summaryrefslogtreecommitdiff
path: root/drivers/src/fsl_sdhc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/src/fsl_sdhc.c')
-rw-r--r--drivers/src/fsl_sdhc.c1416
1 files changed, 1416 insertions, 0 deletions
diff --git a/drivers/src/fsl_sdhc.c b/drivers/src/fsl_sdhc.c
new file mode 100644
index 0000000..3151cd2
--- /dev/null
+++ b/drivers/src/fsl_sdhc.c
@@ -0,0 +1,1416 @@
+/*
+ * Copyright (c) 2016, Freescale Semiconductor, Inc.
+ * Copyright 2016-2017 NXP
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * o Redistributions of source code must retain the above copyright notice, this list
+ * of conditions and the following disclaimer.
+ *
+ * o Redistributions in binary form must reproduce the above copyright notice, this
+ * list of conditions and the following disclaimer in the documentation and/or
+ * other materials provided with the distribution.
+ *
+ * o Neither the name of the copyright holder nor the names of its
+ * contributors may be used to endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "fsl_sdhc.h"
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+/*! @brief Clock setting */
+/* Max SD clock divisor from base clock */
+#define SDHC_MAX_DVS ((SDHC_SYSCTL_DVS_MASK >> SDHC_SYSCTL_DVS_SHIFT) + 1U)
+#define SDHC_PREV_DVS(x) ((x) -= 1U)
+#define SDHC_MAX_CLKFS ((SDHC_SYSCTL_SDCLKFS_MASK >> SDHC_SYSCTL_SDCLKFS_SHIFT) + 1U)
+#define SDHC_PREV_CLKFS(x) ((x) >>= 1U)
+
+/* Typedef for interrupt handler. */
+typedef void (*sdhc_isr_t)(SDHC_Type *base, sdhc_handle_t *handle);
+
+/*! @brief ADMA table configuration */
+typedef struct _sdhc_adma_table_config
+{
+ uint32_t *admaTable; /*!< ADMA table address, can't be null if transfer way is ADMA1/ADMA2 */
+ uint32_t admaTableWords; /*!< ADMA table length united as words, can't be 0 if transfer way is ADMA1/ADMA2 */
+} sdhc_adma_table_config_t;
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+/*!
+ * @brief Get the instance.
+ *
+ * @param base SDHC peripheral base address.
+ * @return Instance number.
+ */
+static uint32_t SDHC_GetInstance(SDHC_Type *base);
+
+/*!
+ * @brief Set transfer interrupt.
+ *
+ * @param base SDHC peripheral base address.
+ * @param usingInterruptSignal True to use IRQ signal.
+ */
+static void SDHC_SetTransferInterrupt(SDHC_Type *base, bool usingInterruptSignal);
+
+/*!
+ * @brief Start transfer according to current transfer state
+ *
+ * @param base SDHC peripheral base address.
+ * @param command Command to be sent.
+ * @param data Data to be transferred.
+ * @param DMA mode selection
+ */
+static void SDHC_StartTransfer(SDHC_Type *base, sdhc_command_t *command, sdhc_data_t *data, sdhc_dma_mode_t dmaMode);
+
+/*!
+ * @brief Receive command response
+ *
+ * @param base SDHC peripheral base address.
+ * @param command Command to be sent.
+ */
+static status_t SDHC_ReceiveCommandResponse(SDHC_Type *base, sdhc_command_t *command);
+
+/*!
+ * @brief Read DATAPORT when buffer enable bit is set.
+ *
+ * @param base SDHC peripheral base address.
+ * @param data Data to be read.
+ * @param transferredWords The number of data words have been transferred last time transaction.
+ * @return The number of total data words have been transferred after this time transaction.
+ */
+static uint32_t SDHC_ReadDataPort(SDHC_Type *base, sdhc_data_t *data, uint32_t transferredWords);
+
+/*!
+ * @brief Read data by using DATAPORT polling way.
+ *
+ * @param base SDHC peripheral base address.
+ * @param data Data to be read.
+ * @retval kStatus_Fail Read DATAPORT failed.
+ * @retval kStatus_Success Operate successfully.
+ */
+static status_t SDHC_ReadByDataPortBlocking(SDHC_Type *base, sdhc_data_t *data);
+
+/*!
+ * @brief Write DATAPORT when buffer enable bit is set.
+ *
+ * @param base SDHC peripheral base address.
+ * @param data Data to be read.
+ * @param transferredWords The number of data words have been transferred last time.
+ * @return The number of total data words have been transferred after this time transaction.
+ */
+static uint32_t SDHC_WriteDataPort(SDHC_Type *base, sdhc_data_t *data, uint32_t transferredWords);
+
+/*!
+ * @brief Write data by using DATAPORT polling way.
+ *
+ * @param base SDHC peripheral base address.
+ * @param data Data to be transferred.
+ * @retval kStatus_Fail Write DATAPORT failed.
+ * @retval kStatus_Success Operate successfully.
+ */
+static status_t SDHC_WriteByDataPortBlocking(SDHC_Type *base, sdhc_data_t *data);
+
+/*!
+ * @brief Send command by using polling way.
+ *
+ * @param base SDHC peripheral base address.
+ * @param command Command to be sent.
+ * @retval kStatus_Fail Send command failed.
+ * @retval kStatus_Success Operate successfully.
+ */
+static status_t SDHC_SendCommandBlocking(SDHC_Type *base, sdhc_command_t *command);
+
+/*!
+ * @brief Transfer data by DATAPORT and polling way.
+ *
+ * @param base SDHC peripheral base address.
+ * @param data Data to be transferred.
+ * @retval kStatus_Fail Transfer data failed.
+ * @retval kStatus_Success Operate successfully.
+ */
+static status_t SDHC_TransferByDataPortBlocking(SDHC_Type *base, sdhc_data_t *data);
+
+/*!
+ * @brief Transfer data by ADMA2 and polling way.
+ *
+ * @param base SDHC peripheral base address.
+ * @param data Data to be transferred.
+ * @retval kStatus_Fail Transfer data failed.
+ * @retval kStatus_Success Operate successfully.
+ */
+static status_t SDHC_TransferByAdma2Blocking(SDHC_Type *base, sdhc_data_t *data);
+
+/*!
+ * @brief Transfer data by polling way.
+ *
+ * @param dmaMode DMA mode.
+ * @param base SDHC peripheral base address.
+ * @param data Data to be transferred.
+ * @retval kStatus_Fail Transfer data failed.
+ * @retval kStatus_InvalidArgument Argument is invalid.
+ * @retval kStatus_Success Operate successfully.
+ */
+static status_t SDHC_TransferDataBlocking(sdhc_dma_mode_t dmaMode, SDHC_Type *base, sdhc_data_t *data);
+
+/*!
+ * @brief Handle card detect interrupt.
+ *
+ * @param handle SDHC handle.
+ * @param interruptFlags Card detect related interrupt flags.
+ */
+static void SDHC_TransferHandleCardDetect(sdhc_handle_t *handle, uint32_t interruptFlags);
+
+/*!
+ * @brief Handle command interrupt.
+ *
+ * @param base SDHC peripheral base address.
+ * @param handle SDHC handle.
+ * @param interruptFlags Command related interrupt flags.
