summaryrefslogtreecommitdiff
path: root/drivers/src/fsl_flash.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/src/fsl_flash.c')
-rw-r--r--drivers/src/fsl_flash.c3432
1 files changed, 3432 insertions, 0 deletions
diff --git a/drivers/src/fsl_flash.c b/drivers/src/fsl_flash.c
new file mode 100644
index 0000000..f63e6c9
--- /dev/null
+++ b/drivers/src/fsl_flash.c
@@ -0,0 +1,3432 @@
+/*
+ * Copyright (c) 2015-2016, Freescale Semiconductor, Inc.
+ * Copyright 2016-2017 NXP
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * o Redistributions of source code must retain the above copyright notice, this list
+ * of conditions and the following disclaimer.
+ *
+ * o Redistributions in binary form must reproduce the above copyright notice, this
+ * list of conditions and the following disclaimer in the documentation and/or
+ * other materials provided with the distribution.
+ *
+ * o Neither the name of the copyright holder nor the names of its
+ * contributors may be used to endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "fsl_flash.h"
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+
+/*!
+ * @name Misc utility defines
+ * @{
+ */
+/*! @brief Alignment utility. */
+#ifndef ALIGN_DOWN
+#define ALIGN_DOWN(x, a) ((x) & (uint32_t)(-((int32_t)(a))))
+#endif
+#ifndef ALIGN_UP
+#define ALIGN_UP(x, a) (-((int32_t)((uint32_t)(-((int32_t)(x))) & (uint32_t)(-((int32_t)(a))))))
+#endif
+
+/*! @brief Join bytes to word utility. */
+#define B1P4(b) (((uint32_t)(b)&0xFFU) << 24)
+#define B1P3(b) (((uint32_t)(b)&0xFFU) << 16)
+#define B1P2(b) (((uint32_t)(b)&0xFFU) << 8)
+#define B1P1(b) ((uint32_t)(b)&0xFFU)
+#define B2P3(b) (((uint32_t)(b)&0xFFFFU) << 16)
+#define B2P2(b) (((uint32_t)(b)&0xFFFFU) << 8)
+#define B2P1(b) ((uint32_t)(b)&0xFFFFU)
+#define B3P2(b) (((uint32_t)(b)&0xFFFFFFU) << 8)
+#define B3P1(b) ((uint32_t)(b)&0xFFFFFFU)
+#define BYTES_JOIN_TO_WORD_1_3(x, y) (B1P4(x) | B3P1(y))
+#define BYTES_JOIN_TO_WORD_2_2(x, y) (B2P3(x) | B2P1(y))
+#define BYTES_JOIN_TO_WORD_3_1(x, y) (B3P2(x) | B1P1(y))
+#define BYTES_JOIN_TO_WORD_1_1_2(x, y, z) (B1P4(x) | B1P3(y) | B2P1(z))
+#define BYTES_JOIN_TO_WORD_1_2_1(x, y, z) (B1P4(x) | B2P2(y) | B1P1(z))
+#define BYTES_JOIN_TO_WORD_2_1_1(x, y, z) (B2P3(x) | B1P2(y) | B1P1(z))
+#define BYTES_JOIN_TO_WORD_1_1_1_1(x, y, z, w) (B1P4(x) | B1P3(y) | B1P2(z) | B1P1(w))
+/*@}*/
+
+/*!
+ * @name Secondary flash configuration
+ * @{
+ */
+/*! @brief Indicates whether the secondary flash has its own protection register in flash module. */
+#if defined(FSL_FEATURE_FLASH_HAS_MULTIPLE_FLASH) && defined(FTFE_FPROTS_PROTS_MASK)
+#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER (1)
+#else
+#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER (0)
+#endif
+
+/*! @brief Indicates whether the secondary flash has its own Execute-Only access register in flash module. */
+#if defined(FSL_FEATURE_FLASH_HAS_MULTIPLE_FLASH) && defined(FTFE_FACSSS_SGSIZE_S_MASK)
+#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER (1)
+#else
+#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER (0)
+#endif
+/*@}*/
+
+/*!
+ * @name Flash cache ands speculation control defines
+ * @{
+ */
+#if defined(MCM_PLACR_CFCC_MASK) || defined(MCM_CPCR2_CCBC_MASK)
+#define FLASH_CACHE_IS_CONTROLLED_BY_MCM (1)
+#else
+#define FLASH_CACHE_IS_CONTROLLED_BY_MCM (0)
+#endif
+#if defined(FMC_PFB0CR_CINV_WAY_MASK) || defined(FMC_PFB01CR_CINV_WAY_MASK)
+#define FLASH_CACHE_IS_CONTROLLED_BY_FMC (1)
+#else
+#define FLASH_CACHE_IS_CONTROLLED_BY_FMC (0)
+#endif
+#if defined(MCM_PLACR_DFCS_MASK)
+#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM (1)
+#else
+#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM (0)
+#endif
+#if defined(MSCM_OCMDR_OCM1_MASK) || defined(MSCM_OCMDR_OCMC1_MASK)
+#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM (1)
+#else
+#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM (0)
+#endif
+#if defined(FMC_PFB0CR_S_INV_MASK) || defined(FMC_PFB0CR_S_B_INV_MASK) || defined(FMC_PFB01CR_S_INV_MASK) || \
+ defined(FMC_PFB01CR_S_B_INV_MASK)
+#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC (1)
+#else
+#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC (0)
+#endif
+/*@}*/
+
+/*! @brief Data flash IFR map Field*/
+#if defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
+#define DFLASH_IFR_READRESOURCE_START_ADDRESS 0x8003F8U
+#else /* FSL_FEATURE_FLASH_IS_FTFL == 1 or FSL_FEATURE_FLASH_IS_FTFA = =1 */
+#define DFLASH_IFR_READRESOURCE_START_ADDRESS 0x8000F8U
+#endif
+
+/*!
+ * @name Reserved FlexNVM size (For a variety of purposes) defines
+ * @{
+ */
+#define FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED 0xFFFFFFFFU
+#define FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED 0xFFFFU
+/*@}*/
+
+/*!
+ * @name Flash Program Once Field defines
+ * @{
+ */
+#if defined(FSL_FEATURE_FLASH_IS_FTFA) && FSL_FEATURE_FLASH_IS_FTFA
+/* FTFA parts(eg. K80, KL80, L5K) support both 4-bytes and 8-bytes unit size */
+#define FLASH_PROGRAM_ONCE_MIN_ID_8BYTES \
+ 0x10U /* Minimum Index indcating one of Progam Once Fields which is accessed in 8-byte records */
+#define FLASH_PROGRAM_ONCE_MAX_ID_8BYTES \
+ 0x13U /* Maximum Index indcating one of Progam Once Fields which is accessed in 8-byte records */
+#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 1
+#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 1
+#elif defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE
+/* FTFE parts(eg. K65, KE18) only support 8-bytes unit size */
+#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 0
+#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 1
+#elif defined(FSL_FEATURE_FLASH_IS_FTFL) && FSL_FEATURE_FLASH_IS_FTFL
+/* FTFL parts(eg. K20) only support 4-bytes unit size */
+#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 1
+#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 0
+#endif
+/*@}*/
+
+/*!
+ * @name Flash security status defines
+ * @{
+ */
+#define FLASH_SECURITY_STATE_KEYEN 0x80U
+#define FLASH_SECURITY_STATE_UNSECURED 0x02U
+#define FLASH_NOT_SECURE 0x01U
+#define FLASH_SECURE_BACKDOOR_ENABLED 0x02U
+#define FLASH_SECURE_BACKDOOR_DISABLED 0x04U
+/*@}*/
+
+/*!
+ * @name Flash controller command numbers
+ * @{
+ */
+#define FTFx_VERIFY_BLOCK 0x00U /*!< RD1BLK*/
+#define FTFx_VERIFY_SECTION 0x01U /*!< RD1SEC*/
+#define FTFx_PROGRAM_CHECK 0x02U /*!< PGMCHK*/
+#define FTFx_READ_RESOURCE 0x03U /*!< RDRSRC*/
+#define FTFx_PROGRAM_LONGWORD 0x06U /*!< PGM4*/
+#define FTFx_PROGRAM_PHRASE 0x07U /*!< PGM8*/
+#define FTFx_ERASE_BLOCK 0x08U /*!< ERSBLK*/
+#define FTFx_ERASE_SECTOR 0x09U /*!< ERSSCR*/
+#define FTFx_PROGRAM_SECTION 0x0BU /*!< PGMSEC*/
+#define FTFx_GENERATE_CRC 0x0CU /*!< CRCGEN*/
+#define FTFx_VERIFY_ALL_BLOCK 0x40U /*!< RD1ALL*/
+#define FTFx_READ_ONCE 0x41U /*!< RDONCE or RDINDEX*/
+#define FTFx_PROGRAM_ONCE 0x43U /*!< PGMONCE or PGMINDEX*/
+#define FTFx_ERASE_ALL_BLOCK 0x44U /*!< ERSALL*/
+#define FTFx_SECURITY_BY_PASS 0x45U /*!< VFYKEY*/
+#define FTFx_SWAP_CONTROL 0x46U /*!< SWAP*/
+#define FTFx_ERASE_ALL_BLOCK_UNSECURE 0x49U /*!< ERSALLU*/
+#define FTFx_VERIFY_ALL_EXECUTE_ONLY_SEGMENT 0x4AU /*!< RD1XA*/
+#define FTFx_ERASE_ALL_EXECUTE_ONLY_SEGMENT 0x4BU /*!< ERSXA*/
+#define FTFx_PROGRAM_PARTITION 0x80U /*!< PGMPART)*/
+#define FTFx_SET_FLEXRAM_FUNCTION 0x81U /*!< SETRAM*/
+ /*@}*/
+
+/*!
+ * @name Common flash register info defines
+ * @{
+ */
+#if defined(FTFA)
+#define FTFx FTFA
+#define FTFx_BASE FTFA_BASE
+#define FTFx_FSTAT_CCIF_MASK FTFA_FSTAT_CCIF_MASK
+#define FTFx_FSTAT_RDCOLERR_MASK FTFA_FSTAT_RDCOLERR_MASK
+#define FTFx_FSTAT_ACCERR_MASK FTFA_FSTAT_ACCERR_MASK
+#define FTFx_FSTAT_FPVIOL_MASK FTFA_FSTAT_FPVIOL_MASK
+#define FTFx_FSTAT_MGSTAT0_MASK FTFA_FSTAT_MGSTAT0_MASK
+#define FTFx_FSEC_SEC_MASK FTFA_FSEC_SEC_MASK
+#define FTFx_FSEC_KEYEN_MASK FTFA_FSEC_KEYEN_MASK
+#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
+#define FTFx_FCNFG_RAMRDY_MASK FTFA_FCNFG_RAMRDY_MASK
+#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
+#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
+#define FTFx_FCNFG_EEERDY_MASK FTFA_FCNFG_EEERDY_MASK
+#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
+#elif defined(FTFE)
+#define FTFx FTFE
+#define FTFx_BASE FTFE_BASE
+#define FTFx_FSTAT_CCIF_MASK FTFE_FSTAT_CCIF_MASK
+#define FTFx_FSTAT_RDCOLERR_MASK FTFE_FSTAT_RDCOLERR_MASK
+#define FTFx_FSTAT_ACCERR_MASK FTFE_FSTAT_ACCERR_MASK
+#define FTFx_FSTAT_FPVIOL_MASK FTFE_FSTAT_FPVIOL_MASK
+#define FTFx_FSTAT_MGSTAT0_MASK FTFE_FSTAT_MGSTAT0_MASK
+#define FTFx_FSEC_SEC_MASK FTFE_FSEC_SEC_MASK
+#define FTFx_FSEC_KEYEN_MASK FTFE_FSEC_KEYEN_MASK
+#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
+#define FTFx_FCNFG_RAMRDY_MASK FTFE_FCNFG_RAMRDY_MASK
+#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
+#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
+#define FTFx_FCNFG_EEERDY_MASK FTFE_FCNFG_EEERDY_MASK
+#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
+#elif defined(FTFL)
+#define FTFx FTFL
+#define FTFx_BASE FTFL_BASE
+#define FTFx_FSTAT_CCIF_MASK FTFL_FSTAT_CCIF_MASK
+#define FTFx_FSTAT_RDCOLERR_MASK FTFL_FSTAT_RDCOLERR_MASK
+#define FTFx_FSTAT_ACCERR_MASK FTFL_FSTAT_ACCERR_MASK
+#define FTFx_FSTAT_FPVIOL_MASK FTFL_FSTAT_FPVIOL_MASK
+#define FTFx_FSTAT_MGSTAT0_MASK FTFL_FSTAT_MGSTAT0_MASK
+#define FTFx_FSEC_SEC_MASK FTFL_FSEC_SEC_MASK
+#define FTFx_FSEC_KEYEN_MASK FTFL_FSEC_KEYEN_MASK
+#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM
+#define FTFx_FCNFG_RAMRDY_MASK FTFL_FCNFG_RAMRDY_MASK
+#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */
+#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM
+#define FTFx_FCNFG_EEERDY_MASK FTFL_FCNFG_EEERDY_MASK
+#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */
+#else
+#error "Unknown flash controller"
+#endif
+/*@}*/
+
+/*!
+ * @name Common flash register access info defines
+ * @{
+ */
+#define FTFx_FCCOB3_REG (FTFx->FCCOB3)
+#define FTFx_FCCOB5_REG (FTFx->FCCOB5)
+#define FTFx_FCCOB6_REG (FTFx->FCCOB6)
+#define FTFx_FCCOB7_REG (FTFx->FCCOB7)
+
+#if defined(FTFA_FPROTH0_PROT_MASK) || defined(FTFE_FPROTH0_PROT_MASK) || defined(FTFL_FPROTH0_PROT_MASK)
+#define FTFx_FPROT_HIGH_REG (FTFx->FPROTH3)
+#define FTFx_FPROTH3_REG (FTFx->FPROTH3)
+#define FTFx_FPROTH2_REG (FTFx->FPROTH2)
+#define FTFx_FPROTH1_REG (FTFx->FPROTH1)
+#define FTFx_FPROTH0_REG (FTFx->FPROTH0)
+#endif
+
+#if defined(FTFA_FPROTL0_PROT_MASK) || defined(FTFE_FPROTL0_PROT_MASK) || defined(FTFL_FPROTL0_PROT_MASK)
+#define FTFx_FPROT_LOW_REG (FTFx->FPROTL3)
+#define FTFx_FPROTL3_REG (FTFx->FPROTL3)
+#define FTFx_FPROTL2_REG (FTFx->FPROTL2)
+#define FTFx_FPROTL1_REG (FTFx->FPROTL1)
+#define FTFx_FPROTL0_REG (FTFx->FPROTL0)
+#elif defined(FTFA_FPROT0_PROT_MASK) || defined(FTFE_FPROT0_PROT_MASK) || defined(FTFL_FPROT0_PROT_MASK)
+#define FTFx_FPROT_LOW_REG (FTFx->FPROT3)
+#define FTFx_FPROTL3_REG (FTFx->FPROT3)
+#define FTFx_FPROTL2_REG (FTFx->FPROT2)
+#define FTFx_FPROTL1_REG (FTFx->FPROT1)
+#define FTFx_FPROTL0_REG (FTFx->FPROT0)
+#endif
+
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
+#define FTFx_FPROTSH_REG (FTFx->FPROTSH)
+#define FTFx_FPROTSL_REG (FTFx->FPROTSL)
+#endif
+
+#define FTFx_XACCH3_REG (FTFx->XACCH3)
+#define FTFx_XACCL3_REG (FTFx->XACCL3)
+
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER
+#define FTFx_XACCSH_REG (FTFx->XACCSH)
+#define FTFx_XACCSL_REG (FTFx->XACCSL)
+#endif
+/*@}*/
+
+/*!
