION__, first_block, buf, (unsigned long)blocks,
(unsigned long)blocks*512);
if (! disk->mmc_connected) {
return -ENODEV;
}
if (disk->mmc_read_only) {
return -EROFS;
}
if ((first_block + blocks) >= disk->mmc_block_count) {
return -EINVAL;
}
for (i = 0; (i < blocks) && (ENOERR == code); i++) {
code = mmc_spi_write_disk_block(disk, buf, first_block + i);
buf += MMC_SPI_BLOCK_SIZE;
}
return code;
}
// get_config() and set_config(). There are no supported get_config() operations
// at this time.
static Cyg_ErrNo
mmc_spi_disk_get_config(disk_channel* chan, cyg_uint32 key, const void* buf, cyg_uint32* len)
{
CYG_UNUSED_PARAM(disk_channel*, chan);
CYG_UNUSED_PARAM(cyg_uint32, key);
CYG_UNUSED_PARAM(const void*, buf);
CYG_UNUSED_PARAM(cyg_uint32*, len);
return -EINVAL;
}
static Cyg_ErrNo
mmc_spi_disk_set_config(disk_channel* chan, cyg_uint32 key, const void* buf, cyg_uint32* len)
{
Cyg_ErrNo result = ENOERR;
cyg_mmc_spi_disk_info_t* disk = (cyg_mmc_spi_disk_info_t*) chan->dev_priv;
switch(key) {
case CYG_IO_SET_CONFIG_DISK_MOUNT:
// There will have been a successful lookup(), so there's
// little point in checking the disk again.
break;
case CYG_IO_SET_CONFIG_DISK_UMOUNT:
if (0 == chan->info->mounts) {
// If this is the last unmount of the card, mark it as
// disconnected. If the user then removes the card and
// plugs in a new one everything works cleanly. Also
// reset the SPI device's clockrate.
disk->mmc_connected = false;
mmc_spi_restore_baud(disk);
result = (chan->callbacks->disk_disconnected)(chan);
}
break;
}
return result;
}
// ----------------------------------------------------------------------------
// And finally the data structures that define this disk. Some of this
// should be moved into an exported header file so that applications can
// define additional disks.
//
// It is not obvious why there are quite so many structures. Apart
// from the devtab entries there are no tables involved, so there is
// no need to keep everything the same size. The cyg_disk_info_t could
// be the common part of a h/w info_t. The channel structure is
// redundant and its fields could be merged into the cyg_disk_info_t
// structure. That would leave a devtab entry, a disk info structure
// (h/w specific but with a common base), and a disk controller
// structure (ditto).
DISK_FUNS(cyg_mmc_spi_disk_funs,
mmc_spi_disk_read,
mmc_spi_disk_write,
mmc_spi_disk_get_config,
mmc_spi_disk_set_config
);
static cyg_mmc_spi_disk_info_t cyg_mmc_spi_disk0_hwinfo = {
.mmc_spi_dev = &cyg_spi_mmc_dev0,
#ifdef MMC_SPI_BACKGROUND_WRITES
.mmc_writing = 0,
#endif
.mmc_connected = 0
};
// No h/w controller structure is needed, but the address of the
// second argument is taken anyway.
DISK_CONTROLLER(cyg_mmc_spi_disk_controller_0, cyg_mmc_spi_disk0_hwinfo);
DISK_CHANNEL(cyg_mmc_spi_disk0_channel,
cyg_mmc_spi_disk_funs,
cyg_mmc_spi_disk0_hwinfo,
cyg_mmc_spi_disk_controller_0,
true, /* MBR support */
1 /* Number of partitions supported */
);
BLOCK_DEVTAB_ENTRY(cyg_mmc_spi_disk0_devtab_entry,
CYGDAT_DEVS_DISK_MMC_SPI_DISK0_NAME,
0,
&cyg_io_disk_devio,
&mmc_spi_disk_init,
&mmc_spi_disk_lookup,
&cyg_mmc_spi_disk0_channel);
// EOF mmc_spi.c
|