+ */
+static void SDHC_TransferHandleCommand(SDHC_Type *base, sdhc_handle_t *handle, uint32_t interruptFlags);
+
+/*!
+ * @brief Handle data interrupt.
+ *
+ * @param base SDHC peripheral base address.
+ * @param handle SDHC handle.
+ * @param interruptFlags Data related interrupt flags.
+ */
+static void SDHC_TransferHandleData(SDHC_Type *base, sdhc_handle_t *handle, uint32_t interruptFlags);
+
+/*!
+ * @brief Handle SDIO card interrupt signal.
+ *
+ * @param handle SDHC handle.
+ */
+static void SDHC_TransferHandleSdioInterrupt(sdhc_handle_t *handle);
+
+/*!
+ * @brief Handle SDIO block gap event.
+ *
+ * @param handle SDHC handle.
+ */
+static void SDHC_TransferHandleSdioBlockGap(sdhc_handle_t *handle);
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+/*! @brief SDHC internal handle pointer array */
+static sdhc_handle_t *s_sdhcHandle[FSL_FEATURE_SOC_SDHC_COUNT];
+
+/*! @brief SDHC base pointer array */
+static SDHC_Type *const s_sdhcBase[] = SDHC_BASE_PTRS;
+
+/*! @brief SDHC IRQ name array */
+static const IRQn_Type s_sdhcIRQ[] = SDHC_IRQS;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+/*! @brief SDHC clock array name */
+static const clock_ip_name_t s_sdhcClock[] = SDHC_CLOCKS;
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+/* SDHC ISR for transactional APIs. */
+static sdhc_isr_t s_sdhcIsr;
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+static uint32_t SDHC_GetInstance(SDHC_Type *base)
+{
+ uint8_t instance = 0;
+
+ while ((instance < ARRAY_SIZE(s_sdhcBase)) && (s_sdhcBase[instance] != base))
+ {
+ instance++;
+ }
+
+ assert(instance < ARRAY_SIZE(s_sdhcBase));
+
+ return instance;
+}
+
+static void SDHC_SetTransferInterrupt(SDHC_Type *base, bool usingInterruptSignal)
+{
+ uint32_t interruptEnabled; /* The Interrupt status flags to be enabled */
+ bool cardDetectDat3 = (bool)(base->PROCTL & SDHC_PROCTL_D3CD_MASK);
+
+ /* Disable all interrupts */
+ SDHC_DisableInterruptStatus(base, (uint32_t)kSDHC_AllInterruptFlags);
+ SDHC_DisableInterruptSignal(base, (uint32_t)kSDHC_AllInterruptFlags);
+ DisableIRQ(s_sdhcIRQ[SDHC_GetInstance(base)]);
+
+ interruptEnabled =
+ (kSDHC_CommandIndexErrorFlag | kSDHC_CommandCrcErrorFlag | kSDHC_CommandEndBitErrorFlag |
+ kSDHC_CommandTimeoutFlag | kSDHC_CommandCompleteFlag | kSDHC_DataTimeoutFlag | kSDHC_DataCrcErrorFlag |
+ kSDHC_DataEndBitErrorFlag | kSDHC_DataCompleteFlag | kSDHC_AutoCommand12ErrorFlag | kSDHC_BufferReadReadyFlag |
+ kSDHC_BufferWriteReadyFlag | kSDHC_DmaErrorFlag | kSDHC_DmaCompleteFlag);
+ if (cardDetectDat3)
+ {
+ interruptEnabled |= (kSDHC_CardInsertionFlag | kSDHC_CardRemovalFlag);
+ }
+
+ SDHC_EnableInterruptStatus(base, interruptEnabled);
+ if (usingInterruptSignal)
+ {
+ SDHC_EnableInterruptSignal(base, interruptEnabled);
+ }
+}
+
+static void SDHC_StartTransfer(SDHC_Type *base, sdhc_command_t *command, sdhc_data_t *data, sdhc_dma_mode_t dmaMode)
+{
+ uint32_t flags = 0U;
+ sdhc_transfer_config_t sdhcTransferConfig = {0};
+
+ /* Define the flag corresponding to each response type. */
+ switch (command->responseType)
+ {
+ case kCARD_ResponseTypeNone:
+ break;
+ case kCARD_ResponseTypeR1: /* Response 1 */
+ flags |= (kSDHC_ResponseLength48Flag | kSDHC_EnableCrcCheckFlag | kSDHC_EnableIndexCheckFlag);
+ break;
+ case kCARD_ResponseTypeR1b: /* Response 1 with busy */
+ flags |= (kSDHC_ResponseLength48BusyFlag | kSDHC_EnableCrcCheckFlag | kSDHC_EnableIndexCheckFlag);
+ break;
+ case kCARD_ResponseTypeR2: /* Response 2 */
+ flags |= (kSDHC_ResponseLength136Flag | kSDHC_EnableCrcCheckFlag);
+ break;
+ case kCARD_ResponseTypeR3: /* Response 3 */
+ flags |= (kSDHC_ResponseLength48Flag);
+ break;
+ case kCARD_ResponseTypeR4: /* Response 4 */
+ flags |= (kSDHC_ResponseLength48Flag);
+ break;
+ case kCARD_ResponseTypeR5: /* Response 5 */
+ flags |= (kSDHC_ResponseLength48Flag | kSDHC_EnableCrcCheckFlag | kSDHC_EnableIndexCheckFlag);
+ break;
+ case kCARD_ResponseTypeR5b: /* Response 5 with busy */
+ flags |= (kSDHC_ResponseLength48BusyFlag | kSDHC_EnableCrcCheckFlag | kSDHC_EnableIndexCheckFlag);
+ break;
+ case kCARD_ResponseTypeR6: /* Response 6 */
+ flags |= (kSDHC_ResponseLength48Flag | kSDHC_EnableCrcCheckFlag | kSDHC_EnableIndexCheckFlag);
+ break;
+ case kCARD_ResponseTypeR7: /* Response 7 */
+ flags |= (kSDHC_ResponseLength48Flag | kSDHC_EnableCrcCheckFlag | kSDHC_EnableIndexCheckFlag);
+ break;
+ default:
+ break;
+ }
+ if (command->type == kCARD_CommandTypeAbort)
+ {
+ flags |= kSDHC_CommandTypeAbortFlag;
+ }
+
+ if (data)
+ {
+ flags |= kSDHC_DataPresentFlag;
+
+ if (dmaMode != kSDHC_DmaModeNo)
+ {
+ flags |= kSDHC_EnableDmaFlag;
+ }
+ if (data->rxData)
+ {
+ flags |= kSDHC_DataReadFlag;
+ }
+ if (data->blockCount > 1U)
+ {
+ flags |= (kSDHC_MultipleBlockFlag | kSDHC_EnableBlockCountFlag);
+ if (data->enableAutoCommand12)
+ {
+ /* Enable Auto command 12. */
+ flags |= kSDHC_EnableAutoCommand12Flag;
+ }
+ }
+
+ sdhcTransferConfig.dataBlockSize = data->blockSize;
+ sdhcTransferConfig.dataBlockCount = data->blockCount;
+ }
+ else
+ {
+ sdhcTransferConfig.dataBlockSize = 0U;
+ sdhcTransferConfig.dataBlockCount = 0U;
+ }
+
+ sdhcTransferConfig.commandArgument = command->argument;