+ * @brief Enumeration for access segment property.
+ */
+enum _flash_access_segment_property
+{
+ kFLASH_AccessSegmentBase = 256UL,
+};
+
+/*!
+ * @brief Enumeration for flash config area.
+ */
+enum _flash_config_area_range
+{
+ kFLASH_ConfigAreaStart = 0x400U,
+ kFLASH_ConfigAreaEnd = 0x40FU
+};
+
+/*!
+ * @name Flash register access type defines
+ * @{
+ */
+#define FTFx_REG8_ACCESS_TYPE volatile uint8_t *
+#define FTFx_REG32_ACCESS_TYPE volatile uint32_t *
+/*@}*/
+
+/*!
+ * @brief MCM cache register access info defines.
+ */
+#if defined(MCM_PLACR_CFCC_MASK)
+#define MCM_CACHE_CLEAR_MASK MCM_PLACR_CFCC_MASK
+#define MCM_CACHE_CLEAR_SHIFT MCM_PLACR_CFCC_SHIFT
+#if defined(MCM)
+#define MCM0_CACHE_REG MCM->PLACR
+#elif defined(MCM0)
+#define MCM0_CACHE_REG MCM0->PLACR
+#endif
+#if defined(MCM1)
+#define MCM1_CACHE_REG MCM1->PLACR
+#endif
+#elif defined(MCM_CPCR2_CCBC_MASK)
+#define MCM_CACHE_CLEAR_MASK MCM_CPCR2_CCBC_MASK
+#define MCM_CACHE_CLEAR_SHIFT MCM_CPCR2_CCBC_SHIFT
+#if defined(MCM)
+#define MCM0_CACHE_REG MCM->CPCR2
+#elif defined(MCM0)
+#define MCM0_CACHE_REG MCM0->CPCR2
+#endif
+#if defined(MCM1)
+#define MCM1_CACHE_REG MCM1->CPCR2
+#endif
+#endif
+
+/*!
+ * @brief MSCM cache register access info defines.
+ */
+#if defined(MSCM_OCMDR_OCM1_MASK)
+#define MSCM_SPECULATION_DISABLE_MASK MSCM_OCMDR_OCM1_MASK
+#define MSCM_SPECULATION_DISABLE_SHIFT MSCM_OCMDR_OCM1_SHIFT
+#define MSCM_SPECULATION_DISABLE(x) MSCM_OCMDR_OCM1(x)
+#elif defined(MSCM_OCMDR_OCMC1_MASK)
+#define MSCM_SPECULATION_DISABLE_MASK MSCM_OCMDR_OCMC1_MASK
+#define MSCM_SPECULATION_DISABLE_SHIFT MSCM_OCMDR_OCMC1_SHIFT
+#define MSCM_SPECULATION_DISABLE(x) MSCM_OCMDR_OCMC1(x)
+#endif
+
+/*!
+ * @brief MSCM prefetch speculation defines.
+ */
+#define MSCM_OCMDR_OCMC1_DFDS_MASK (0x10U)
+#define MSCM_OCMDR_OCMC1_DFCS_MASK (0x20U)
+
+#define MSCM_OCMDR_OCMC1_DFDS_SHIFT (4U)
+#define MSCM_OCMDR_OCMC1_DFCS_SHIFT (5U)
+
+/*!
+ * @brief Flash size encoding rule.
+ */
+#define FLASH_MEMORY_SIZE_ENCODING_RULE_K1_2 (0x00U)
+#define FLASH_MEMORY_SIZE_ENCODING_RULE_K3 (0x01U)
+
+#if defined(K32W042S1M2_M0P_SERIES) || defined(K32W042S1M2_M4_SERIES)
+#define FLASH_MEMORY_SIZE_ENCODING_RULE (FLASH_MEMORY_SIZE_ENCODING_RULE_K3)
+#else
+#define FLASH_MEMORY_SIZE_ENCODING_RULE (FLASH_MEMORY_SIZE_ENCODING_RULE_K1_2)
+#endif
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+/*! @brief Copy flash_run_command() to RAM*/
+static void copy_flash_run_command(uint32_t *flashRunCommand);
+/*! @brief Copy flash_cache_clear_command() to RAM*/
+static void copy_flash_common_bit_operation(uint32_t *flashCommonBitOperation);
+/*! @brief Check whether flash execute-in-ram functions are ready*/
+static status_t flash_check_execute_in_ram_function_info(flash_config_t *config);
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+
+/*! @brief Internal function Flash command sequence. Called by driver APIs only*/
+static status_t flash_command_sequence(flash_config_t *config);
+
+/*! @brief Perform the cache clear to the flash*/
+void flash_cache_clear(flash_config_t *config);
+
+/*! @brief Process the cache to the flash*/
+static void flash_cache_clear_process(flash_config_t *config, flash_cache_clear_process_t process);
+
+/*! @brief Validates the range and alignment of the given address range.*/
+static status_t flash_check_range(flash_config_t *config,
+ uint32_t startAddress,
+ uint32_t lengthInBytes,
+ uint32_t alignmentBaseline);
+/*! @brief Gets the right address, sector and block size of current flash type which is indicated by address.*/
+static status_t flash_get_matched_operation_info(flash_config_t *config,
+ uint32_t address,
+ flash_operation_config_t *info);
+/*! @brief Validates the given user key for flash erase APIs.*/
+static status_t flash_check_user_key(uint32_t key);
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+/*! @brief Updates FlexNVM memory partition status according to data flash 0 IFR.*/
+static status_t flash_update_flexnvm_memory_partition_status(flash_config_t *config);
+#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
+
+#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
+/*! @brief Validates the range of the given resource address.*/
+static status_t flash_check_resource_range(uint32_t start,
+ uint32_t lengthInBytes,
+ uint32_t alignmentBaseline,
+ flash_read_resource_option_t option);
+#endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */
+
+#if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
+/*! @brief Validates the gived swap control option.*/
+static status_t flash_check_swap_control_option(flash_swap_control_option_t option);
+#endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
+
+#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
+/*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/
+static status_t flash_validate_swap_indicator_address(flash_config_t *config, uint32_t address);
+#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
+
+#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
+/*! @brief Validates the gived flexram function option.*/
+static inline status_t flasn_check_flexram_function_option_range(flash_flexram_function_option_t option);
+#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
+
+/*! @brief Gets the flash protection information (region size, region count).*/
+static status_t flash_get_protection_info(flash_config_t *config, flash_protection_config_t *info);
+
+#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
+/*! @brief Gets the flash Execute-Only access information (Segment size, Segment count).*/
+static status_t flash_get_access_info(flash_config_t *config, flash_access_config_t *info);
+#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
+
+#if FLASH_CACHE_IS_CONTROLLED_BY_MCM
+/*! @brief Performs the cache clear to the flash by MCM.*/
+void mcm_flash_cache_clear(flash_config_t *config);
+#endif /* FLASH_CACHE_IS_CONTROLLED_BY_MCM */
+
+#if FLASH_CACHE_IS_CONTROLLED_BY_FMC
+/*! @brief Performs the cache clear to the flash by FMC.*/
+void fmc_flash_cache_clear(void);
+#endif /* FLASH_CACHE_IS_CONTROLLED_BY_FMC */
+
+#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
+/*! @brief Sets the prefetch speculation buffer to the flash by MSCM.*/
+void mscm_flash_prefetch_speculation_enable(bool enable);
+#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM */
+
+#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC
+/*! @brief Performs the prefetch speculation buffer clear to the flash by FMC.*/
+void fmc_flash_prefetch_speculation_clear(void);
+#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC */
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+
+/*! @brief Access to FTFx->FCCOB */
+volatile uint32_t *const kFCCOBx = (volatile uint32_t *)&FTFx_FCCOB3_REG;
+/*! @brief Access to FTFx->FPROT */
+volatile uint32_t *const kFPROTL = (volatile uint32_t *)&FTFx_FPROT_LOW_REG;
+#if defined(FTFx_FPROT_HIGH_REG)
+volatile uint32_t *const kFPROTH = (volatile uint32_t *)&FTFx_FPROT_HIGH_REG;
+#endif
+
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
+volatile uint8_t *const kFPROTSL = (volatile uint8_t *)&FTFx_FPROTSL_REG;
+volatile uint8_t *const kFPROTSH = (volatile uint8_t *)&FTFx_FPROTSH_REG;
+#endif
+
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+/*! @brief A function pointer used to point to relocated flash_run_command() */
+static void (*callFlashRunCommand)(FTFx_REG8_ACCESS_TYPE ftfx_fstat);
+/*! @brief A function pointer used to point to relocated flash_common_bit_operation() */
+static void (*callFlashCommonBitOperation)(FTFx_REG32_ACCESS_TYPE base,
+ uint32_t bitMask,
+ uint32_t bitShift,
+ uint32_t bitValue);
+
+/*!
+ * @brief Position independent code of flash_run_command()
+ *
+ * Note1: The prototype of C function is shown as below:
+ * @code
+ * void flash_run_command(FTFx_REG8_ACCESS_TYPE ftfx_fstat)
+ * {
+ * // clear CCIF bit
+ * *ftfx_fstat = FTFx_FSTAT_CCIF_MASK;
+ *
+ * // Check CCIF bit of the flash status register, wait till it is set.
+ * // IP team indicates that this loop will always complete.
+ * while (!((*ftfx_fstat) & FTFx_FSTAT_CCIF_MASK))
+ * {
+ * }
+ * }
+ * @endcode
+ * Note2: The binary code is generated by IAR 7.70.1
+ */
+const static uint16_t s_flashRunCommandFunctionCode[] = {
+ 0x2180, /* MOVS R1, #128 ; 0x80 */
+ 0x7001, /* STRB R1, [R0] */
+ /* @4: */
+ 0x7802, /* LDRB R2, [R0] */
+ 0x420a, /* TST R2, R1 */
+ 0xd0fc, /* BEQ.N @4 */
+ 0x4770 /* BX LR */
+};
+
+/*!
+ * @brief Position independent code of flash_common_bit_operation()
+ *
+ * Note1: The prototype of C function is shown as below:
+ * @code
+ * void flash_common_bit_operation(FTFx_REG32_ACCESS_TYPE base, uint32_t bitMask, uint32_t bitShift, uint32_t
+ * bitValue)
+ * {
+ * if (bitMask)
+ * {
+ * uint32_t value = (((uint32_t)(((uint32_t)(bitValue)) << bitShift)) & bitMask);
+ * *base = (*base & (~bitMask)) | value;
+ * }
+ *
+ * __ISB();
+ * __DSB();
+ * }
+ * @endcode
+ * Note2: The binary code is generated by IAR 7.70.1
+ */
+const static uint16_t s_flashCommonBitOperationFunctionCode[] = {
+ 0xb510, /* PUSH {R4, LR} */
+ 0x2900, /* CMP R1, #0 */
+ 0xd005, /* BEQ.N @12 */
+ 0x6804, /* LDR R4, [R0] */
+ 0x438c, /* BICS R4, R4, R1 */
+ 0x4093, /* LSLS R3, R3, R2 */
+ 0x4019, /* ANDS R1, R1, R3 */
+ 0x4321, /* ORRS R1, R1, R4 */
+ 0x6001, /* STR R1, [R0] */
+ /* @12: */
+ 0xf3bf, 0x8f6f, /* ISB */
+ 0xf3bf, 0x8f4f, /* DSB */
+ 0xbd10 /* POP {R4, PC} */
+};
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+
+#if (FLASH_DRIVER_IS_FLASH_RESIDENT && !FLASH_DRIVER_IS_EXPORTED)
+/*! @brief A static buffer used to hold flash_run_command() */
+static uint32_t s_flashRunCommand[kFLASH_ExecuteInRamFunctionMaxSizeInWords];
+/*! @brief A static buffer used to hold flash_common_bit_operation() */
+static uint32_t s_flashCommonBitOperation[kFLASH_ExecuteInRamFunctionMaxSizeInWords];
+/*! @brief Flash execute-in-ram function information */
+static flash_execute_in_ram_function_config_t s_flashExecuteInRamFunctionInfo;
+#endif
+
+/*!
+ * @brief Table of pflash sizes.
+ *
+ * The index into this table is the value of the SIM_FCFG1.PFSIZE bitfield.
+ *
+ * The values in this table have been right shifted 10 bits so that they will all fit within
+ * an 16-bit integer. To get the actual flash density, you must left shift the looked up value
+ * by 10 bits.
+ *
+ * Elements of this table have a value of 0 in cases where the PFSIZE bitfield value is
+ * reserved.
+ *
+ * Code to use the table:
+ * @code
+ * uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_PFSIZE_MASK) >> SIM_FCFG1_PFSIZE_SHIFT;
+ * flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10;
+ * @endcode
+ */
+#if (FLASH_MEMORY_SIZE_ENCODING_RULE == FLASH_MEMORY_SIZE_ENCODING_RULE_K1_2)
+const uint16_t kPFlashDensities[] = {
+ 8, /* 0x0 - 8192, 8KB */
+ 16, /* 0x1 - 16384, 16KB */
+ 24, /* 0x2 - 24576, 24KB */
+ 32, /* 0x3 - 32768, 32KB */
+ 48, /* 0x4 - 49152, 48KB */
+ 64, /* 0x5 - 65536, 64KB */
+ 96, /* 0x6 - 98304, 96KB */
+ 128, /* 0x7 - 131072, 128KB */
+ 192, /* 0x8 - 196608, 192KB */
+ 256, /* 0x9 - 262144, 256KB */
+ 384, /* 0xa - 393216, 384KB */
+ 512, /* 0xb - 524288, 512KB */
+ 768, /* 0xc - 786432, 768KB */
+ 1024, /* 0xd - 1048576, 1MB */
+ 1536, /* 0xe - 1572864, 1.5MB */
+ /* 2048, 0xf - 2097152, 2MB */
+};
+#elif(FLASH_MEMORY_SIZE_ENCODING_RULE == FLASH_MEMORY_SIZE_ENCODING_RULE_K3)
+const uint16_t kPFlashDensities[] = {
+ 0, /* 0x0 - undefined */
+ 0, /* 0x1 - undefined */
+ 0, /* 0x2 - undefined */
+ 0, /* 0x3 - undefined */
+ 0, /* 0x4 - undefined */
+ 0, /* 0x5 - undefined */
+ 0, /* 0x6 - undefined */
+ 0, /* 0x7 - undefined */
+ 0, /* 0x8 - undefined */
+ 0, /* 0x9 - undefined */
+ 256, /* 0xa - 262144, 256KB */
+ 0, /* 0xb - undefined */
+ 1024, /* 0xc - 1048576, 1MB */
+ 0, /* 0xd - undefined */
+ 0, /* 0xe - undefined */
+ 0, /* 0xf - undefined */
+};
+#endif
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+
+status_t FLASH_Init(flash_config_t *config)
+{
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED
+ if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
+ {
+/* calculate the flash density from SIM_FCFG1.PFSIZE */
+#if defined(SIM_FCFG1_CORE1_PFSIZE_MASK)
+ uint32_t flashDensity;
+ uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_CORE1_PFSIZE_MASK) >> SIM_FCFG1_CORE1_PFSIZE_SHIFT;
+ if (pfsize == 0xf)
+ {
+ flashDensity = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SIZE;
+ }
+ else
+ {
+ flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10;
+ }
+ config->PFlashTotalSize = flashDensity;
+#else
+ /* Unused code to solve MISRA-C issue*/
+ config->PFlashBlockBase = kPFlashDensities[0];
+ config->PFlashTotalSize = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SIZE;
+#endif
+ config->PFlashBlockBase = FSL_FEATURE_FLASH_PFLASH_1_START_ADDRESS;
+ config->PFlashBlockCount = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT;
+ config->PFlashSectorSize = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SECTOR_SIZE;
+ }
+ else
+#endif /* FLASH_SSD_IS_SECONDARY_FLASH_ENABLED */
+ {
+ uint32_t flashDensity;
+
+/* calculate the flash density from SIM_FCFG1.PFSIZE */
+#if defined(SIM_FCFG1_CORE0_PFSIZE_MASK)
+ uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_CORE0_PFSIZE_MASK) >> SIM_FCFG1_CORE0_PFSIZE_SHIFT;
+#elif defined(SIM_FCFG1_PFSIZE_MASK)
+ uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_PFSIZE_MASK) >> SIM_FCFG1_PFSIZE_SHIFT;
+#else
+#error "Unknown flash size"
+#endif
+ /* PFSIZE=0xf means that on customer parts the IFR was not correctly programmed.
+ * We just use the pre-defined flash size in feature file here to support pre-production parts */
+ if (pfsize == 0xf)
+ {
+ flashDensity = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_BLOCK_SIZE;
+ }
+ else
+ {
+ flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10;
+ }
+
+ /* fill out a few of the structure members */
+ config->PFlashBlockBase = FSL_FEATURE_FLASH_PFLASH_START_ADDRESS;
+ config->PFlashTotalSize = flashDensity;
+ config->PFlashBlockCount = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT;
+ config->PFlashSectorSize = FSL_FEATURE_FLASH_PFLASH_BLOCK_SECTOR_SIZE;
+ }
+
+ {
+#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER
+ if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
+ {
+ config->PFlashAccessSegmentSize = kFLASH_AccessSegmentBase << FTFx->FACSSS;
+ config->PFlashAccessSegmentCount = FTFx->FACSNS;
+ }
+ else
+#endif
+ {
+ config->PFlashAccessSegmentSize = kFLASH_AccessSegmentBase << FTFx->FACSS;
+ config->PFlashAccessSegmentCount = FTFx->FACSN;
+ }
+#else
+ config->PFlashAccessSegmentSize = 0;
+ config->PFlashAccessSegmentCount = 0;
+#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
+ }
+
+ config->PFlashCallback = NULL;
+
+/* copy required flash commands to RAM */
+#if (FLASH_DRIVER_IS_FLASH_RESIDENT && !FLASH_DRIVER_IS_EXPORTED)
+ if (kStatus_FLASH_Success != flash_check_execute_in_ram_function_info(config))
+ {
+ s_flashExecuteInRamFunctionInfo.activeFunctionCount = 0;
+ s_flashExecuteInRamFunctionInfo.flashRunCommand = s_flashRunCommand;
+ s_flashExecuteInRamFunctionInfo.flashCommonBitOperation = s_flashCommonBitOperation;
+ config->flashExecuteInRamFunctionInfo = &s_flashExecuteInRamFunctionInfo.activeFunctionCount;
+ FLASH_PrepareExecuteInRamFunctions(config);
+ }
+#endif
+
+ config->FlexRAMBlockBase = FSL_FEATURE_FLASH_FLEX_RAM_START_ADDRESS;
+ config->FlexRAMTotalSize = FSL_FEATURE_FLASH_FLEX_RAM_SIZE;
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+ {
+ status_t returnCode;
+ config->DFlashBlockBase = FSL_FEATURE_FLASH_FLEX_NVM_START_ADDRESS;
+ returnCode = flash_update_flexnvm_memory_partition_status(config);
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return returnCode;
+ }
+ }
+#endif
+
+ return kStatus_FLASH_Success;
+}
+
+status_t FLASH_SetCallback(flash_config_t *config, flash_callback_t callback)
+{
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ config->PFlashCallback = callback;
+
+ return kStatus_FLASH_Success;
+}
+
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+status_t FLASH_PrepareExecuteInRamFunctions(flash_config_t *config)
+{
+ flash_execute_in_ram_function_config_t *flashExecuteInRamFunctionInfo;
+
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ flashExecuteInRamFunctionInfo = (flash_execute_in_ram_function_config_t *)config->flashExecuteInRamFunctionInfo;
+
+ copy_flash_run_command(flashExecuteInRamFunctionInfo->flashRunCommand);
+ copy_flash_common_bit_operation(flashExecuteInRamFunctionInfo->flashCommonBitOperation);
+ flashExecuteInRamFunctionInfo->activeFunctionCount = kFLASH_ExecuteInRamFunctionTotalNum;
+
+ return kStatus_FLASH_Success;
+}
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+
+status_t FLASH_EraseAll(flash_config_t *config, uint32_t key)
+{
+ status_t returnCode;
+
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* preparing passing parameter to erase all flash blocks */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_BLOCK, 0xFFFFFFU);
+
+ /* Validate the user key */
+ returnCode = flash_check_user_key(key);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+
+ flash_cache_clear(config);
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+ /* Data flash IFR will be erased by erase all command, so we need to
+ * update FlexNVM memory partition status synchronously */
+ if (returnCode == kStatus_FLASH_Success)
+ {
+ returnCode = flash_update_flexnvm_memory_partition_status(config);
+ }
+#endif
+
+ return returnCode;
+}
+
+status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key)
+{
+ uint32_t sectorSize;
+ flash_operation_config_t flashOperationInfo;
+ uint32_t endAddress; /* storing end address */
+ uint32_t numberOfSectors; /* number of sectors calculated by endAddress */
+ status_t returnCode;
+
+ flash_get_matched_operation_info(config, start, &flashOperationInfo);
+
+ /* Check the supplied address range. */
+ returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.sectorCmdAddressAligment);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ /* Validate the user key */
+ returnCode = flash_check_user_key(key);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ start = flashOperationInfo.convertedAddress;
+ sectorSize = flashOperationInfo.activeSectorSize;
+
+ /* calculating Flash end address */
+ endAddress = start + lengthInBytes - 1;
+
+ /* re-calculate the endAddress and align it to the start of the next sector
+ * which will be used in the comparison below */
+ if (endAddress % sectorSize)
+ {
+ numberOfSectors = endAddress / sectorSize + 1;
+ endAddress = numberOfSectors * sectorSize - 1;
+ }
+
+ flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
+
+ /* the start address will increment to the next sector address
+ * until it reaches the endAdddress */
+ while (start <= endAddress)
+ {
+ /* preparing passing parameter to erase a flash block */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_SECTOR, start);
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+
+ /* calling flash callback function if it is available */
+ if (config->PFlashCallback)
+ {
+ config->PFlashCallback();
+ }
+
+ /* checking the success of command execution */
+ if (kStatus_FLASH_Success != returnCode)
+ {
+ break;
+ }
+ else
+ {
+ /* Increment to the next sector */
+ start += sectorSize;
+ }
+ }
+
+ flash_cache_clear(config);
+
+ return (returnCode);
+}
+
+#if defined(FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD) && FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD
+status_t FLASH_EraseAllUnsecure(flash_config_t *config, uint32_t key)
+{
+ status_t returnCode;
+
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* Prepare passing parameter to erase all flash blocks (unsecure). */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_BLOCK_UNSECURE, 0xFFFFFFU);
+
+ /* Validate the user key */
+ returnCode = flash_check_user_key(key);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+
+ flash_cache_clear(config);
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+ /* Data flash IFR will be erased by erase all unsecure command, so we need to
+ * update FlexNVM memory partition status synchronously */
+ if (returnCode == kStatus_FLASH_Success)
+ {
+ returnCode = flash_update_flexnvm_memory_partition_status(config);
+ }
+#endif
+
+ return returnCode;
+}
+#endif /* FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD */
+
+status_t FLASH_EraseAllExecuteOnlySegments(flash_config_t *config, uint32_t key)
+{
+ status_t returnCode;
+
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* preparing passing parameter to erase all execute-only segments
+ * 1st element for the FCCOB register */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_EXECUTE_ONLY_SEGMENT, 0xFFFFFFU);
+
+ /* Validate the user key */
+ returnCode = flash_check_user_key(key);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+
+ flash_cache_clear(config);
+
+ return returnCode;
+}
+
+status_t FLASH_Program(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t lengthInBytes)
+{
+ status_t returnCode;
+ flash_operation_config_t flashOperationInfo;
+
+ if (src == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ flash_get_matched_operation_info(config, start, &flashOperationInfo);
+
+ /* Check the supplied address range. */
+ returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.blockWriteUnitSize);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ start = flashOperationInfo.convertedAddress;
+
+ flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
+
+ while (lengthInBytes > 0)
+ {
+ /* preparing passing parameter to program the flash block */
+ kFCCOBx[1] = *src++;
+ if (4 == flashOperationInfo.blockWriteUnitSize)
+ {
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_LONGWORD, start);
+ }
+ else if (8 == flashOperationInfo.blockWriteUnitSize)
+ {
+ kFCCOBx[2] = *src++;
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_PHRASE, start);
+ }
+ else
+ {
+ }
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+
+ /* calling flash callback function if it is available */
+ if (config->PFlashCallback)
+ {
+ config->PFlashCallback();
+ }
+
+ /* checking for the success of command execution */
+ if (kStatus_FLASH_Success != returnCode)
+ {
+ break;
+ }
+ else
+ {
+ /* update start address for next iteration */
+ start += flashOperationInfo.blockWriteUnitSize;
+
+ /* update lengthInBytes for next iteration */
+ lengthInBytes -= flashOperationInfo.blockWriteUnitSize;
+ }
+ }
+
+ flash_cache_clear(config);
+
+ return (returnCode);
+}
+
+status_t FLASH_ProgramOnce(flash_config_t *config, uint32_t index, uint32_t *src, uint32_t lengthInBytes)
+{
+ status_t returnCode;
+
+ if ((config == NULL) || (src == NULL))
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* pass paramters to FTFx */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_PROGRAM_ONCE, index, 0xFFFFU);
+
+ kFCCOBx[1] = *src;
+
+/* Note: Have to seperate the first index from the rest if it equals 0
+ * to avoid a pointless comparison of unsigned int to 0 compiler warning */
+#if FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT
+#if FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT
+ if (((index == FLASH_PROGRAM_ONCE_MIN_ID_8BYTES) ||
+ /* Range check */
+ ((index >= FLASH_PROGRAM_ONCE_MIN_ID_8BYTES + 1) && (index <= FLASH_PROGRAM_ONCE_MAX_ID_8BYTES))) &&
+ (lengthInBytes == 8))
+#endif /* FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT */
+ {
+ kFCCOBx[2] = *(src + 1);
+ }
+#endif /* FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT */
+
+ flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+
+ flash_cache_clear(config);
+
+ return returnCode;
+}
+
+#if defined(FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD) && FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD
+status_t FLASH_ProgramSection(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t lengthInBytes)
+{
+ status_t returnCode;
+ uint32_t sectorSize;
+ flash_operation_config_t flashOperationInfo;
+#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
+ bool needSwitchFlexRamMode = false;
+#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
+
+ if (src == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ flash_get_matched_operation_info(config, start, &flashOperationInfo);
+
+ /* Check the supplied address range. */
+ returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.sectionCmdAddressAligment);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ start = flashOperationInfo.convertedAddress;
+ sectorSize = flashOperationInfo.activeSectorSize;
+
+#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
+ /* Switch function of FlexRAM if needed */
+ if (!(FTFx->FCNFG & FTFx_FCNFG_RAMRDY_MASK))
+ {
+ needSwitchFlexRamMode = true;
+
+ returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableAsRam);
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return kStatus_FLASH_SetFlexramAsRamError;
+ }
+ }
+#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
+
+ flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
+
+ while (lengthInBytes > 0)
+ {
+ /* Make sure the write operation doesn't span two sectors */
+ uint32_t endAddressOfCurrentSector = ALIGN_UP(start, sectorSize);
+ uint32_t lengthTobeProgrammedOfCurrentSector;
+ uint32_t currentOffset = 0;
+
+ if (endAddressOfCurrentSector == start)
+ {
+ endAddressOfCurrentSector += sectorSize;
+ }
+
+ if (lengthInBytes + start > endAddressOfCurrentSector)
+ {
+ lengthTobeProgrammedOfCurrentSector = endAddressOfCurrentSector - start;
+ }
+ else
+ {