+ sdhcTransferConfig.commandIndex = command->index;
+ sdhcTransferConfig.flags = flags;
+ SDHC_SetTransferConfig(base, &sdhcTransferConfig);
+}
+
+static status_t SDHC_ReceiveCommandResponse(SDHC_Type *base, sdhc_command_t *command)
+{
+ uint32_t i;
+
+ if (command->responseType != kCARD_ResponseTypeNone)
+ {
+ command->response[0U] = SDHC_GetCommandResponse(base, 0U);
+ if (command->responseType == kCARD_ResponseTypeR2)
+ {
+ command->response[1U] = SDHC_GetCommandResponse(base, 1U);
+ command->response[2U] = SDHC_GetCommandResponse(base, 2U);
+ command->response[3U] = SDHC_GetCommandResponse(base, 3U);
+
+ i = 4U;
+ /* R3-R2-R1-R0(lowest 8 bit is invalid bit) has the same format as R2 format in SD specification document
+ after removed internal CRC7 and end bit. */
+ do
+ {
+ command->response[i - 1U] <<= 8U;
+ if (i > 1U)
+ {
+ command->response[i - 1U] |= ((command->response[i - 2U] & 0xFF000000U) >> 24U);
+ }
+ } while (i--);
+ }
+ }
+ /* check response error flag */
+ if ((command->responseErrorFlags != 0U) &&
+ ((command->responseType == kCARD_ResponseTypeR1) || (command->responseType == kCARD_ResponseTypeR1b) ||
+ (command->responseType == kCARD_ResponseTypeR6) || (command->responseType == kCARD_ResponseTypeR5)))
+ {
+ if (((command->responseErrorFlags) & (command->response[0U])) != 0U)
+ {
+ return kStatus_SDHC_SendCommandFailed;
+ }
+ }
+
+ return kStatus_Success;
+}
+
+static uint32_t SDHC_ReadDataPort(SDHC_Type *base, sdhc_data_t *data, uint32_t transferredWords)
+{
+ uint32_t i;
+ uint32_t totalWords;
+ uint32_t wordsCanBeRead; /* The words can be read at this time. */
+ uint32_t readWatermark = ((base->WML & SDHC_WML_RDWML_MASK) >> SDHC_WML_RDWML_SHIFT);
+
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (data->blockSize % sizeof(uint32_t) != 0U)
+ {
+ data->blockSize +=
+ sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
+ }
+
+ totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));
+
+ /* If watermark level is equal or bigger than totalWords, transfers totalWords data. */
+ if (readWatermark >= totalWords)
+ {
+ wordsCanBeRead = totalWords;
+ }
+ /* If watermark level is less than totalWords and left words to be sent is equal or bigger than readWatermark,
+ transfers watermark level words. */
+ else if ((readWatermark < totalWords) && ((totalWords - transferredWords) >= readWatermark))
+ {
+ wordsCanBeRead = readWatermark;
+ }
+ /* If watermark level is less than totalWords and left words to be sent is less than readWatermark, transfers left
+ words. */
+ else
+ {
+ wordsCanBeRead = (totalWords - transferredWords);
+ }
+
+ i = 0U;
+ while (i < wordsCanBeRead)
+ {
+ data->rxData[transferredWords++] = SDHC_ReadData(base);
+ i++;
+ }
+
+ return transferredWords;
+}
+
+static status_t SDHC_ReadByDataPortBlocking(SDHC_Type *base, sdhc_data_t *data)
+{
+ uint32_t totalWords;
+ uint32_t transferredWords = 0U;
+ status_t error = kStatus_Success;
+
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (data->blockSize % sizeof(uint32_t) != 0U)
+ {
+ data->blockSize +=
+ sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
+ }
+
+ totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));
+
+ while ((error == kStatus_Success) && (transferredWords < totalWords))
+ {
+ while (!(SDHC_GetInterruptStatusFlags(base) & (kSDHC_BufferReadReadyFlag | kSDHC_DataErrorFlag)))
+ {
+ }
+
+ if (SDHC_GetInterruptStatusFlags(base) & kSDHC_DataErrorFlag)
+ {
+ if (!(data->enableIgnoreError))
+ {
+ error = kStatus_Fail;
+ }
+ }
+ if (error == kStatus_Success)
+ {
+ transferredWords = SDHC_ReadDataPort(base, data, transferredWords);
+ }
+ /* clear buffer ready and error */
+ SDHC_ClearInterruptStatusFlags(base, kSDHC_BufferReadReadyFlag | kSDHC_DataErrorFlag);
+ }
+
+ /* Clear data complete flag after the last read operation. */
+ SDHC_ClearInterruptStatusFlags(base, kSDHC_DataCompleteFlag | kSDHC_DataErrorFlag);
+
+ return error;
+}
+
+static uint32_t SDHC_WriteDataPort(SDHC_Type *base, sdhc_data_t *data, uint32_t transferredWords)
+{
+ uint32_t i;
+ uint32_t totalWords;
+ uint32_t wordsCanBeWrote; /* Words can be wrote at this time. */
+ uint32_t writeWatermark = ((base->WML & SDHC_WML_WRWML_MASK) >> SDHC_WML_WRWML_SHIFT);
+
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (data->blockSize % sizeof(uint32_t) != 0U)
+ {
+ data->blockSize +=
+ sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
+ }
+
+ totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));
+
+ /* If watermark level is equal or bigger than totalWords, transfers totalWords data.*/
+ if (writeWatermark >= totalWords)
+ {
+ wordsCanBeWrote = totalWords;
+ }
+ /* If watermark level is less than totalWords and left words to be sent is equal or bigger than watermark,
+ transfers watermark level words. */
+ else if ((writeWatermark < totalWords) && ((totalWords - transferredWords) >= writeWatermark))
+ {
+ wordsCanBeWrote = writeWatermark;
+ }
+ /* If watermark level is less than totalWords and left words to be sent is less than watermark, transfers left
+ words. */
+ else
+ {
+ wordsCanBeWrote = (totalWords - transferredWords);
+ }
+
+ i = 0U;
+ while (i < wordsCanBeWrote)
+ {
+ SDHC_WriteData(base, data->txData[transferredWords++]);
+ i++;
+ }
+
+ return transferredWords;
+}
+
+static status_t SDHC_WriteByDataPortBlocking(SDHC_Type *base, sdhc_data_t *data)
+{
+ uint32_t totalWords;
+ uint32_t transferredWords = 0U;
+ status_t error = kStatus_Success;
+
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (data->blockSize % sizeof(uint32_t) != 0U)
+ {
+ data->blockSize +=
+ sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
+ }
+
+ totalWords = (data->blockCount * data->blockSize) / sizeof(uint32_t);
+
+ while ((error == kStatus_Success) && (transferredWords < totalWords))
+ {
+ while (!(SDHC_GetInterruptStatusFlags(base) & (kSDHC_BufferWriteReadyFlag | kSDHC_DataErrorFlag)))
+ {
+ }
+
+ if (SDHC_GetInterruptStatusFlags(base) & kSDHC_DataErrorFlag)
+ {
+ if (!(data->enableIgnoreError))
+ {
+ error = kStatus_Fail;
+ }
+ }
+ if (error == kStatus_Success)
+ {
+ transferredWords = SDHC_WriteDataPort(base, data, transferredWords);
+ }
+
+ /* Clear buffer enable flag to trigger transfer. Clear error flag when SDHC encounter error. */
+ SDHC_ClearInterruptStatusFlags(base, (kSDHC_BufferWriteReadyFlag | kSDHC_DataErrorFlag));
+ }
+
+ /* Wait write data complete or data transfer error after the last writing operation. */
+ while (!(SDHC_GetInterruptStatusFlags(base) & (kSDHC_DataCompleteFlag | kSDHC_DataErrorFlag)))
+ {
+ }
+ if (SDHC_GetInterruptStatusFlags(base) & kSDHC_DataErrorFlag)
+ {
+ if (!(data->enableIgnoreError))
+ {
+ error = kStatus_Fail;
+ }
+ }
+
+ SDHC_ClearInterruptStatusFlags(base, (kSDHC_DataCompleteFlag | kSDHC_DataErrorFlag));
+
+ return error;
+}
+
+static status_t SDHC_SendCommandBlocking(SDHC_Type *base, sdhc_command_t *command)
+{
+ status_t error = kStatus_Success;
+
+ /* Wait command complete or SDHC encounters error. */
+ while (!(SDHC_GetInterruptStatusFlags(base) & (kSDHC_CommandCompleteFlag | kSDHC_CommandErrorFlag)))
+ {
+ }
+
+ if (SDHC_GetInterruptStatusFlags(base) & kSDHC_CommandErrorFlag)
+ {
+ error = kStatus_Fail;
+ }
+ /* Receive response when command completes successfully. */
+ if (error == kStatus_Success)
+ {
+ error = SDHC_ReceiveCommandResponse(base, command);
+ }
+
+ SDHC_ClearInterruptStatusFlags(base, (kSDHC_CommandCompleteFlag | kSDHC_CommandErrorFlag));
+
+ return error;
+}
+
+static status_t SDHC_TransferByDataPortBlocking(SDHC_Type *base, sdhc_data_t *data)
+{
+ status_t error = kStatus_Success;
+
+ if (data->rxData)
+ {
+ error = SDHC_ReadByDataPortBlocking(base, data);
+ }
+ else
+ {
+ error = SDHC_WriteByDataPortBlocking(base, data);
+ }
+
+ return error;
+}
+
+static status_t SDHC_TransferByAdma2Blocking(SDHC_Type *base, sdhc_data_t *data)
+{
+ status_t error = kStatus_Success;
+
+ /* Wait data complete or SDHC encounters error. */
+ while (!(SDHC_GetInterruptStatusFlags(base) & (kSDHC_DataCompleteFlag | kSDHC_DataErrorFlag | kSDHC_DmaErrorFlag)))
+ {
+ }
+ if (SDHC_GetInterruptStatusFlags(base) & (kSDHC_DataErrorFlag | kSDHC_DmaErrorFlag))
+ {
+ if (!(data->enableIgnoreError))
+ {
+ error = kStatus_Fail;
+ }
+ }
+ SDHC_ClearInterruptStatusFlags(
+ base, (kSDHC_DataCompleteFlag | kSDHC_DmaCompleteFlag | kSDHC_DataErrorFlag | kSDHC_DmaErrorFlag));
+ return error;
+}
+
+#if defined FSL_SDHC_ENABLE_ADMA1
+#define SDHC_TransferByAdma1Blocking(base, data) SDHC_TransferByAdma2Blocking(base, data)
+#endif /* FSL_SDHC_ENABLE_ADMA1 */
+
+static status_t SDHC_TransferDataBlocking(sdhc_dma_mode_t dmaMode, SDHC_Type *base, sdhc_data_t *data)
+{
+ status_t error = kStatus_Success;
+
+ switch (dmaMode)
+ {
+ case kSDHC_DmaModeNo:
+ error = SDHC_TransferByDataPortBlocking(base, data);
+ break;
+#if defined FSL_SDHC_ENABLE_ADMA1
+ case kSDHC_DmaModeAdma1:
+ error = SDHC_TransferByAdma1Blocking(base, data);
+ break;
+#endif /* FSL_SDHC_ENABLE_ADMA1 */
+ case kSDHC_DmaModeAdma2:
+ error = SDHC_TransferByAdma2Blocking(base, data);
+ break;
+ default:
+ error = kStatus_InvalidArgument;
+ break;
+ }
+
+ return error;
+}
+
+static void SDHC_TransferHandleCardDetect(sdhc_handle_t *handle, uint32_t interruptFlags)
+{
+ if (interruptFlags & kSDHC_CardInsertionFlag)
+ {
+ if (handle->callback.CardInserted)
+ {
+ handle->callback.CardInserted();
+ }
+ }
+ else
+ {
+ if (handle->callback.CardRemoved)
+ {
+ handle->callback.CardRemoved();
+ }
+ }
+}
+
+static void SDHC_TransferHandleCommand(SDHC_Type *base, sdhc_handle_t *handle, uint32_t interruptFlags)
+{
+ assert(handle->command);
+
+ if ((interruptFlags & kSDHC_CommandErrorFlag) && (!(handle->data)) && (handle->callback.TransferComplete))
+ {
+ handle->callback.TransferComplete(base, handle, kStatus_SDHC_SendCommandFailed, handle->userData);
+ }
+ else
+ {
+ /* Receive response */
+ SDHC_ReceiveCommandResponse(base, handle->command);
+ if ((!(handle->data)) && (handle->callback.TransferComplete))
+ {
+ handle->callback.TransferComplete(base, handle, kStatus_Success, handle->userData);
+ }
+ }
+}
+
+static void SDHC_TransferHandleData(SDHC_Type *base, sdhc_handle_t *handle, uint32_t interruptFlags)
+{
+ assert(handle->data);
+
+ if ((!(handle->data->enableIgnoreError)) && (interruptFlags & (kSDHC_DataErrorFlag | kSDHC_DmaErrorFlag)) &&
+ (handle->callback.TransferComplete))
+ {