+ lengthTobeProgrammedOfCurrentSector = lengthInBytes;
+ }
+
+ /* Program Current Sector */
+ while (lengthTobeProgrammedOfCurrentSector > 0)
+ {
+ /* Make sure the program size doesn't exceeds Acceleration RAM size */
+ uint32_t programSizeOfCurrentPass;
+ uint32_t numberOfPhases;
+
+ if (lengthTobeProgrammedOfCurrentSector > kFLASH_AccelerationRamSize)
+ {
+ programSizeOfCurrentPass = kFLASH_AccelerationRamSize;
+ }
+ else
+ {
+ programSizeOfCurrentPass = lengthTobeProgrammedOfCurrentSector;
+ }
+
+ /* Copy data to FlexRAM */
+ memcpy((void *)FSL_FEATURE_FLASH_FLEX_RAM_START_ADDRESS, src + currentOffset / 4, programSizeOfCurrentPass);
+ /* Set start address of the data to be programmed */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_SECTION, start + currentOffset);
+ /* Set program size in terms of FEATURE_FLASH_SECTION_CMD_ADDRESS_ALIGMENT */
+ numberOfPhases = programSizeOfCurrentPass / flashOperationInfo.sectionCmdAddressAligment;
+
+ kFCCOBx[1] = BYTES_JOIN_TO_WORD_2_2(numberOfPhases, 0xFFFFU);
+
+ /* Peform command sequence */
+ returnCode = flash_command_sequence(config);
+
+ /* calling flash callback function if it is available */
+ if (config->PFlashCallback)
+ {
+ config->PFlashCallback();
+ }
+
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ flash_cache_clear(config);
+ return returnCode;
+ }
+
+ lengthTobeProgrammedOfCurrentSector -= programSizeOfCurrentPass;
+ currentOffset += programSizeOfCurrentPass;
+ }
+
+ src += currentOffset / 4;
+ start += currentOffset;
+ lengthInBytes -= currentOffset;
+ }
+
+ flash_cache_clear(config);
+
+#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
+ /* Restore function of FlexRAM if needed. */
+ if (needSwitchFlexRamMode)
+ {
+ returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableForEeprom);
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return kStatus_FLASH_RecoverFlexramAsEepromError;
+ }
+ }
+#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
+
+ return returnCode;
+}
+#endif /* FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD */
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+status_t FLASH_EepromWrite(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes)
+{
+ status_t returnCode;
+ bool needSwitchFlexRamMode = false;
+
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* Validates the range of the given address */
+ if ((start < config->FlexRAMBlockBase) ||
+ ((start + lengthInBytes) > (config->FlexRAMBlockBase + config->EEpromTotalSize)))
+ {
+ return kStatus_FLASH_AddressError;
+ }
+
+ returnCode = kStatus_FLASH_Success;
+
+ /* Switch function of FlexRAM if needed */
+ if (!(FTFx->FCNFG & FTFx_FCNFG_EEERDY_MASK))
+ {
+ needSwitchFlexRamMode = true;
+
+ returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableForEeprom);
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return kStatus_FLASH_SetFlexramAsEepromError;
+ }
+ }
+
+ /* Write data to FlexRAM when it is used as EEPROM emulator */
+ while (lengthInBytes > 0)
+ {
+ if ((!(start & 0x3U)) && (lengthInBytes >= 4))
+ {
+ *(uint32_t *)start = *(uint32_t *)src;
+ start += 4;
+ src += 4;
+ lengthInBytes -= 4;
+ }
+ else if ((!(start & 0x1U)) && (lengthInBytes >= 2))
+ {
+ *(uint16_t *)start = *(uint16_t *)src;
+ start += 2;
+ src += 2;
+ lengthInBytes -= 2;
+ }
+ else
+ {
+ *(uint8_t *)start = *src;
+ start += 1;
+ src += 1;
+ lengthInBytes -= 1;
+ }
+ /* Wait till EEERDY bit is set */
+ while (!(FTFx->FCNFG & FTFx_FCNFG_EEERDY_MASK))
+ {
+ }
+
+ /* Check for protection violation error */
+ if (FTFx->FSTAT & FTFx_FSTAT_FPVIOL_MASK)
+ {
+ return kStatus_FLASH_ProtectionViolation;
+ }
+ }
+
+ /* Switch function of FlexRAM if needed */
+ if (needSwitchFlexRamMode)
+ {
+ returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableAsRam);
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return kStatus_FLASH_RecoverFlexramAsRamError;
+ }
+ }
+
+ return returnCode;
+}
+#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
+
+#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
+status_t FLASH_ReadResource(
+ flash_config_t *config, uint32_t start, uint32_t *dst, uint32_t lengthInBytes, flash_read_resource_option_t option)
+{
+ status_t returnCode;
+ flash_operation_config_t flashOperationInfo;
+
+ if ((config == NULL) || (dst == NULL))
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ flash_get_matched_operation_info(config, start, &flashOperationInfo);
+
+ /* Check the supplied address range. */
+ returnCode =
+ flash_check_resource_range(start, lengthInBytes, flashOperationInfo.resourceCmdAddressAligment, option);
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return returnCode;
+ }
+
+ while (lengthInBytes > 0)
+ {
+ /* preparing passing parameter */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_READ_RESOURCE, start);
+ if (flashOperationInfo.resourceCmdAddressAligment == 4)
+ {
+ kFCCOBx[2] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
+ }
+ else if (flashOperationInfo.resourceCmdAddressAligment == 8)
+ {
+ kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
+ }
+ else
+ {
+ }
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+
+ if (kStatus_FLASH_Success != returnCode)
+ {
+ break;
+ }
+
+ /* fetch data */
+ *dst++ = kFCCOBx[1];
+ if (flashOperationInfo.resourceCmdAddressAligment == 8)
+ {
+ *dst++ = kFCCOBx[2];
+ }
+ /* update start address for next iteration */
+ start += flashOperationInfo.resourceCmdAddressAligment;
+ /* update lengthInBytes for next iteration */
+ lengthInBytes -= flashOperationInfo.resourceCmdAddressAligment;
+ }
+
+ return (returnCode);
+}
+#endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */
+
+status_t FLASH_ReadOnce(flash_config_t *config, uint32_t index, uint32_t *dst, uint32_t lengthInBytes)
+{
+ status_t returnCode;
+
+ if ((config == NULL) || (dst == NULL))
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* pass paramters to FTFx */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_READ_ONCE, index, 0xFFFFU);
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+
+ if (kStatus_FLASH_Success == returnCode)
+ {
+ *dst = kFCCOBx[1];
+/* Note: Have to seperate the first index from the rest if it equals 0
+ * to avoid a pointless comparison of unsigned int to 0 compiler warning */
+#if FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT
+#if FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT
+ if (((index == FLASH_PROGRAM_ONCE_MIN_ID_8BYTES) ||
+ /* Range check */
+ ((index >= FLASH_PROGRAM_ONCE_MIN_ID_8BYTES + 1) && (index <= FLASH_PROGRAM_ONCE_MAX_ID_8BYTES))) &&
+ (lengthInBytes == 8))
+#endif /* FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT */
+ {
+ *(dst + 1) = kFCCOBx[2];
+ }
+#endif /* FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT */
+ }
+
+ return returnCode;
+}
+
+status_t FLASH_GetSecurityState(flash_config_t *config, flash_security_state_t *state)
+{
+ /* store data read from flash register */
+ uint8_t registerValue;
+
+ if ((config == NULL) || (state == NULL))
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* Get flash security register value */
+ registerValue = FTFx->FSEC;
+
+ /* check the status of the flash security bits in the security register */
+ if (FLASH_SECURITY_STATE_UNSECURED == (registerValue & FTFx_FSEC_SEC_MASK))
+ {
+ /* Flash in unsecured state */
+ *state = kFLASH_SecurityStateNotSecure;
+ }
+ else
+ {
+ /* Flash in secured state
+ * check for backdoor key security enable bit */
+ if (FLASH_SECURITY_STATE_KEYEN == (registerValue & FTFx_FSEC_KEYEN_MASK))
+ {
+ /* Backdoor key security enabled */
+ *state = kFLASH_SecurityStateBackdoorEnabled;
+ }
+ else
+ {
+ /* Backdoor key security disabled */
+ *state = kFLASH_SecurityStateBackdoorDisabled;
+ }
+ }
+
+ return (kStatus_FLASH_Success);
+}
+
+status_t FLASH_SecurityBypass(flash_config_t *config, const uint8_t *backdoorKey)
+{
+ uint8_t registerValue; /* registerValue */
+ status_t returnCode; /* return code variable */
+
+ if ((config == NULL) || (backdoorKey == NULL))
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* set the default return code as kStatus_Success */
+ returnCode = kStatus_FLASH_Success;
+
+ /* Get flash security register value */
+ registerValue = FTFx->FSEC;
+
+ /* Check to see if flash is in secure state (any state other than 0x2)
+ * If not, then skip this since flash is not secure */
+ if (0x02 != (registerValue & 0x03))
+ {
+ /* preparing passing parameter to erase a flash block */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_SECURITY_BY_PASS, 0xFFFFFFU);
+ kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_1_1_1(backdoorKey[0], backdoorKey[1], backdoorKey[2], backdoorKey[3]);
+ kFCCOBx[2] = BYTES_JOIN_TO_WORD_1_1_1_1(backdoorKey[4], backdoorKey[5], backdoorKey[6], backdoorKey[7]);
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+ }
+
+ return (returnCode);
+}
+
+status_t FLASH_VerifyEraseAll(flash_config_t *config, flash_margin_value_t margin)
+{
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* preparing passing parameter to verify all block command */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_VERIFY_ALL_BLOCK, margin, 0xFFFFU);
+
+ /* calling flash command sequence function to execute the command */
+ return flash_command_sequence(config);
+}
+
+status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_margin_value_t margin)
+{
+ /* Check arguments. */
+ uint32_t blockSize;
+ flash_operation_config_t flashOperationInfo;
+ uint32_t nextBlockStartAddress;
+ uint32_t remainingBytes;
+ status_t returnCode;
+
+ flash_get_matched_operation_info(config, start, &flashOperationInfo);
+
+ returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.sectionCmdAddressAligment);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ flash_get_matched_operation_info(config, start, &flashOperationInfo);
+ start = flashOperationInfo.convertedAddress;
+ blockSize = flashOperationInfo.activeBlockSize;
+
+ nextBlockStartAddress = ALIGN_UP(start, blockSize);
+ if (nextBlockStartAddress == start)
+ {
+ nextBlockStartAddress += blockSize;
+ }
+
+ remainingBytes = lengthInBytes;
+
+ while (remainingBytes)
+ {
+ uint32_t numberOfPhrases;
+ uint32_t verifyLength = nextBlockStartAddress - start;
+ if (verifyLength > remainingBytes)
+ {
+ verifyLength = remainingBytes;
+ }
+
+ numberOfPhrases = verifyLength / flashOperationInfo.sectionCmdAddressAligment;
+
+ /* Fill in verify section command parameters. */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_VERIFY_SECTION, start);
+ kFCCOBx[1] = BYTES_JOIN_TO_WORD_2_1_1(numberOfPhrases, margin, 0xFFU);
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ remainingBytes -= verifyLength;
+ start += verifyLength;
+ nextBlockStartAddress += blockSize;
+ }
+
+ return kStatus_FLASH_Success;
+}
+
+status_t FLASH_VerifyProgram(flash_config_t *config,
+ uint32_t start,
+ uint32_t lengthInBytes,
+ const uint32_t *expectedData,
+ flash_margin_value_t margin,
+ uint32_t *failedAddress,
+ uint32_t *failedData)
+{
+ status_t returnCode;
+ flash_operation_config_t flashOperationInfo;
+
+ if (expectedData == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ flash_get_matched_operation_info(config, start, &flashOperationInfo);
+
+ returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.checkCmdAddressAligment);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ start = flashOperationInfo.convertedAddress;
+
+ while (lengthInBytes)
+ {
+ /* preparing passing parameter to program check the flash block */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_CHECK, start);
+ kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(margin, 0xFFFFFFU);
+ kFCCOBx[2] = *expectedData;
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+
+ /* checking for the success of command execution */
+ if (kStatus_FLASH_Success != returnCode)
+ {
+ if (failedAddress)
+ {
+ *failedAddress = start;
+ }
+ if (failedData)
+ {
+ *failedData = 0;
+ }
+ break;
+ }
+
+ lengthInBytes -= flashOperationInfo.checkCmdAddressAligment;
+ expectedData += flashOperationInfo.checkCmdAddressAligment / sizeof(*expectedData);
+ start += flashOperationInfo.checkCmdAddressAligment;
+ }
+
+ return (returnCode);
+}
+
+status_t FLASH_VerifyEraseAllExecuteOnlySegments(flash_config_t *config, flash_margin_value_t margin)
+{
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* preparing passing parameter to verify erase all execute-only segments command */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_VERIFY_ALL_EXECUTE_ONLY_SEGMENT, margin, 0xFFFFU);
+
+ /* calling flash command sequence function to execute the command */
+ return flash_command_sequence(config);
+}
+
+status_t FLASH_IsProtected(flash_config_t *config,
+ uint32_t start,
+ uint32_t lengthInBytes,
+ flash_protection_state_t *protection_state)
+{
+ uint32_t endAddress; /* end address for protection check */
+ uint32_t regionCheckedCounter; /* increments each time the flash address was checked for
+ * protection status */
+ uint32_t regionCounter; /* incrementing variable used to increment through the flash
+ * protection regions */
+ uint32_t protectStatusCounter; /* increments each time a flash region was detected as protected */
+
+ uint8_t flashRegionProtectStatus[FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT]; /* array of the protection
+ * status for each
+ * protection region */
+ uint32_t flashRegionAddress[FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT +
+ 1]; /* array of the start addresses for each flash
+ * protection region. Note this is REGION_COUNT+1
+ * due to requiring the next start address after
+ * the end of flash for loop-check purposes below */
+ flash_protection_config_t flashProtectionInfo; /* flash protection information */
+ status_t returnCode;
+
+ if (protection_state == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* Check the supplied address range. */
+ returnCode = flash_check_range(config, start, lengthInBytes, FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ /* Get necessary flash protection information. */
+ returnCode = flash_get_protection_info(config, &flashProtectionInfo);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ /* calculating Flash end address */
+ endAddress = start + lengthInBytes;
+
+ /* populate the flashRegionAddress array with the start address of each flash region */
+ regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
+
+ /* populate up to 33rd element of array, this is the next address after end of flash array */
+ while (regionCounter <= flashProtectionInfo.regionCount)
+ {
+ flashRegionAddress[regionCounter] =
+ flashProtectionInfo.regionBase + flashProtectionInfo.regionSize * regionCounter;
+ regionCounter++;
+ }
+
+ /* populate flashRegionProtectStatus array with status information
+ * Protection status for each region is stored in the FPROT[3:0] registers
+ * Each bit represents one region of flash
+ * 4 registers * 8-bits-per-register = 32-bits (32-regions)
+ * The convention is:
+ * FPROT3[bit 0] is the first protection region (start of flash memory)
+ * FPROT0[bit 7] is the last protection region (end of flash memory)