+ handle->callback.TransferComplete(base, handle, kStatus_SDHC_TransferDataFailed, handle->userData);
+ }
+ else
+ {
+ if (interruptFlags & kSDHC_BufferReadReadyFlag)
+ {
+ handle->transferredWords = SDHC_ReadDataPort(base, handle->data, handle->transferredWords);
+ }
+ else if (interruptFlags & kSDHC_BufferWriteReadyFlag)
+ {
+ handle->transferredWords = SDHC_WriteDataPort(base, handle->data, handle->transferredWords);
+ }
+ else
+ {
+ }
+
+ if ((interruptFlags & kSDHC_DataCompleteFlag) && (handle->callback.TransferComplete))
+ {
+ handle->callback.TransferComplete(base, handle, kStatus_Success, handle->userData);
+ }
+ else
+ {
+ /* Do nothing when DMA complete flag is set. Wait until data complete flag is set. */
+ }
+ }
+}
+
+static void SDHC_TransferHandleSdioInterrupt(sdhc_handle_t *handle)
+{
+ if (handle->callback.SdioInterrupt)
+ {
+ handle->callback.SdioInterrupt();
+ }
+}
+
+static void SDHC_TransferHandleSdioBlockGap(sdhc_handle_t *handle)
+{
+ if (handle->callback.SdioBlockGap)
+ {
+ handle->callback.SdioBlockGap();
+ }
+}
+
+void SDHC_Init(SDHC_Type *base, const sdhc_config_t *config)
+{
+ assert(config);
+#if !defined FSL_SDHC_ENABLE_ADMA1
+ assert(config->dmaMode != kSDHC_DmaModeAdma1);
+#endif /* FSL_SDHC_ENABLE_ADMA1 */
+ assert((config->writeWatermarkLevel >= 1U) && (config->writeWatermarkLevel <= 128U));
+ assert((config->readWatermarkLevel >= 1U) && (config->readWatermarkLevel <= 128U));
+
+ uint32_t proctl;
+ uint32_t wml;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ /* Enable SDHC clock. */
+ CLOCK_EnableClock(s_sdhcClock[SDHC_GetInstance(base)]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+ /* Reset SDHC. */
+ SDHC_Reset(base, kSDHC_ResetAll, 100);
+
+ proctl = base->PROCTL;
+ wml = base->WML;
+
+ proctl &= ~(SDHC_PROCTL_D3CD_MASK | SDHC_PROCTL_EMODE_MASK | SDHC_PROCTL_DMAS_MASK);
+ /* Set DAT3 as card detection pin */
+ if (config->cardDetectDat3)
+ {
+ proctl |= SDHC_PROCTL_D3CD_MASK;
+ }
+ /* Endian mode and DMA mode */
+ proctl |= (SDHC_PROCTL_EMODE(config->endianMode) | SDHC_PROCTL_DMAS(config->dmaMode));
+
+ /* Watermark level */
+ wml &= ~(SDHC_WML_RDWML_MASK | SDHC_WML_WRWML_MASK);
+ wml |= (SDHC_WML_RDWML(config->readWatermarkLevel) | SDHC_WML_WRWML(config->writeWatermarkLevel));
+
+ base->WML = wml;
+ base->PROCTL = proctl;
+
+ /* Disable all clock auto gated off feature because of DAT0 line logic(card buffer full status) can't be updated
+ correctly when clock auto gated off is enabled. */
+ base->SYSCTL |= (SDHC_SYSCTL_PEREN_MASK | SDHC_SYSCTL_HCKEN_MASK | SDHC_SYSCTL_IPGEN_MASK);
+
+ /* Enable interrupt status but doesn't enable interrupt signal. */
+ SDHC_SetTransferInterrupt(base, false);
+}
+
+void SDHC_Deinit(SDHC_Type *base)
+{
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ /* Disable clock. */
+ CLOCK_DisableClock(s_sdhcClock[SDHC_GetInstance(base)]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+}
+
+bool SDHC_Reset(SDHC_Type *base, uint32_t mask, uint32_t timeout)
+{
+ base->SYSCTL |= (mask & (SDHC_SYSCTL_RSTA_MASK | SDHC_SYSCTL_RSTC_MASK | SDHC_SYSCTL_RSTD_MASK));
+ /* Delay some time to wait reset success. */
+ while ((base->SYSCTL & mask))
+ {
+ if (!timeout)
+ {
+ break;
+ }
+ timeout--;
+ }
+
+ return ((!timeout) ? false : true);
+}
+
+void SDHC_GetCapability(SDHC_Type *base, sdhc_capability_t *capability)
+{
+ assert(capability);
+
+ uint32_t htCapability;
+ uint32_t hostVer;
+ uint32_t maxBlockLength;
+
+ hostVer = base->HOSTVER;
+ htCapability = base->HTCAPBLT;
+
+ /* Get the capability of SDHC. */
+ capability->specVersion = ((hostVer & SDHC_HOSTVER_SVN_MASK) >> SDHC_HOSTVER_SVN_SHIFT);
+ capability->vendorVersion = ((hostVer & SDHC_HOSTVER_VVN_MASK) >> SDHC_HOSTVER_VVN_SHIFT);
+ maxBlockLength = ((htCapability & SDHC_HTCAPBLT_MBL_MASK) >> SDHC_HTCAPBLT_MBL_SHIFT);
+ capability->maxBlockLength = (512U << maxBlockLength);
+ /* Other attributes not in HTCAPBLT register. */
+ capability->maxBlockCount = SDHC_MAX_BLOCK_COUNT;
+ capability->flags = (htCapability & (kSDHC_SupportAdmaFlag | kSDHC_SupportHighSpeedFlag | kSDHC_SupportDmaFlag |
+ kSDHC_SupportSuspendResumeFlag | kSDHC_SupportV330Flag));
+#if defined FSL_FEATURE_SDHC_HAS_V300_SUPPORT && FSL_FEATURE_SDHC_HAS_V300_SUPPORT
+ capability->flags |= (htCapability & kSDHC_SupportV300Flag);
+#endif
+#if defined FSL_FEATURE_SDHC_HAS_V180_SUPPORT && FSL_FEATURE_SDHC_HAS_V180_SUPPORT
+ capability->flags |= (htCapability & kSDHC_SupportV180Flag);
+#endif
+ /* eSDHC on all kinetis boards will support 4/8 bit data bus width. */
+ capability->flags |= (kSDHC_Support4BitFlag | kSDHC_Support8BitFlag);
+}
+
+uint32_t SDHC_SetSdClock(SDHC_Type *base, uint32_t srcClock_Hz, uint32_t busClock_Hz)
+{
+ assert(srcClock_Hz != 0U);
+ assert((busClock_Hz != 0U) && (busClock_Hz <= srcClock_Hz));
+
+ uint32_t totalDiv = 0U;
+ uint32_t divisor = 0U;
+ uint32_t prescaler = 0U;
+ uint32_t sysctl = 0U;
+ uint32_t nearestFrequency = 0U;
+
+ /* calucate total divisor first */
+ totalDiv = srcClock_Hz / busClock_Hz;
+
+ if (totalDiv != 0U)
+ {
+ /* calucate the divisor (srcClock_Hz / divisor) <= busClock_Hz */
+ if ((srcClock_Hz / totalDiv) > busClock_Hz)
+ {
+ totalDiv++;
+ }
+
+ /* divide the total divisor to div and prescaler */