+ * regionCounter is used to determine which FPROT[3:0] register to check for protection status
+ * Note: FPROT=1 means NOT protected, FPROT=0 means protected */
+ regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
+ while (regionCounter < flashProtectionInfo.regionCount)
+ {
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
+ if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
+ {
+ if (regionCounter < 8)
+ {
+ flashRegionProtectStatus[regionCounter] = (FTFx_FPROTSL_REG >> regionCounter) & (0x01u);
+ }
+ else if ((regionCounter >= 8) && (regionCounter < 16))
+ {
+ flashRegionProtectStatus[regionCounter] = (FTFx_FPROTSH_REG >> (regionCounter - 8)) & (0x01u);
+ }
+ else
+ {
+ break;
+ }
+ }
+ else
+#endif
+ {
+ /* Note: So far protection region count may be 16/20/24/32/64 */
+ if (regionCounter < 8)
+ {
+ flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL3_REG >> regionCounter) & (0x01u);
+ }
+ else if ((regionCounter >= 8) && (regionCounter < 16))
+ {
+ flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL2_REG >> (regionCounter - 8)) & (0x01u);
+ }
+#if defined(FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT) && (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT > 16)
+#if (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT == 20)
+ else if ((regionCounter >= 16) && (regionCounter < 20))
+ {
+ flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL1_REG >> (regionCounter - 16)) & (0x01u);
+ }
+#else
+ else if ((regionCounter >= 16) && (regionCounter < 24))
+ {
+ flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL1_REG >> (regionCounter - 16)) & (0x01u);
+ }
+#endif /* (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT == 20) */
+#endif
+#if defined(FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT) && (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT > 24)
+ else if ((regionCounter >= 24) && (regionCounter < 32))
+ {
+ flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL0_REG >> (regionCounter - 24)) & (0x01u);
+ }
+#endif
+#if defined(FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT) && \
+ (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT == 64)
+ else if (regionCounter < 40)
+ {
+ flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH3_REG >> (regionCounter - 32)) & (0x01u);
+ }
+ else if (regionCounter < 48)
+ {
+ flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH2_REG >> (regionCounter - 40)) & (0x01u);
+ }
+ else if (regionCounter < 56)
+ {
+ flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH1_REG >> (regionCounter - 48)) & (0x01u);
+ }
+ else if (regionCounter < 64)
+ {
+ flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH0_REG >> (regionCounter - 56)) & (0x01u);
+ }
+#endif
+ else
+ {
+ break;
+ }
+ }
+
+ regionCounter++;
+ }
+
+ /* loop through the flash regions and check
+ * desired flash address range for protection status
+ * loop stops when it is detected that start has exceeded the endAddress */
+ regionCounter = 0; /* make sure regionCounter is initialized to 0 first */
+ regionCheckedCounter = 0;
+ protectStatusCounter = 0; /* make sure protectStatusCounter is initialized to 0 first */
+ while (start < endAddress)
+ {
+ /* check to see if the address falls within this protection region
+ * Note that if the entire flash is to be checked, the last protection
+ * region checked would consist of the last protection start address and
+ * the start address following the end of flash */
+ if ((start >= flashRegionAddress[regionCounter]) && (start < flashRegionAddress[regionCounter + 1]))
+ {
+ /* increment regionCheckedCounter to indicate this region was checked */
+ regionCheckedCounter++;
+
+ /* check the protection status of this region
+ * Note: FPROT=1 means NOT protected, FPROT=0 means protected */
+ if (!flashRegionProtectStatus[regionCounter])
+ {
+ /* increment protectStatusCounter to indicate this region is protected */
+ protectStatusCounter++;
+ }
+ start += flashProtectionInfo.regionSize; /* increment to an address within the next region */
+ }
+ regionCounter++; /* increment regionCounter to check for the next flash protection region */
+ }
+
+ /* if protectStatusCounter == 0, then no region of the desired flash region is protected */
+ if (protectStatusCounter == 0)
+ {
+ *protection_state = kFLASH_ProtectionStateUnprotected;
+ }
+ /* if protectStatusCounter == regionCheckedCounter, then each region checked was protected */
+ else if (protectStatusCounter == regionCheckedCounter)
+ {
+ *protection_state = kFLASH_ProtectionStateProtected;
+ }
+ /* if protectStatusCounter != regionCheckedCounter, then protection status is mixed
+ * In other words, some regions are protected while others are unprotected */
+ else
+ {
+ *protection_state = kFLASH_ProtectionStateMixed;
+ }
+
+ return (returnCode);
+}
+
+status_t FLASH_IsExecuteOnly(flash_config_t *config,
+ uint32_t start,
+ uint32_t lengthInBytes,
+ flash_execute_only_access_state_t *access_state)
+{
+#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
+ flash_access_config_t flashAccessInfo; /* flash Execute-Only information */
+#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
+ status_t returnCode;
+
+ if (access_state == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* Check the supplied address range. */
+ returnCode = flash_check_range(config, start, lengthInBytes, FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
+ /* Get necessary flash Execute-Only information. */
+ returnCode = flash_get_access_info(config, &flashAccessInfo);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ {
+ uint32_t executeOnlySegmentCounter = 0;
+
+ /* calculating end address */
+ uint32_t endAddress = start + lengthInBytes;
+
+ /* Aligning start address and end address */
+ uint32_t alignedStartAddress = ALIGN_DOWN(start, flashAccessInfo.SegmentSize);
+ uint32_t alignedEndAddress = ALIGN_UP(endAddress, flashAccessInfo.SegmentSize);
+
+ uint32_t segmentIndex = 0;
+ uint32_t maxSupportedExecuteOnlySegmentCount =
+ (alignedEndAddress - alignedStartAddress) / flashAccessInfo.SegmentSize;
+
+ while (start < endAddress)
+ {
+ uint32_t xacc;
+
+ segmentIndex = (start - flashAccessInfo.SegmentBase) / flashAccessInfo.SegmentSize;
+
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER
+ if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
+ {
+ /* For secondary flash, The two XACCS registers allow up to 16 restricted segments of equal memory size.
+ */
+ if (segmentIndex < 8)
+ {
+ xacc = *(const volatile uint8_t *)&FTFx_XACCSL_REG;
+ }
+ else if (segmentIndex < flashAccessInfo.SegmentCount)
+ {
+ xacc = *(const volatile uint8_t *)&FTFx_XACCSH_REG;
+ segmentIndex -= 8;
+ }
+ else
+ {
+ break;
+ }
+ }
+ else
+#endif
+ {
+ /* For primary flash, The eight XACC registers allow up to 64 restricted segments of equal memory size.
+ */
+ if (segmentIndex < 32)
+ {
+ xacc = *(const volatile uint32_t *)&FTFx_XACCL3_REG;
+ }
+ else if (segmentIndex < flashAccessInfo.SegmentCount)
+ {
+ xacc = *(const volatile uint32_t *)&FTFx_XACCH3_REG;
+ segmentIndex -= 32;
+ }
+ else
+ {
+ break;
+ }
+ }
+
+ /* Determine if this address range is in a execute-only protection flash segment. */
+ if ((~xacc) & (1u << segmentIndex))
+ {
+ executeOnlySegmentCounter++;
+ }
+
+ start += flashAccessInfo.SegmentSize;
+ }
+
+ if (executeOnlySegmentCounter < 1u)
+ {
+ *access_state = kFLASH_AccessStateUnLimited;
+ }
+ else if (executeOnlySegmentCounter < maxSupportedExecuteOnlySegmentCount)
+ {
+ *access_state = kFLASH_AccessStateMixed;
+ }
+ else
+ {
+ *access_state = kFLASH_AccessStateExecuteOnly;
+ }
+ }
+#else
+ *access_state = kFLASH_AccessStateUnLimited;
+#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
+
+ return (returnCode);
+}
+
+status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t *value)
+{
+ if ((config == NULL) || (value == NULL))
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ switch (whichProperty)
+ {
+ case kFLASH_PropertyPflashSectorSize:
+ *value = config->PFlashSectorSize;
+ break;
+
+ case kFLASH_PropertyPflashTotalSize:
+ *value = config->PFlashTotalSize;
+ break;
+
+ case kFLASH_PropertyPflashBlockSize:
+ *value = config->PFlashTotalSize / FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT;
+ break;
+
+ case kFLASH_PropertyPflashBlockCount:
+ *value = (uint32_t)config->PFlashBlockCount;
+ break;
+
+ case kFLASH_PropertyPflashBlockBaseAddr:
+ *value = config->PFlashBlockBase;
+ break;
+
+ case kFLASH_PropertyPflashFacSupport:
+#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL)
+ *value = FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL;
+#else
+ *value = 0;
+#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */
+ break;
+
+ case kFLASH_PropertyPflashAccessSegmentSize:
+ *value = config->PFlashAccessSegmentSize;
+ break;
+
+ case kFLASH_PropertyPflashAccessSegmentCount:
+ *value = config->PFlashAccessSegmentCount;
+ break;
+
+ case kFLASH_PropertyFlexRamBlockBaseAddr:
+ *value = config->FlexRAMBlockBase;
+ break;
+
+ case kFLASH_PropertyFlexRamTotalSize:
+ *value = config->FlexRAMTotalSize;
+ break;
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+ case kFLASH_PropertyDflashSectorSize:
+ *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SECTOR_SIZE;
+ break;
+ case kFLASH_PropertyDflashTotalSize:
+ *value = config->DFlashTotalSize;
+ break;
+ case kFLASH_PropertyDflashBlockSize:
+ *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SIZE;
+ break;
+ case kFLASH_PropertyDflashBlockCount:
+ *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_COUNT;
+ break;
+ case kFLASH_PropertyDflashBlockBaseAddr:
+ *value = config->DFlashBlockBase;
+ break;
+ case kFLASH_PropertyEepromTotalSize:
+ *value = config->EEpromTotalSize;
+ break;
+#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
+
+ default: /* catch inputs that are not recognized */
+ return kStatus_FLASH_UnknownProperty;
+ }
+
+ return kStatus_FLASH_Success;
+}
+
+status_t FLASH_SetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t value)
+{
+ status_t status = kStatus_FLASH_Success;
+
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ switch (whichProperty)
+ {
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED
+ case kFLASH_PropertyFlashMemoryIndex:
+ if ((value != (uint32_t)kFLASH_MemoryIndexPrimaryFlash) &&
+ (value != (uint32_t)kFLASH_MemoryIndexSecondaryFlash))
+ {
+ return kStatus_FLASH_InvalidPropertyValue;
+ }
+ config->FlashMemoryIndex = (uint8_t)value;
+ break;
+#endif /* FLASH_SSD_IS_SECONDARY_FLASH_ENABLED */
+
+ case kFLASH_PropertyFlashCacheControllerIndex:
+ if ((value != (uint32_t)kFLASH_CacheControllerIndexForCore0) &&
+ (value != (uint32_t)kFLASH_CacheControllerIndexForCore1))
+ {
+ return kStatus_FLASH_InvalidPropertyValue;
+ }
+ config->FlashCacheControllerIndex = (uint8_t)value;
+ break;
+
+ case kFLASH_PropertyPflashSectorSize:
+ case kFLASH_PropertyPflashTotalSize:
+ case kFLASH_PropertyPflashBlockSize:
+ case kFLASH_PropertyPflashBlockCount:
+ case kFLASH_PropertyPflashBlockBaseAddr:
+ case kFLASH_PropertyPflashFacSupport:
+ case kFLASH_PropertyPflashAccessSegmentSize:
+ case kFLASH_PropertyPflashAccessSegmentCount:
+ case kFLASH_PropertyFlexRamBlockBaseAddr:
+ case kFLASH_PropertyFlexRamTotalSize:
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+ case kFLASH_PropertyDflashSectorSize:
+ case kFLASH_PropertyDflashTotalSize:
+ case kFLASH_PropertyDflashBlockSize:
+ case kFLASH_PropertyDflashBlockCount:
+ case kFLASH_PropertyDflashBlockBaseAddr:
+ case kFLASH_PropertyEepromTotalSize:
+#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
+ status = kStatus_FLASH_ReadOnlyProperty;
+ break;
+ default: /* catch inputs that are not recognized */
+ status = kStatus_FLASH_UnknownProperty;
+ break;
+ }
+
+ return status;
+}
+
+#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
+status_t FLASH_SetFlexramFunction(flash_config_t *config, flash_flexram_function_option_t option)
+{
+ status_t status;
+
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ status = flasn_check_flexram_function_option_range(option);
+ if (status != kStatus_FLASH_Success)
+ {
+ return status;
+ }
+
+ /* preparing passing parameter to verify all block command */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_SET_FLEXRAM_FUNCTION, option, 0xFFFFU);
+
+ /* calling flash command sequence function to execute the command */
+ return flash_command_sequence(config);
+}
+#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
+
+#if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
+status_t FLASH_SwapControl(flash_config_t *config,
+ uint32_t address,
+ flash_swap_control_option_t option,
+ flash_swap_state_config_t *returnInfo)
+{
+ status_t returnCode;
+
+ if ((config == NULL) || (returnInfo == NULL))
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ if (address & (FSL_FEATURE_FLASH_PFLASH_SWAP_CONTROL_CMD_ADDRESS_ALIGMENT - 1))
+ {
+ return kStatus_FLASH_AlignmentError;
+ }
+
+ /* Make sure address provided is in the lower half of Program flash but not in the Flash Configuration Field */
+ if ((address >= (config->PFlashTotalSize / 2)) ||
+ ((address >= kFLASH_ConfigAreaStart) && (address <= kFLASH_ConfigAreaEnd)))
+ {
+ return kStatus_FLASH_SwapIndicatorAddressError;
+ }
+
+ /* Check the option. */
+ returnCode = flash_check_swap_control_option(option);
+ if (returnCode)
+ {
+ return returnCode;
+ }
+
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_SWAP_CONTROL, address);
+ kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU);
+
+ returnCode = flash_command_sequence(config);
+
+ returnInfo->flashSwapState = (flash_swap_state_t)FTFx_FCCOB5_REG;
+ returnInfo->currentSwapBlockStatus = (flash_swap_block_status_t)FTFx_FCCOB6_REG;
+ returnInfo->nextSwapBlockStatus = (flash_swap_block_status_t)FTFx_FCCOB7_REG;
+
+ return returnCode;
+}
+#endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
+
+#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
+status_t FLASH_Swap(flash_config_t *config, uint32_t address, flash_swap_function_option_t option)
+{
+ flash_swap_state_config_t returnInfo;
+ status_t returnCode;
+
+ memset(&returnInfo, 0xFFU, sizeof(returnInfo));
+
+ do
+ {
+ returnCode = FLASH_SwapControl(config, address, kFLASH_SwapControlOptionReportStatus, &returnInfo);
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return returnCode;
+ }
+
+ if (kFLASH_SwapFunctionOptionDisable == option)
+ {
+ if (returnInfo.flashSwapState == kFLASH_SwapStateDisabled)
+ {
+ return kStatus_FLASH_Success;
+ }
+ else if (returnInfo.flashSwapState == kFLASH_SwapStateUninitialized)
+ {
+ /* The swap system changed to the DISABLED state with Program flash block 0
+ * located at relative flash address 0x0_0000 */
+ returnCode = FLASH_SwapControl(config, address, kFLASH_SwapControlOptionDisableSystem, &returnInfo);
+ }
+ else
+ {
+ /* Swap disable should be requested only when swap system is in the uninitialized state */
+ return kStatus_FLASH_SwapSystemNotInUninitialized;
+ }
+ }
+ else
+ {
+ /* When first swap: the initial swap state is Uninitialized, flash swap inidicator address is unset,
+ * the swap procedure should be Uninitialized -> Update-Erased -> Complete.