+ if (totalDiv > SDHC_MAX_DVS)
+ {
+ prescaler = totalDiv / SDHC_MAX_DVS;
+ /* prescaler must be a value which equal 2^n and smaller than SDHC_MAX_CLKFS */
+ while (((SDHC_MAX_CLKFS % prescaler) != 0U) || (prescaler == 1U))
+ {
+ prescaler++;
+ }
+ /* calucate the divisor */
+ divisor = totalDiv / prescaler;
+ /* fine tuning the divisor until divisor * prescaler >= totalDiv */
+ while ((divisor * prescaler) < totalDiv)
+ {
+ divisor++;
+ }
+ nearestFrequency = srcClock_Hz / divisor / prescaler;
+ }
+ else
+ {
+ divisor = totalDiv;
+ prescaler = 0U;
+ nearestFrequency = srcClock_Hz / divisor;
+ }
+ }
+ /* in this condition , srcClock_Hz = busClock_Hz, */
+ else
+ {
+ /* total divider = 1U */
+ divisor = 0U;
+ prescaler = 0U;
+ nearestFrequency = srcClock_Hz;
+ }
+
+ /* calucate the value write to register */
+ if (divisor != 0U)
+ {
+ SDHC_PREV_DVS(divisor);
+ }
+ /* calucate the value write to register */
+ if (prescaler != 0U)
+ {
+ SDHC_PREV_CLKFS(prescaler);
+ }
+
+ /* Disable SD clock. It should be disabled before changing the SD clock frequency.*/
+ base->SYSCTL &= ~SDHC_SYSCTL_SDCLKEN_MASK;
+
+ /* Set the SD clock frequency divisor, SD clock frequency select, data timeout counter value. */
+ sysctl = base->SYSCTL;
+ sysctl &= ~(SDHC_SYSCTL_DVS_MASK | SDHC_SYSCTL_SDCLKFS_MASK | SDHC_SYSCTL_DTOCV_MASK);
+ sysctl |= (SDHC_SYSCTL_DVS(divisor) | SDHC_SYSCTL_SDCLKFS(prescaler) | SDHC_SYSCTL_DTOCV(0xEU));
+ base->SYSCTL = sysctl;
+
+ /* Wait until the SD clock is stable. */
+ while (!(base->PRSSTAT & SDHC_PRSSTAT_SDSTB_MASK))
+ {
+ }
+ /* Enable the SD clock. */
+ base->SYSCTL |= SDHC_SYSCTL_SDCLKEN_MASK;
+
+ return nearestFrequency;
+}
+
+bool SDHC_SetCardActive(SDHC_Type *base, uint32_t timeout)
+{
+ base->SYSCTL |= SDHC_SYSCTL_INITA_MASK;
+ /* Delay some time to wait card become active state. */
+ while (base->SYSCTL & SDHC_SYSCTL_INITA_MASK)
+ {
+ if (!timeout)
+ {
+ break;
+ }
+ timeout--;
+ }
+
+ return ((!timeout) ? false : true);
+}
+
+void SDHC_SetTransferConfig(SDHC_Type *base, const sdhc_transfer_config_t *config)
+{
+ assert(config);
+ assert(config->dataBlockSize <= (SDHC_BLKATTR_BLKSIZE_MASK >> SDHC_BLKATTR_BLKSIZE_SHIFT));
+ assert(config->dataBlockCount <= (SDHC_BLKATTR_BLKCNT_MASK >> SDHC_BLKATTR_BLKCNT_SHIFT));
+
+ base->BLKATTR = ((base->BLKATTR & ~(SDHC_BLKATTR_BLKSIZE_MASK | SDHC_BLKATTR_BLKCNT_MASK)) |
+ (SDHC_BLKATTR_BLKSIZE(config->dataBlockSize) | SDHC_BLKATTR_BLKCNT(config->dataBlockCount)));
+ base->CMDARG = config->commandArgument;
+ base->XFERTYP = (((config->commandIndex << SDHC_XFERTYP_CMDINX_SHIFT) & SDHC_XFERTYP_CMDINX_MASK) |
+ (config->flags & (SDHC_XFERTYP_DMAEN_MASK | SDHC_XFERTYP_MSBSEL_MASK | SDHC_XFERTYP_DPSEL_MASK |
+ SDHC_XFERTYP_CMDTYP_MASK | SDHC_XFERTYP_BCEN_MASK | SDHC_XFERTYP_CICEN_MASK |
+ SDHC_XFERTYP_CCCEN_MASK | SDHC_XFERTYP_RSPTYP_MASK | SDHC_XFERTYP_DTDSEL_MASK |
+ SDHC_XFERTYP_AC12EN_MASK)));
+}
+
+void SDHC_EnableSdioControl(SDHC_Type *base, uint32_t mask, bool enable)
+{
+ uint32_t proctl = base->PROCTL;
+ uint32_t vendor = base->VENDOR;
+
+ if (enable)
+ {
+ if (mask & kSDHC_StopAtBlockGapFlag)
+ {
+ proctl |= SDHC_PROCTL_SABGREQ_MASK;
+ }
+ if (mask & kSDHC_ReadWaitControlFlag)
+ {
+ proctl |= SDHC_PROCTL_RWCTL_MASK;
+ }
+ if (mask & kSDHC_InterruptAtBlockGapFlag)
+ {
+ proctl |= SDHC_PROCTL_IABG_MASK;
+ }
+ if (mask & kSDHC_ExactBlockNumberReadFlag)
+ {
+ vendor |= SDHC_VENDOR_EXBLKNU_MASK;
+ }
+ }
+ else
+ {
+ if (mask & kSDHC_StopAtBlockGapFlag)
+ {
+ proctl &= ~SDHC_PROCTL_SABGREQ_MASK;
+ }
+ if (mask & kSDHC_ReadWaitControlFlag)
+ {
+ proctl &= ~SDHC_PROCTL_RWCTL_MASK;
+ }
+ if (mask & kSDHC_InterruptAtBlockGapFlag)
+ {
+ proctl &= ~SDHC_PROCTL_IABG_MASK;
+ }
+ if (mask & kSDHC_ExactBlockNumberReadFlag)
+ {
+ vendor &= ~SDHC_VENDOR_EXBLKNU_MASK;
+ }
+ }
+
+ base->PROCTL = proctl;
+ base->VENDOR = vendor;
+}
+
+void SDHC_SetMmcBootConfig(SDHC_Type *base, const sdhc_boot_config_t *config)
+{
+ assert(config);
+ assert(config->ackTimeoutCount <= (SDHC_MMCBOOT_DTOCVACK_MASK >> SDHC_MMCBOOT_DTOCVACK_SHIFT));
+ assert(config->blockCount <= (SDHC_MMCBOOT_BOOTBLKCNT_MASK >> SDHC_MMCBOOT_BOOTBLKCNT_SHIFT));
+
+ uint32_t mmcboot = 0U;
+
+ mmcboot = (SDHC_MMCBOOT_DTOCVACK(config->ackTimeoutCount) | SDHC_MMCBOOT_BOOTMODE(config->bootMode) |
+ SDHC_MMCBOOT_BOOTBLKCNT(config->blockCount));
+ if (config->enableBootAck)
+ {
+ mmcboot |= SDHC_MMCBOOT_BOOTACK_MASK;
+ }
+ if (config->enableBoot)
+ {
+ mmcboot |= SDHC_MMCBOOT_BOOTEN_MASK;
+ }
+ if (config->enableAutoStopAtBlockGap)
+ {
+ mmcboot |= SDHC_MMCBOOT_AUTOSABGEN_MASK;
+ }
+ base->MMCBOOT = mmcboot;
+}
+
+status_t SDHC_SetAdmaTableConfig(SDHC_Type *base,
+ sdhc_dma_mode_t dmaMode,
+ uint32_t *table,
+ uint32_t tableWords,
+ const uint32_t *data,
+ uint32_t dataBytes)
+{
+ status_t error = kStatus_Success;
+ const uint32_t *startAddress = data;
+ uint32_t entries;
+ uint32_t i;
+#if defined FSL_SDHC_ENABLE_ADMA1
+ sdhc_adma1_descriptor_t *adma1EntryAddress;
+#endif
+ sdhc_adma2_descriptor_t *adma2EntryAddress;
+
+ if ((((!table) || (!tableWords)) && ((dmaMode == kSDHC_DmaModeAdma1) || (dmaMode == kSDHC_DmaModeAdma2))) ||
+ (!data) || (!dataBytes)
+#if !defined FSL_SDHC_ENABLE_ADMA1
+ || (dmaMode == kSDHC_DmaModeAdma1)
+#endif
+ )
+ {
+ error = kStatus_InvalidArgument;
+ }
+ else if (((dmaMode == kSDHC_DmaModeAdma2) && (((uint32_t)startAddress % SDHC_ADMA2_LENGTH_ALIGN) != 0U))
+#if defined FSL_SDHC_ENABLE_ADMA1
+ || ((dmaMode == kSDHC_DmaModeAdma1) && (((uint32_t)startAddress % SDHC_ADMA1_LENGTH_ALIGN) != 0U))
+#endif
+ )
+ {
+ error = kStatus_SDHC_DMADataBufferAddrNotAlign;
+ }
+ else
+ {
+ switch (dmaMode)
+ {
+ case kSDHC_DmaModeNo:
+ break;
+#if defined FSL_SDHC_ENABLE_ADMA1
+ case kSDHC_DmaModeAdma1:
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (dataBytes % sizeof(uint32_t) != 0U)
+ {
+ dataBytes +=
+ sizeof(uint32_t) - (dataBytes % sizeof(uint32_t)); /* make the data length as word-aligned */
+ }
+
+ /* Check if ADMA descriptor's number is enough. */
+ entries = ((dataBytes / SDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) + 1U);
+ /* ADMA1 needs two descriptors to finish a transfer */
+ entries <<= 1U;
+ if (entries > ((tableWords * sizeof(uint32_t)) / sizeof(sdhc_adma1_descriptor_t)))
+ {
+ error = kStatus_OutOfRange;
+ }
+ else
+ {
+ adma1EntryAddress = (sdhc_adma1_descriptor_t *)(table);
+ for (i = 0U; i < entries; i += 2U)
+ {
+ /* Each descriptor for ADMA1 is 32-bit in length */
+ if ((dataBytes - sizeof(uint32_t) * (startAddress - data)) <=
+ SDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY)
+ {
+ /* The last piece of data, setting end flag in descriptor */
+ adma1EntryAddress[i] = ((uint32_t)(dataBytes - sizeof(uint32_t) * (startAddress - data))
+ << SDHC_ADMA1_DESCRIPTOR_LENGTH_SHIFT);
+ adma1EntryAddress[i] |= kSDHC_Adma1DescriptorTypeSetLength;
+ adma1EntryAddress[i + 1U] =
+ ((uint32_t)(startAddress) << SDHC_ADMA1_DESCRIPTOR_ADDRESS_SHIFT);
+ adma1EntryAddress[i + 1U] |=
+ (kSDHC_Adma1DescriptorTypeTransfer | kSDHC_Adma1DescriptorEndFlag);
+ }
+ else
+ {
+ adma1EntryAddress[i] = ((uint32_t)SDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY
+ << SDHC_ADMA1_DESCRIPTOR_LENGTH_SHIFT);
+ adma1EntryAddress[i] |= kSDHC_Adma1DescriptorTypeSetLength;
+ adma1EntryAddress[i + 1U] =
+ ((uint32_t)(startAddress) << SDHC_ADMA1_DESCRIPTOR_ADDRESS_SHIFT);
+ adma1EntryAddress[i + 1U] |= kSDHC_Adma1DescriptorTypeTransfer;
+ startAddress += SDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY / sizeof(uint32_t);
+ }
+ }
+
+ /* When use ADMA, disable simple DMA */
+ base->DSADDR = 0U;
+ base->ADSADDR = (uint32_t)table;
+ /* disable the buffer ready flag in DMA mode */
+ SDHC_DisableInterruptSignal(base, kSDHC_BufferReadReadyFlag | kSDHC_BufferWriteReadyFlag);
+ SDHC_DisableInterruptStatus(base, kSDHC_BufferReadReadyFlag | kSDHC_BufferWriteReadyFlag);
+ }
+ break;
+#endif /* FSL_SDHC_ENABLE_ADMA1 */
+ case kSDHC_DmaModeAdma2:
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (dataBytes % sizeof(uint32_t) != 0U)
+ {
+ dataBytes +=
+ sizeof(uint32_t) - (dataBytes % sizeof(uint32_t)); /* make the data length as word-aligned */
+ }
+
+ /* Check if ADMA descriptor's number is enough. */
+ entries = ((dataBytes / SDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) + 1U);
+ if (entries > ((tableWords * sizeof(uint32_t)) / sizeof(sdhc_adma2_descriptor_t)))
+ {
+ error = kStatus_OutOfRange;
+ }
+ else
+ {
+ adma2EntryAddress = (sdhc_adma2_descriptor_t *)(table);
+ for (i = 0U; i < entries; i++)
+ {
+ /* Each descriptor for ADMA2 is 64-bit in length */
+ if ((dataBytes - sizeof(uint32_t) * (startAddress - data)) <=
+ SDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY)
+ {
+ /* The last piece of data, setting end flag in descriptor */
+ adma2EntryAddress[i].address = startAddress;
+ adma2EntryAddress[i].attribute = ((dataBytes - sizeof(uint32_t) * (startAddress - data))
+ << SDHC_ADMA2_DESCRIPTOR_LENGTH_SHIFT);
+ adma2EntryAddress[i].attribute |=
+ (kSDHC_Adma2DescriptorTypeTransfer | kSDHC_Adma2DescriptorEndFlag);
+ }
+ else
+ {
+ adma2EntryAddress[i].address = startAddress;
+ adma2EntryAddress[i].attribute =
+ (((SDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY / sizeof(uint32_t)) * sizeof(uint32_t))
+ << SDHC_ADMA2_DESCRIPTOR_LENGTH_SHIFT);
+ adma2EntryAddress[i].attribute |= kSDHC_Adma2DescriptorTypeTransfer;
+ startAddress += (SDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY / sizeof(uint32_t));
+ }
+ }
+
+ /* When use ADMA, disable simple DMA */
+ base->DSADDR = 0U;
+ base->ADSADDR = (uint32_t)table;
+ /* disable the buffer read flag in DMA mode */
+ SDHC_DisableInterruptSignal(base, kSDHC_BufferReadReadyFlag | kSDHC_BufferWriteReadyFlag);
+ SDHC_DisableInterruptStatus(base, kSDHC_BufferReadReadyFlag | kSDHC_BufferWriteReadyFlag);
+ }
+ break;
+ default:
+ break;
+ }
+ }
+
+ return error;
+}
+
+status_t SDHC_TransferBlocking(SDHC_Type *base, uint32_t *admaTable, uint32_t admaTableWords, sdhc_transfer_t *transfer)
+{
+ assert(transfer);
+
+ status_t error = kStatus_Success;
+ sdhc_dma_mode_t dmaMode = (sdhc_dma_mode_t)((base->PROCTL & SDHC_PROCTL_DMAS_MASK) >> SDHC_PROCTL_DMAS_SHIFT);
+ sdhc_command_t *command = transfer->command;
+ sdhc_data_t *data = transfer->data;
+
+ /* make sure the cmd/block count is valid */
+ if ((!command) || (data && (data->blockCount > SDHC_MAX_BLOCK_COUNT)))