+ * After the first swap has been completed, the flash swap inidicator address cannot be modified
+ * unless EraseAllBlocks command is issued, the swap procedure is changed to Update -> Update-Erased ->
+ * Complete. */
+ switch (returnInfo.flashSwapState)
+ {
+ case kFLASH_SwapStateUninitialized:
+ /* If current swap mode is Uninitialized, Initialize Swap to Initialized/READY state. */
+ returnCode =
+ FLASH_SwapControl(config, address, kFLASH_SwapControlOptionIntializeSystem, &returnInfo);
+ break;
+ case kFLASH_SwapStateReady:
+ /* Validate whether the address provided to the swap system is matched to
+ * swap indicator address in the IFR */
+ returnCode = flash_validate_swap_indicator_address(config, address);
+ if (returnCode == kStatus_FLASH_Success)
+ {
+ /* If current swap mode is Initialized/Ready, Initialize Swap to UPDATE state. */
+ returnCode =
+ FLASH_SwapControl(config, address, kFLASH_SwapControlOptionSetInUpdateState, &returnInfo);
+ }
+ break;
+ case kFLASH_SwapStateUpdate:
+ /* If current swap mode is Update, Erase indicator sector in non active block
+ * to proceed swap system to update-erased state */
+ returnCode = FLASH_Erase(config, address + (config->PFlashTotalSize >> 1),
+ FSL_FEATURE_FLASH_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT, kFLASH_ApiEraseKey);
+ break;
+ case kFLASH_SwapStateUpdateErased:
+ /* If current swap mode is Update or Update-Erased, progress Swap to COMPLETE State */
+ returnCode =
+ FLASH_SwapControl(config, address, kFLASH_SwapControlOptionSetInCompleteState, &returnInfo);
+ break;
+ case kFLASH_SwapStateComplete:
+ break;
+ case kFLASH_SwapStateDisabled:
+ /* When swap system is in disabled state, We need to clear swap system back to uninitialized
+ * by issuing EraseAllBlocks command */
+ returnCode = kStatus_FLASH_SwapSystemNotInUninitialized;
+ break;
+ default:
+ returnCode = kStatus_FLASH_InvalidArgument;
+ break;
+ }
+ }
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ break;
+ }
+ } while (!((kFLASH_SwapStateComplete == returnInfo.flashSwapState) && (kFLASH_SwapFunctionOptionEnable == option)));
+
+ return returnCode;
+}
+#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
+
+#if defined(FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD) && FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD
+status_t FLASH_ProgramPartition(flash_config_t *config,
+ flash_partition_flexram_load_option_t option,
+ uint32_t eepromDataSizeCode,
+ uint32_t flexnvmPartitionCode)
+{
+ status_t returnCode;
+
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* eepromDataSizeCode[7:6], flexnvmPartitionCode[7:4] should be all 1'b0
+ * or it will cause access error. */
+ /* eepromDataSizeCode &= 0x3FU; */
+ /* flexnvmPartitionCode &= 0x0FU; */
+
+ /* preparing passing parameter to program the flash block */
+ kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_2_1(FTFx_PROGRAM_PARTITION, 0xFFFFU, option);
+ kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_1_2(eepromDataSizeCode, flexnvmPartitionCode, 0xFFFFU);
+
+ flash_cache_clear_process(config, kFLASH_CacheClearProcessPre);
+
+ /* calling flash command sequence function to execute the command */
+ returnCode = flash_command_sequence(config);
+
+ flash_cache_clear(config);
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+ /* Data flash IFR will be updated by program partition command during reset sequence,
+ * so we just set reserved values for partitioned FlexNVM size here */
+ config->EEpromTotalSize = FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED;
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif
+
+ return (returnCode);
+}
+#endif /* FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD */
+
+status_t FLASH_PflashSetProtection(flash_config_t *config, pflash_protection_status_t *protectStatus)
+{
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
+ if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
+ {
+ *kFPROTSL = protectStatus->valueLow32b.prots16b.protsl;
+ if (protectStatus->valueLow32b.prots16b.protsl != *kFPROTSL)
+ {
+ return kStatus_FLASH_CommandFailure;
+ }
+
+ *kFPROTSH = protectStatus->valueLow32b.prots16b.protsh;
+ if (protectStatus->valueLow32b.prots16b.protsh != *kFPROTSH)
+ {
+ return kStatus_FLASH_CommandFailure;
+ }
+ }
+ else
+#endif
+ {
+ *kFPROTL = protectStatus->valueLow32b.protl32b;
+ if (protectStatus->valueLow32b.protl32b != *kFPROTL)
+ {
+ return kStatus_FLASH_CommandFailure;
+ }
+
+#if defined(FTFx_FPROT_HIGH_REG)
+ *kFPROTH = protectStatus->valueHigh32b.proth32b;
+ if (protectStatus->valueHigh32b.proth32b != *kFPROTH)
+ {
+ return kStatus_FLASH_CommandFailure;
+ }
+#endif
+ }
+
+ return kStatus_FLASH_Success;
+}
+
+status_t FLASH_PflashGetProtection(flash_config_t *config, pflash_protection_status_t *protectStatus)
+{
+ if ((config == NULL) || (protectStatus == NULL))
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
+ if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
+ {
+ protectStatus->valueLow32b.prots16b.protsl = *kFPROTSL;
+ protectStatus->valueLow32b.prots16b.protsh = *kFPROTSH;
+ }
+ else
+#endif
+ {
+ protectStatus->valueLow32b.protl32b = *kFPROTL;
+#if defined(FTFx_FPROT_HIGH_REG)
+ protectStatus->valueHigh32b.proth32b = *kFPROTH;
+#endif
+ }
+
+ return kStatus_FLASH_Success;
+}
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+status_t FLASH_DflashSetProtection(flash_config_t *config, uint8_t protectStatus)
+{
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ if ((config->DFlashTotalSize == 0) || (config->DFlashTotalSize == FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED))
+ {
+ return kStatus_FLASH_CommandNotSupported;
+ }
+
+ FTFx->FDPROT = protectStatus;
+
+ if (FTFx->FDPROT != protectStatus)
+ {
+ return kStatus_FLASH_CommandFailure;
+ }
+
+ return kStatus_FLASH_Success;
+}
+#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+status_t FLASH_DflashGetProtection(flash_config_t *config, uint8_t *protectStatus)
+{
+ if ((config == NULL) || (protectStatus == NULL))
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ if ((config->DFlashTotalSize == 0) || (config->DFlashTotalSize == FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED))
+ {
+ return kStatus_FLASH_CommandNotSupported;
+ }
+
+ *protectStatus = FTFx->FDPROT;
+
+ return kStatus_FLASH_Success;
+}
+#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+status_t FLASH_EepromSetProtection(flash_config_t *config, uint8_t protectStatus)
+{
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ if ((config->EEpromTotalSize == 0) || (config->EEpromTotalSize == FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED))
+ {
+ return kStatus_FLASH_CommandNotSupported;
+ }
+
+ FTFx->FEPROT = protectStatus;
+
+ if (FTFx->FEPROT != protectStatus)
+ {
+ return kStatus_FLASH_CommandFailure;
+ }
+
+ return kStatus_FLASH_Success;
+}
+#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+status_t FLASH_EepromGetProtection(flash_config_t *config, uint8_t *protectStatus)
+{
+ if ((config == NULL) || (protectStatus == NULL))
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ if ((config->EEpromTotalSize == 0) || (config->EEpromTotalSize == FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED))
+ {
+ return kStatus_FLASH_CommandNotSupported;
+ }
+
+ *protectStatus = FTFx->FEPROT;
+
+ return kStatus_FLASH_Success;
+}
+#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
+
+status_t FLASH_PflashSetPrefetchSpeculation(flash_prefetch_speculation_status_t *speculationStatus)
+{
+#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM
+ {
+ FTFx_REG32_ACCESS_TYPE regBase;
+#if defined(MCM)
+ regBase = (FTFx_REG32_ACCESS_TYPE)&MCM->PLACR;
+#elif defined(MCM0)
+ regBase = (FTFx_REG32_ACCESS_TYPE)&MCM0->PLACR;
+#endif
+ if (speculationStatus->instructionOption == kFLASH_prefetchSpeculationOptionDisable)
+ {
+ if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable)
+ {
+ return kStatus_FLASH_InvalidSpeculationOption;
+ }
+ else
+ {
+ *regBase |= MCM_PLACR_DFCS_MASK;
+ }
+ }
+ else
+ {
+ *regBase &= ~MCM_PLACR_DFCS_MASK;
+ if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable)
+ {
+ *regBase |= MCM_PLACR_EFDS_MASK;
+ }
+ else
+ {
+ *regBase &= ~MCM_PLACR_EFDS_MASK;
+ }
+ }
+ }
+#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC
+ {
+ FTFx_REG32_ACCESS_TYPE regBase;
+ uint32_t b0dpeMask, b0ipeMask;
+#if defined(FMC_PFB01CR_B0DPE_MASK)
+ regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR;
+ b0dpeMask = FMC_PFB01CR_B0DPE_MASK;
+ b0ipeMask = FMC_PFB01CR_B0IPE_MASK;
+#elif defined(FMC_PFB0CR_B0DPE_MASK)
+ regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR;
+ b0dpeMask = FMC_PFB0CR_B0DPE_MASK;
+ b0ipeMask = FMC_PFB0CR_B0IPE_MASK;
+#endif
+ if (speculationStatus->instructionOption == kFLASH_prefetchSpeculationOptionEnable)
+ {
+ *regBase |= b0ipeMask;
+ }
+ else
+ {
+ *regBase &= ~b0ipeMask;
+ }
+ if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable)
+ {
+ *regBase |= b0dpeMask;
+ }
+ else
+ {
+ *regBase &= ~b0dpeMask;
+ }
+
+/* Invalidate Prefetch Speculation Buffer */
+#if defined(FMC_PFB01CR_S_INV_MASK)
+ FMC->PFB01CR |= FMC_PFB01CR_S_INV_MASK;
+#elif defined(FMC_PFB01CR_S_B_INV_MASK)
+ FMC->PFB01CR |= FMC_PFB01CR_S_B_INV_MASK;
+#elif defined(FMC_PFB0CR_S_INV_MASK)
+ FMC->PFB0CR |= FMC_PFB0CR_S_INV_MASK;
+#elif defined(FMC_PFB0CR_S_B_INV_MASK)
+ FMC->PFB0CR |= FMC_PFB0CR_S_B_INV_MASK;
+#endif
+ }
+#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
+ {
+ FTFx_REG32_ACCESS_TYPE regBase;
+ uint32_t flashSpeculationMask, dataPrefetchMask;
+ regBase = (FTFx_REG32_ACCESS_TYPE)&MSCM->OCMDR[0];
+ flashSpeculationMask = MSCM_OCMDR_OCMC1_DFCS_MASK;
+ dataPrefetchMask = MSCM_OCMDR_OCMC1_DFDS_MASK;
+
+ if (speculationStatus->instructionOption == kFLASH_prefetchSpeculationOptionDisable)
+ {
+ if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable)
+ {
+ return kStatus_FLASH_InvalidSpeculationOption;
+ }
+ else
+ {
+ *regBase |= flashSpeculationMask;
+ }
+ }
+ else
+ {
+ *regBase &= ~flashSpeculationMask;
+ if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable)
+ {
+ *regBase &= ~dataPrefetchMask;
+ }
+ else
+ {
+ *regBase |= dataPrefetchMask;
+ }
+ }
+ }
+#endif /* FSL_FEATURE_FTFx_MCM_FLASH_CACHE_CONTROLS */
+
+ return kStatus_FLASH_Success;
+}
+
+status_t FLASH_PflashGetPrefetchSpeculation(flash_prefetch_speculation_status_t *speculationStatus)
+{
+ memset(speculationStatus, 0, sizeof(flash_prefetch_speculation_status_t));
+
+ /* Assuming that all speculation options are enabled. */
+ speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionEnable;
+ speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionEnable;
+
+#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM
+ {
+ uint32_t value;
+#if defined(MCM)
+ value = MCM->PLACR;
+#elif defined(MCM0)
+ value = MCM0->PLACR;
+#endif
+ if (value & MCM_PLACR_DFCS_MASK)
+ {
+ /* Speculation buffer is off. */
+ speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionDisable;
+ speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable;
+ }
+ else
+ {
+ /* Speculation buffer is on for instruction. */
+ if (!(value & MCM_PLACR_EFDS_MASK))
+ {
+ /* Speculation buffer is off for data. */
+ speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable;
+ }
+ }
+ }
+#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC
+ {
+ uint32_t value;
+ uint32_t b0dpeMask, b0ipeMask;
+#if defined(FMC_PFB01CR_B0DPE_MASK)
+ value = FMC->PFB01CR;
+ b0dpeMask = FMC_PFB01CR_B0DPE_MASK;
+ b0ipeMask = FMC_PFB01CR_B0IPE_MASK;
+#elif defined(FMC_PFB0CR_B0DPE_MASK)
+ value = FMC->PFB0CR;
+ b0dpeMask = FMC_PFB0CR_B0DPE_MASK;
+ b0ipeMask = FMC_PFB0CR_B0IPE_MASK;
+#endif
+ if (!(value & b0dpeMask))
+ {
+ /* Do not prefetch in response to data references. */
+ speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable;
+ }
+ if (!(value & b0ipeMask))
+ {
+ /* Do not prefetch in response to instruction fetches. */
+ speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionDisable;
+ }
+ }
+#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
+ {
+ uint32_t value;
+ uint32_t flashSpeculationMask, dataPrefetchMask;
+ value = MSCM->OCMDR[0];
+ flashSpeculationMask = MSCM_OCMDR_OCMC1_DFCS_MASK;
+ dataPrefetchMask = MSCM_OCMDR_OCMC1_DFDS_MASK;
+
+ if (value & flashSpeculationMask)
+ {
+ /* Speculation buffer is off. */
+ speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionDisable;
+ speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable;
+ }
+ else
+ {
+ /* Speculation buffer is on for instruction. */
+ if (value & dataPrefetchMask)
+ {
+ /* Speculation buffer is off for data. */
+ speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable;
+ }
+ }
+ }
+#endif
+
+ return kStatus_FLASH_Success;
+}
+
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+/*!