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Wait until command/data bus out of busy status. */
+ while (SDHC_GetPresentStatusFlags(base) & kSDHC_CommandInhibitFlag)
+ {
+ }
+ while (data && (SDHC_GetPresentStatusFlags(base) & kSDHC_DataInhibitFlag))
+ {
+ }
+
+ /* Update ADMA descriptor table according to different DMA mode(no DMA, ADMA1, ADMA2).*/
+ if (data && (NULL != admaTable))
+ {
+ error =
+ SDHC_SetAdmaTableConfig(base, dmaMode, admaTable, admaTableWords,
+ (data->rxData ? data->rxData : data->txData), (data->blockCount * data->blockSize));
+ /* in this situation , we disable the DMA instead of polling transfer mode */
+ if (error == kStatus_SDHC_DMADataBufferAddrNotAlign)
+ {
+ dmaMode = kSDHC_DmaModeNo;
+ SDHC_EnableInterruptStatus(base, kSDHC_BufferReadReadyFlag | kSDHC_BufferWriteReadyFlag);
+ }
+ else if (error != kStatus_Success)
+ {
+ return error;
+ }
+ else
+ {
+ }
+ }
+
+ /* Send command and receive data. */
+ SDHC_StartTransfer(base, command, data, dmaMode);
+ if (kStatus_Success != SDHC_SendCommandBlocking(base, command))
+ {
+ return kStatus_SDHC_SendCommandFailed;
+ }
+ else if (data && (kStatus_Success != SDHC_TransferDataBlocking(dmaMode, base, data)))
+ {
+ return kStatus_SDHC_TransferDataFailed;
+ }
+ else
+ {
+ }
+
+ return kStatus_Success;
+}
+
+void SDHC_TransferCreateHandle(SDHC_Type *base,
+ sdhc_handle_t *handle,
+ const sdhc_transfer_callback_t *callback,
+ void *userData)
+{
+ assert(handle);
+ assert(callback);
+
+ /* Zero the handle. */
+ memset(handle, 0, sizeof(*handle));
+
+ /* Set the callback. */
+ handle->callback.CardInserted = callback->CardInserted;
+ handle->callback.CardRemoved = callback->CardRemoved;
+ handle->callback.SdioInterrupt = callback->SdioInterrupt;
+ handle->callback.SdioBlockGap = callback->SdioBlockGap;
+ handle->callback.TransferComplete = callback->TransferComplete;
+ handle->userData = userData;
+
+ /* Save the handle in global variables to support the double weak mechanism. */
+ s_sdhcHandle[SDHC_GetInstance(base)] = handle;
+
+ /* Enable interrupt in NVIC. */
+ SDHC_SetTransferInterrupt(base, true);
+
+ /* save IRQ handler */
+ s_sdhcIsr = SDHC_TransferHandleIRQ;
+
+ EnableIRQ(s_sdhcIRQ[SDHC_GetInstance(base)]);
+}
+
+status_t SDHC_TransferNonBlocking(
+ SDHC_Type *base, sdhc_handle_t *handle, uint32_t *admaTable, uint32_t admaTableWords, sdhc_transfer_t *transfer)
+{
+ assert(transfer);
+
+ sdhc_dma_mode_t dmaMode = (sdhc_dma_mode_t)((base->PROCTL & SDHC_PROCTL_DMAS_MASK) >> SDHC_PROCTL_DMAS_SHIFT);
+ status_t error = kStatus_Success;
+ sdhc_command_t *command = transfer->command;
+ sdhc_data_t *data = transfer->data;
+
+ /* make sure cmd/block count is valid */
+ if ((!command) || (data && (data->blockCount > SDHC_MAX_BLOCK_COUNT)))
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Wait until command/data bus out of busy status. */
+ if ((SDHC_GetPresentStatusFlags(base) & kSDHC_CommandInhibitFlag) ||
+ (data && (SDHC_GetPresentStatusFlags(base) & kSDHC_DataInhibitFlag)))
+ {
+ return kStatus_SDHC_BusyTransferring;
+ }
+
+ /* Update ADMA descriptor table according to different DMA mode(no DMA, ADMA1, ADMA2).*/
+ if (data && (NULL != admaTable))
+ {
+ error =
+ SDHC_SetAdmaTableConfig(base, dmaMode, admaTable, admaTableWords,
+ (data->rxData ? data->rxData : data->txData), (data->blockCount * data->blockSize));
+ /* in this situation , we disable the DMA instead of polling transfer mode */
+ if (error == kStatus_SDHC_DMADataBufferAddrNotAlign)
+ {
+ /* change to polling mode */
+ dmaMode = kSDHC_DmaModeNo;
+ SDHC_EnableInterruptSignal(base, kSDHC_BufferReadReadyFlag | kSDHC_BufferWriteReadyFlag);
+ SDHC_EnableInterruptStatus(base, kSDHC_BufferReadReadyFlag | kSDHC_BufferWriteReadyFlag);
+ }
+ else if (error != kStatus_Success)
+ {
+ return error;
+ }
+ else
+ {
+ }
+ }
+
+ /* Save command and data into handle before transferring. */
+ handle->command = command;
+ handle->data = data;
+ handle->interruptFlags = 0U;
+ /* transferredWords will only be updated in ISR when transfer way is DATAPORT. */
+ handle->transferredWords = 0U;
+
+ SDHC_StartTransfer(base, command, data, dmaMode);
+
+ return kStatus_Success;
+}
+
+void SDHC_TransferHandleIRQ(SDHC_Type *base, sdhc_handle_t *handle)
+{
+ assert(handle);
+
+ uint32_t interruptFlags;
+
+ interruptFlags = SDHC_GetInterruptStatusFlags(base);
+ handle->interruptFlags = interruptFlags;
+
+ if (interruptFlags & kSDHC_CardDetectFlag)
+ {
+ SDHC_TransferHandleCardDetect(handle, (interruptFlags & kSDHC_CardDetectFlag));
+ }
+ if (interruptFlags & kSDHC_CommandFlag)
+ {
+ SDHC_TransferHandleCommand(base, handle, (interruptFlags & kSDHC_CommandFlag));
+ }
+ if (interruptFlags & kSDHC_DataFlag)
+ {
+ SDHC_TransferHandleData(base, handle, (interruptFlags & kSDHC_DataFlag));
+ }
+ if (interruptFlags & kSDHC_CardInterruptFlag)
+ {
+ SDHC_TransferHandleSdioInterrupt(handle);
+ }
+ if (interruptFlags & kSDHC_BlockGapEventFlag)
+ {
+ SDHC_TransferHandleSdioBlockGap(handle);
+ }
+
+ SDHC_ClearInterruptStatusFlags(base, interruptFlags);
+}
+
+#if defined(SDHC)
+void SDHC_DriverIRQHandler(void)
+{
+ assert(s_sdhcHandle[0]);
+
+ s_sdhcIsr(SDHC, s_sdhcHandle[0]);
+}
+#endif