+ * @brief Copy PIC of flash_run_command() to RAM
+ */
+static void copy_flash_run_command(uint32_t *flashRunCommand)
+{
+ assert(sizeof(s_flashRunCommandFunctionCode) <= (kFLASH_ExecuteInRamFunctionMaxSizeInWords * 4));
+
+ /* Since the value of ARM function pointer is always odd, but the real start address
+ * of function memory should be even, that's why +1 operation exist. */
+ memcpy((void *)flashRunCommand, (void *)s_flashRunCommandFunctionCode, sizeof(s_flashRunCommandFunctionCode));
+ callFlashRunCommand = (void (*)(FTFx_REG8_ACCESS_TYPE ftfx_fstat))((uint32_t)flashRunCommand + 1);
+}
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+
+/*!
+ * @brief Flash Command Sequence
+ *
+ * This function is used to perform the command write sequence to the flash.
+ *
+ * @param driver Pointer to storage for the driver runtime state.
+ * @return An error code or kStatus_FLASH_Success
+ */
+static status_t flash_command_sequence(flash_config_t *config)
+{
+ uint8_t registerValue;
+
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+ /* clear RDCOLERR & ACCERR & FPVIOL flag in flash status register */
+ FTFx->FSTAT = FTFx_FSTAT_RDCOLERR_MASK | FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_FPVIOL_MASK;
+
+ status_t returnCode = flash_check_execute_in_ram_function_info(config);
+ if (kStatus_FLASH_Success != returnCode)
+ {
+ return returnCode;
+ }
+
+ /* We pass the ftfx_fstat address as a parameter to flash_run_comamnd() instead of using
+ * pre-processed MICRO sentences or operating global variable in flash_run_comamnd()
+ * to make sure that flash_run_command() will be compiled into position-independent code (PIC). */
+ callFlashRunCommand((FTFx_REG8_ACCESS_TYPE)(&FTFx->FSTAT));
+#else
+ /* clear RDCOLERR & ACCERR & FPVIOL flag in flash status register */
+ FTFx->FSTAT = FTFx_FSTAT_RDCOLERR_MASK | FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_FPVIOL_MASK;
+
+ /* clear CCIF bit */
+ FTFx->FSTAT = FTFx_FSTAT_CCIF_MASK;
+
+ /* Check CCIF bit of the flash status register, wait till it is set.
+ * IP team indicates that this loop will always complete. */
+ while (!(FTFx->FSTAT & FTFx_FSTAT_CCIF_MASK))
+ {
+ }
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+
+ /* Check error bits */
+ /* Get flash status register value */
+ registerValue = FTFx->FSTAT;
+
+ /* checking access error */
+ if (registerValue & FTFx_FSTAT_ACCERR_MASK)
+ {
+ return kStatus_FLASH_AccessError;
+ }
+ /* checking protection error */
+ else if (registerValue & FTFx_FSTAT_FPVIOL_MASK)
+ {
+ return kStatus_FLASH_ProtectionViolation;
+ }
+ /* checking MGSTAT0 non-correctable error */
+ else if (registerValue & FTFx_FSTAT_MGSTAT0_MASK)
+ {
+ return kStatus_FLASH_CommandFailure;
+ }
+ else
+ {
+ return kStatus_FLASH_Success;
+ }
+}
+
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+/*!
+ * @brief Copy PIC of flash_common_bit_operation() to RAM
+ *
+ */
+static void copy_flash_common_bit_operation(uint32_t *flashCommonBitOperation)
+{
+ assert(sizeof(s_flashCommonBitOperationFunctionCode) <= (kFLASH_ExecuteInRamFunctionMaxSizeInWords * 4));
+
+ /* Since the value of ARM function pointer is always odd, but the real start address
+ * of function memory should be even, that's why +1 operation exist. */
+ memcpy((void *)flashCommonBitOperation, (void *)s_flashCommonBitOperationFunctionCode,
+ sizeof(s_flashCommonBitOperationFunctionCode));
+ callFlashCommonBitOperation = (void (*)(FTFx_REG32_ACCESS_TYPE base, uint32_t bitMask, uint32_t bitShift,
+ uint32_t bitValue))((uint32_t)flashCommonBitOperation + 1);
+ /* Workround for some devices which doesn't need this function */
+ callFlashCommonBitOperation((FTFx_REG32_ACCESS_TYPE)0, 0, 0, 0);
+}
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+
+#if FLASH_CACHE_IS_CONTROLLED_BY_MCM
+/*! @brief Performs the cache clear to the flash by MCM.*/
+void mcm_flash_cache_clear(flash_config_t *config)
+{
+ FTFx_REG32_ACCESS_TYPE regBase = (FTFx_REG32_ACCESS_TYPE)&MCM0_CACHE_REG;
+
+#if defined(MCM0) && defined(MCM1)
+ if (config->FlashCacheControllerIndex == (uint8_t)kFLASH_CacheControllerIndexForCore1)
+ {
+ regBase = (FTFx_REG32_ACCESS_TYPE)&MCM1_CACHE_REG;
+ }
+#endif
+
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+ callFlashCommonBitOperation(regBase, MCM_CACHE_CLEAR_MASK, MCM_CACHE_CLEAR_SHIFT, 1U);
+#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */
+ *regBase |= MCM_CACHE_CLEAR_MASK;
+
+ /* Memory barriers for good measure.
+ * All Cache, Branch predictor and TLB maintenance operations before this instruction complete */
+ __ISB();
+ __DSB();
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+}
+#endif /* FLASH_CACHE_IS_CONTROLLED_BY_MCM */
+
+#if FLASH_CACHE_IS_CONTROLLED_BY_FMC
+/*! @brief Performs the cache clear to the flash by FMC.*/
+void fmc_flash_cache_clear(void)
+{
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+ FTFx_REG32_ACCESS_TYPE regBase = (FTFx_REG32_ACCESS_TYPE)0;
+#if defined(FMC_PFB01CR_CINV_WAY_MASK)
+ regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR;
+ callFlashCommonBitOperation(regBase, FMC_PFB01CR_CINV_WAY_MASK, FMC_PFB01CR_CINV_WAY_SHIFT, 0xFU);
+#else
+ regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR;
+ callFlashCommonBitOperation(regBase, FMC_PFB0CR_CINV_WAY_MASK, FMC_PFB0CR_CINV_WAY_SHIFT, 0xFU);
+#endif
+#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */
+#if defined(FMC_PFB01CR_CINV_WAY_MASK)
+ FMC->PFB01CR = (FMC->PFB01CR & ~FMC_PFB01CR_CINV_WAY_MASK) | FMC_PFB01CR_CINV_WAY(~0);
+#else
+ FMC->PFB0CR = (FMC->PFB0CR & ~FMC_PFB0CR_CINV_WAY_MASK) | FMC_PFB0CR_CINV_WAY(~0);
+#endif
+ /* Memory barriers for good measure.
+ * All Cache, Branch predictor and TLB maintenance operations before this instruction complete */
+ __ISB();
+ __DSB();
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+}
+#endif /* FLASH_CACHE_IS_CONTROLLED_BY_FMC */
+
+#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
+/*! @brief Performs the prefetch speculation buffer clear to the flash by MSCM.*/
+void mscm_flash_prefetch_speculation_enable(bool enable)
+{
+ uint8_t setValue;
+ if (enable)
+ {
+ setValue = 0x0U;
+ }
+ else
+ {
+ setValue = 0x3U;
+ }
+
+/* The OCMDR[0] is always used to prefetch main Pflash*/
+/* For device with FlexNVM support, the OCMDR[1] is used to prefetch Dflash.
+ * For device with secondary flash support, the OCMDR[1] is used to prefetch secondary Pflash. */
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+ callFlashCommonBitOperation((FTFx_REG32_ACCESS_TYPE)&MSCM->OCMDR[0], MSCM_SPECULATION_DISABLE_MASK,
+ MSCM_SPECULATION_DISABLE_SHIFT, setValue);
+#if FLASH_SSD_IS_FLEXNVM_ENABLED || BL_HAS_SECONDARY_INTERNAL_FLASH
+ callFlashCommonBitOperation((FTFx_REG32_ACCESS_TYPE)&MSCM->OCMDR[1], MSCM_SPECULATION_DISABLE_MASK,
+ MSCM_SPECULATION_DISABLE_SHIFT, setValue);
+#endif
+#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */
+ MSCM->OCMDR[0] |= MSCM_SPECULATION_DISABLE(setValue);
+
+ /* Memory barriers for good measure.
+ * All Cache, Branch predictor and TLB maintenance operations before this instruction complete */
+ __ISB();
+ __DSB();
+#if FLASH_SSD_IS_FLEXNVM_ENABLED || BL_HAS_SECONDARY_INTERNAL_FLASH
+ MSCM->OCMDR[1] |= MSCM_SPECULATION_DISABLE(setValue);
+
+ /* Each cahce clear instaruction should be followed by below code*/
+ __ISB();
+ __DSB();
+#endif
+
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+}
+#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM */
+
+#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC
+/*! @brief Performs the prefetch speculation buffer clear to the flash by FMC.*/
+void fmc_flash_prefetch_speculation_clear(void)
+{
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+ FTFx_REG32_ACCESS_TYPE regBase = (FTFx_REG32_ACCESS_TYPE)0;
+#if defined(FMC_PFB01CR_S_INV_MASK)
+ regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR;
+ callFlashCommonBitOperation(regBase, FMC_PFB01CR_S_INV_MASK, FMC_PFB01CR_S_INV_SHIFT, 1U);
+#elif defined(FMC_PFB01CR_S_B_INV_MASK)
+ regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR;
+ callFlashCommonBitOperation(regBase, FMC_PFB01CR_S_B_INV_MASK, FMC_PFB01CR_S_B_INV_SHIFT, 1U);
+#elif defined(FMC_PFB0CR_S_INV_MASK)
+ regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR;
+ callFlashCommonBitOperation(regBase, FMC_PFB0CR_S_INV_MASK, FMC_PFB0CR_S_INV_SHIFT, 1U);
+#elif defined(FMC_PFB0CR_S_B_INV_MASK)
+ regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR;
+ callFlashCommonBitOperation(regBase, FMC_PFB0CR_S_B_INV_MASK, FMC_PFB0CR_S_B_INV_SHIFT, 1U);
+#endif
+#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */
+#if defined(FMC_PFB01CR_S_INV_MASK)
+ FMC->PFB01CR |= FMC_PFB01CR_S_INV_MASK;
+#elif defined(FMC_PFB01CR_S_B_INV_MASK)
+ FMC->PFB01CR |= FMC_PFB01CR_S_B_INV_MASK;
+#elif defined(FMC_PFB0CR_S_INV_MASK)
+ FMC->PFB0CR |= FMC_PFB0CR_S_INV_MASK;
+#elif defined(FMC_PFB0CR_S_B_INV_MASK)
+ FMC->PFB0CR |= FMC_PFB0CR_S_B_INV_MASK;
+#endif
+ /* Memory barriers for good measure.
+ * All Cache, Branch predictor and TLB maintenance operations before this instruction complete */
+ __ISB();
+ __DSB();
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+}
+#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC */
+
+/*!
+ * @brief Flash Cache Clear
+ *
+ * This function is used to perform the cache and prefetch speculation clear to the flash.
+ */
+void flash_cache_clear(flash_config_t *config)
+{
+ flash_cache_clear_process(config, kFLASH_CacheClearProcessPost);
+}
+
+/*!
+ * @brief Flash Cache Clear Process
+ *
+ * This function is used to perform the cache and prefetch speculation clear process to the flash.
+ */
+static void flash_cache_clear_process(flash_config_t *config, flash_cache_clear_process_t process)
+{
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+ status_t returnCode = flash_check_execute_in_ram_function_info(config);
+ if (kStatus_FLASH_Success != returnCode)
+ {
+ return;
+ }
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+
+ /* We pass the ftfx register address as a parameter to flash_common_bit_operation() instead of using
+ * pre-processed MACROs or a global variable in flash_common_bit_operation()
+ * to make sure that flash_common_bit_operation() will be compiled into position-independent code (PIC). */
+ if (process == kFLASH_CacheClearProcessPost)
+ {
+#if FLASH_CACHE_IS_CONTROLLED_BY_MCM
+ mcm_flash_cache_clear(config);
+#endif
+#if FLASH_CACHE_IS_CONTROLLED_BY_FMC
+ fmc_flash_cache_clear();
+#endif
+#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
+ mscm_flash_prefetch_speculation_enable(true);
+#endif
+#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC
+ fmc_flash_prefetch_speculation_clear();
+#endif
+ }
+ if (process == kFLASH_CacheClearProcessPre)
+ {
+#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM
+ mscm_flash_prefetch_speculation_enable(false);
+#endif
+ }
+}
+
+#if FLASH_DRIVER_IS_FLASH_RESIDENT
+/*! @brief Check whether flash execute-in-ram functions are ready */
+static status_t flash_check_execute_in_ram_function_info(flash_config_t *config)
+{
+ flash_execute_in_ram_function_config_t *flashExecuteInRamFunctionInfo;
+
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ flashExecuteInRamFunctionInfo = (flash_execute_in_ram_function_config_t *)config->flashExecuteInRamFunctionInfo;
+
+ if ((config->flashExecuteInRamFunctionInfo) &&
+ (kFLASH_ExecuteInRamFunctionTotalNum == flashExecuteInRamFunctionInfo->activeFunctionCount))
+ {
+ return kStatus_FLASH_Success;
+ }
+
+ return kStatus_FLASH_ExecuteInRamFunctionNotReady;
+}
+#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */
+
+/*! @brief Validates the range and alignment of the given address range.*/
+static status_t flash_check_range(flash_config_t *config,
+ uint32_t startAddress,
+ uint32_t lengthInBytes,
+ uint32_t alignmentBaseline)
+{
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* Verify the start and length are alignmentBaseline aligned. */
+ if ((startAddress & (alignmentBaseline - 1)) || (lengthInBytes & (alignmentBaseline - 1)))
+ {
+ return kStatus_FLASH_AlignmentError;
+ }
+
+ /* check for valid range of the target addresses */
+ if (
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+ ((startAddress >= config->DFlashBlockBase) &&
+ ((startAddress + lengthInBytes) <= (config->DFlashBlockBase + config->DFlashTotalSize))) ||
+#endif
+ ((startAddress >= config->PFlashBlockBase) &&
+ ((startAddress + lengthInBytes) <= (config->PFlashBlockBase + config->PFlashTotalSize))))
+ {
+ return kStatus_FLASH_Success;
+ }
+
+ return kStatus_FLASH_AddressError;
+}
+
+/*! @brief Gets the right address, sector and block size of current flash type which is indicated by address.*/
+static status_t flash_get_matched_operation_info(flash_config_t *config,
+ uint32_t address,
+ flash_operation_config_t *info)
+{
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* Clean up info Structure*/
+ memset(info, 0, sizeof(flash_operation_config_t));
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+ if ((address >= config->DFlashBlockBase) && (address <= (config->DFlashBlockBase + config->DFlashTotalSize)))
+ {
+ /* When required by the command, address bit 23 selects between program flash memory
+ * (=0) and data flash memory (=1).*/
+ info->convertedAddress = address - config->DFlashBlockBase + 0x800000U;
+ info->activeSectorSize = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SECTOR_SIZE;
+ info->activeBlockSize = config->DFlashTotalSize / FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_COUNT;
+
+ info->blockWriteUnitSize = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_WRITE_UNIT_SIZE;
+ info->sectorCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_SECTOR_CMD_ADDRESS_ALIGMENT;
+ info->sectionCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_SECTION_CMD_ADDRESS_ALIGMENT;
+ info->resourceCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_RESOURCE_CMD_ADDRESS_ALIGMENT;
+ info->checkCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_CHECK_CMD_ADDRESS_ALIGMENT;
+ }
+ else
+#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
+ {
+ info->convertedAddress = address - config->PFlashBlockBase;
+ info->activeSectorSize = config->PFlashSectorSize;
+ info->activeBlockSize = config->PFlashTotalSize / config->PFlashBlockCount;
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED
+ if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
+ {
+#if FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER || FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER
+ /* When required by the command, address bit 23 selects between main flash memory
+ * (=0) and secondary flash memory (=1).*/
+ info->convertedAddress += 0x800000U;
+#endif
+ info->blockWriteUnitSize = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_WRITE_UNIT_SIZE;
+ }
+ else
+#endif /* FLASH_SSD_IS_SECONDARY_FLASH_ENABLED */
+ {
+ info->blockWriteUnitSize = FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE;
+ }
+
+ info->sectorCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT;
+ info->sectionCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_SECTION_CMD_ADDRESS_ALIGMENT;
+ info->resourceCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_RESOURCE_CMD_ADDRESS_ALIGMENT;
+ info->checkCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_CHECK_CMD_ADDRESS_ALIGMENT;
+ }
+
+ return kStatus_FLASH_Success;
+}
+
+/*! @brief Validates the given user key for flash erase APIs.*/
+static status_t flash_check_user_key(uint32_t key)
+{
+ /* Validate the user key */
+ if (key != kFLASH_ApiEraseKey)
+ {
+ return kStatus_FLASH_EraseKeyError;
+ }
+
+ return kStatus_FLASH_Success;
+}
+
+#if FLASH_SSD_IS_FLEXNVM_ENABLED
+/*! @brief Updates FlexNVM memory partition status according to data flash 0 IFR.*/
+static status_t flash_update_flexnvm_memory_partition_status(flash_config_t *config)
+{
+ struct
+ {
+ uint32_t reserved0;
+ uint8_t FlexNVMPartitionCode;
+ uint8_t EEPROMDataSetSize;
+ uint16_t reserved1;
+ } dataIFRReadOut;
+ status_t returnCode;
+
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
+ /* Get FlexNVM memory partition info from data flash IFR */
+ returnCode = FLASH_ReadResource(config, DFLASH_IFR_READRESOURCE_START_ADDRESS, (uint32_t *)&dataIFRReadOut,
+ sizeof(dataIFRReadOut), kFLASH_ResourceOptionFlashIfr);
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return kStatus_FLASH_PartitionStatusUpdateFailure;
+ }
+#else
+#error "Cannot get FlexNVM memory partition info"
+#endif
+
+ /* Fill out partitioned EEPROM size */
+ dataIFRReadOut.EEPROMDataSetSize &= 0x0FU;
+ switch (dataIFRReadOut.EEPROMDataSetSize)
+ {
+ case 0x00U:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0000;
+ break;
+ case 0x01U:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0001;
+ break;
+ case 0x02U:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0010;
+ break;
+ case 0x03U:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0011;
+ break;
+ case 0x04U:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0100;
+ break;
+ case 0x05U:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0101;
+ break;
+ case 0x06U:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0110;
+ break;
+ case 0x07U:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0111;
+ break;
+ case 0x08U:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1000;
+ break;
+ case 0x09U:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1001;
+ break;
+ case 0x0AU:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1010;
+ break;
+ case 0x0BU:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1011;
+ break;
+ case 0x0CU:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1100;
+ break;
+ case 0x0DU:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1101;
+ break;
+ case 0x0EU:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1110;
+ break;
+ case 0x0FU:
+ config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1111;
+ break;
+ default:
+ config->EEpromTotalSize = FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED;
+ break;
+ }
+
+ /* Fill out partitioned DFlash size */
+ dataIFRReadOut.FlexNVMPartitionCode &= 0x0FU;
+ switch (dataIFRReadOut.FlexNVMPartitionCode)
+ {
+ case 0x00U:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000 */
+ break;
+ case 0x01U:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001 */
+ break;
+ case 0x02U:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010 */
+ break;
+ case 0x03U:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011 */
+ break;
+ case 0x04U:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100 */
+ break;
+ case 0x05U:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101 */
+ break;
+ case 0x06U:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110 */
+ break;
+ case 0x07U:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111 */
+ break;
+ case 0x08U:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000 */
+ break;
+ case 0x09U:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001 */
+ break;
+ case 0x0AU:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010 */
+ break;
+ case 0x0BU:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011 */
+ break;
+ case 0x0CU:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100 */
+ break;
+ case 0x0DU:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101 */
+ break;
+ case 0x0EU:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110 */
+ break;
+ case 0x0FU:
+#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111 != 0xFFFFFFFF)
+ config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111;
+#else
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111 */
+ break;
+ default:
+ config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED;
+ break;
+ }
+
+ return kStatus_FLASH_Success;
+}
+#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */
+
+#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
+/*! @brief Validates the range of the given resource address.*/
+static status_t flash_check_resource_range(uint32_t start,
+ uint32_t lengthInBytes,
+ uint32_t alignmentBaseline,
+ flash_read_resource_option_t option)
+{
+ status_t status;
+ uint32_t maxReadbleAddress;
+
+ if ((start & (alignmentBaseline - 1)) || (lengthInBytes & (alignmentBaseline - 1)))
+ {
+ return kStatus_FLASH_AlignmentError;
+ }
+
+ status = kStatus_FLASH_Success;
+
+ maxReadbleAddress = start + lengthInBytes - 1;
+ if (option == kFLASH_ResourceOptionVersionId)
+ {
+ if ((start != kFLASH_ResourceRangeVersionIdStart) ||
+ ((start + lengthInBytes - 1) != kFLASH_ResourceRangeVersionIdEnd))
+ {
+ status = kStatus_FLASH_InvalidArgument;
+ }
+ }
+ else if (option == kFLASH_ResourceOptionFlashIfr)
+ {
+ if (maxReadbleAddress < kFLASH_ResourceRangePflashIfrSizeInBytes)
+ {
+ }
+#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
+ else if ((start >= kFLASH_ResourceRangePflashSwapIfrStart) &&
+ (maxReadbleAddress <= kFLASH_ResourceRangePflashSwapIfrEnd))
+ {
+ }
+#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
+ else if ((start >= kFLASH_ResourceRangeDflashIfrStart) &&
+ (maxReadbleAddress <= kFLASH_ResourceRangeDflashIfrEnd))
+ {
+ }
+ else
+ {
+ status = kStatus_FLASH_InvalidArgument;
+ }
+ }
+ else
+ {
+ status = kStatus_FLASH_InvalidArgument;
+ }
+
+ return status;
+}
+#endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */
+
+#if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD
+/*! @brief Validates the gived swap control option.*/
+static status_t flash_check_swap_control_option(flash_swap_control_option_t option)
+{
+ if ((option == kFLASH_SwapControlOptionIntializeSystem) || (option == kFLASH_SwapControlOptionSetInUpdateState) ||
+ (option == kFLASH_SwapControlOptionSetInCompleteState) || (option == kFLASH_SwapControlOptionReportStatus) ||
+ (option == kFLASH_SwapControlOptionDisableSystem))
+ {
+ return kStatus_FLASH_Success;
+ }
+
+ return kStatus_FLASH_InvalidArgument;
+}
+#endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */
+
+#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP
+/*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/
+static status_t flash_validate_swap_indicator_address(flash_config_t *config, uint32_t address)
+{
+ flash_swap_ifr_field_data_t flashSwapIfrFieldData;
+ uint32_t swapIndicatorAddress;
+
+ status_t returnCode;
+#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD
+ returnCode =
+ FLASH_ReadResource(config, kFLASH_ResourceRangePflashSwapIfrStart, flashSwapIfrFieldData.flashSwapIfrData,
+ sizeof(flashSwapIfrFieldData.flashSwapIfrData), kFLASH_ResourceOptionFlashIfr);
+
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return returnCode;
+ }
+#else
+ {
+ /* From RM, the actual info are stored in FCCOB6,7 */
+ uint32_t returnValue[2];
+ returnCode = FLASH_ReadOnce(config, kFLASH_RecordIndexSwapAddr, returnValue, 4);
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return returnCode;
+ }
+ flashSwapIfrFieldData.flashSwapIfrField.swapIndicatorAddress = (uint16_t)returnValue[0];
+ returnCode = FLASH_ReadOnce(config, kFLASH_RecordIndexSwapEnable, returnValue, 4);
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return returnCode;
+ }
+ flashSwapIfrFieldData.flashSwapIfrField.swapEnableWord = (uint16_t)returnValue[0];
+ returnCode = FLASH_ReadOnce(config, kFLASH_RecordIndexSwapDisable, returnValue, 4);
+ if (returnCode != kStatus_FLASH_Success)
+ {
+ return returnCode;
+ }
+ flashSwapIfrFieldData.flashSwapIfrField.swapDisableWord = (uint16_t)returnValue[0];
+ }
+#endif
+
+ /* The high bits value of Swap Indicator Address is stored in Program Flash Swap IFR Field,
+ * the low severval bit value of Swap Indicator Address is always 1'b0 */
+ swapIndicatorAddress = (uint32_t)flashSwapIfrFieldData.flashSwapIfrField.swapIndicatorAddress *
+ FSL_FEATURE_FLASH_PFLASH_SWAP_CONTROL_CMD_ADDRESS_ALIGMENT;
+ if (address != swapIndicatorAddress)
+ {
+ return kStatus_FLASH_SwapIndicatorAddressError;
+ }
+
+ return returnCode;
+}
+#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */
+
+#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD
+/*! @brief Validates the gived flexram function option.*/
+static inline status_t flasn_check_flexram_function_option_range(flash_flexram_function_option_t option)
+{
+ if ((option != kFLASH_FlexramFunctionOptionAvailableAsRam) &&
+ (option != kFLASH_FlexramFunctionOptionAvailableForEeprom))
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ return kStatus_FLASH_Success;
+}
+#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */
+
+/*! @brief Gets the flash protection information (region size, region count).*/
+static status_t flash_get_protection_info(flash_config_t *config, flash_protection_config_t *info)
+{
+ uint32_t pflashTotalSize;
+
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* Clean up info Structure*/
+ memset(info, 0, sizeof(flash_protection_config_t));
+
+/* Note: KW40 has a secondary flash, but it doesn't have independent protection register*/
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && (!FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER)
+ pflashTotalSize = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_BLOCK_SIZE +
+ FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SIZE;
+ info->regionBase = FSL_FEATURE_FLASH_PFLASH_START_ADDRESS;
+#else
+ pflashTotalSize = config->PFlashTotalSize;
+ info->regionBase = config->PFlashBlockBase;
+#endif
+
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER
+ if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash)
+ {
+ info->regionCount = FSL_FEATURE_FLASH_PFLASH_1_PROTECTION_REGION_COUNT;
+ }
+ else
+#endif
+ {
+ info->regionCount = FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT;
+ }
+
+ /* Calculate the size of the flash protection region
+ * If the flash density is > 32KB, then protection region is 1/32 of total flash density
+ * Else if flash density is < 32KB, then flash protection region is set to 1KB */
+ if (pflashTotalSize > info->regionCount * 1024)
+ {
+ info->regionSize = (pflashTotalSize) / info->regionCount;
+ }
+ else
+ {
+ info->regionSize = 1024;
+ }
+
+ return kStatus_FLASH_Success;
+}
+
+#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL
+/*! @brief Gets the flash Execute-Only access information (Segment size, Segment count).*/
+static status_t flash_get_access_info(flash_config_t *config, flash_access_config_t *info)
+{
+ if (config == NULL)
+ {
+ return kStatus_FLASH_InvalidArgument;
+ }
+
+ /* Clean up info Structure*/
+ memset(info, 0, sizeof(flash_access_config_t));
+
+/* Note: KW40 has a secondary flash, but it doesn't have independent access register*/
+#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && (!FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER)
+ info->SegmentBase = FSL_FEATURE_FLASH_PFLASH_START_ADDRESS;
+#else
+ info->SegmentBase = config->PFlashBlockBase;
+#endif
+ info->SegmentSize = config->PFlashAccessSegmentSize;
+ info->SegmentCount = config->PFlashAccessSegmentCount;
+
+ return kStatus_FLASH_Success;
+}
+#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */