summaryrefslogtreecommitdiff
path: root/Documentation/userspace-api
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-11-21 12:40:50 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2024-11-21 12:40:50 -0800
commit341d041daae52cd5f014f68c1c7d9039db818fca (patch)
tree87630919e6b6b456c8b7d32c2c5d52de6264b247 /Documentation/userspace-api
parent51ae62a12c242e49229db23b96d03ecc15efc0d1 (diff)
parent6d026e6d48cd2a95407c8fdd8d6187b871401c23 (diff)
Merge tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg/iommufd
Pull iommufd updates from Jason Gunthorpe: "Several new features and uAPI for iommufd: - IOMMU_IOAS_MAP_FILE allows passing in a file descriptor as the backing memory for an iommu mapping. To date VFIO/iommufd have used VMA's and pin_user_pages(), this now allows using memfds and memfd_pin_folios(). Notably this creates a pure folio path from the memfd to the iommu page table where memory is never broken down to PAGE_SIZE. - IOMMU_IOAS_CHANGE_PROCESS moves the pinned page accounting between two processes. Combined with the above this allows iommufd to support a VMM re-start using exec() where something like qemu would exec() a new version of itself and fd pass the memfds/iommufd/etc to the new process. The memfd allows DMA access to the memory to continue while the new process is getting setup, and the CHANGE_PROCESS updates all the accounting. - Support for fault reporting to userspace on non-PRI HW, such as ARM stall-mode embedded devices. - IOMMU_VIOMMU_ALLOC introduces the concept of a HW/driver backed virtual iommu. This will be used by VMMs to access hardware features that are contained with in a VM. The first use is to inform the kernel of the virtual SID to physical SID mapping when issuing SID based invalidation on ARM. Further uses will tie HW features that are directly accessed by the VM, such as invalidation queue assignment and others. - IOMMU_VDEVICE_ALLOC informs the kernel about the mapping of virtual device to physical device within a VIOMMU. Minimially this is used to translate VM issued cache invalidation commands from virtual to physical device IDs. - Enhancements to IOMMU_HWPT_INVALIDATE and IOMMU_HWPT_ALLOC to work with the VIOMMU - ARM SMMuv3 support for nested translation. Using the VIOMMU and VDEVICE the driver can model this HW's behavior for nested translation. This includes a shared branch from Will" * tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg/iommufd: (51 commits) iommu/arm-smmu-v3: Import IOMMUFD module namespace iommufd: IOMMU_IOAS_CHANGE_PROCESS selftest iommufd: Add IOMMU_IOAS_CHANGE_PROCESS iommufd: Lock all IOAS objects iommufd: Export do_update_pinned iommu/arm-smmu-v3: Support IOMMU_HWPT_INVALIDATE using a VIOMMU object iommu/arm-smmu-v3: Allow ATS for IOMMU_DOMAIN_NESTED iommu/arm-smmu-v3: Use S2FWB for NESTED domains iommu/arm-smmu-v3: Support IOMMU_DOMAIN_NESTED iommu/arm-smmu-v3: Support IOMMU_VIOMMU_ALLOC Documentation: userspace-api: iommufd: Update vDEVICE iommufd/selftest: Add vIOMMU coverage for IOMMU_HWPT_INVALIDATE ioctl iommufd/selftest: Add IOMMU_TEST_OP_DEV_CHECK_CACHE test command iommufd/selftest: Add mock_viommu_cache_invalidate iommufd/viommu: Add iommufd_viommu_find_dev helper iommu: Add iommu_copy_struct_from_full_user_array helper iommufd: Allow hwpt_id to carry viommu_id for IOMMU_HWPT_INVALIDATE iommu/viommu: Add cache_invalidate to iommufd_viommu_ops iommufd/selftest: Add IOMMU_VDEVICE_ALLOC test coverage iommufd/viommu: Add IOMMUFD_OBJ_VDEVICE and IOMMU_VDEVICE_ALLOC ioctl ...
Diffstat (limited to 'Documentation/userspace-api')
-rw-r--r--Documentation/userspace-api/iommufd.rst226
1 files changed, 179 insertions, 47 deletions
diff --git a/Documentation/userspace-api/iommufd.rst b/Documentation/userspace-api/iommufd.rst
index aa004faed5fd..70289d6815d2 100644
--- a/Documentation/userspace-api/iommufd.rst
+++ b/Documentation/userspace-api/iommufd.rst
@@ -41,46 +41,133 @@ Following IOMMUFD objects are exposed to userspace:
- IOMMUFD_OBJ_DEVICE, representing a device that is bound to iommufd by an
external driver.
-- IOMMUFD_OBJ_HW_PAGETABLE, representing an actual hardware I/O page table
- (i.e. a single struct iommu_domain) managed by the iommu driver.
-
- The IOAS has a list of HW_PAGETABLES that share the same IOVA mapping and
- it will synchronize its mapping with each member HW_PAGETABLE.
+- IOMMUFD_OBJ_HWPT_PAGING, representing an actual hardware I/O page table
+ (i.e. a single struct iommu_domain) managed by the iommu driver. "PAGING"
+ primarly indicates this type of HWPT should be linked to an IOAS. It also
+ indicates that it is backed by an iommu_domain with __IOMMU_DOMAIN_PAGING
+ feature flag. This can be either an UNMANAGED stage-1 domain for a device
+ running in the user space, or a nesting parent stage-2 domain for mappings
+ from guest-level physical addresses to host-level physical addresses.
+
+ The IOAS has a list of HWPT_PAGINGs that share the same IOVA mapping and
+ it will synchronize its mapping with each member HWPT_PAGING.
+
+- IOMMUFD_OBJ_HWPT_NESTED, representing an actual hardware I/O page table
+ (i.e. a single struct iommu_domain) managed by user space (e.g. guest OS).
+ "NESTED" indicates that this type of HWPT should be linked to an HWPT_PAGING.
+ It also indicates that it is backed by an iommu_domain that has a type of
+ IOMMU_DOMAIN_NESTED. This must be a stage-1 domain for a device running in
+ the user space (e.g. in a guest VM enabling the IOMMU nested translation
+ feature.) As such, it must be created with a given nesting parent stage-2
+ domain to associate to. This nested stage-1 page table managed by the user
+ space usually has mappings from guest-level I/O virtual addresses to guest-
+ level physical addresses.
+
+- IOMMUFD_OBJ_VIOMMU, representing a slice of the physical IOMMU instance,
+ passed to or shared with a VM. It may be some HW-accelerated virtualization
+ features and some SW resources used by the VM. For examples:
+
+ * Security namespace for guest owned ID, e.g. guest-controlled cache tags
+ * Non-device-affiliated event reporting, e.g. invalidation queue errors
+ * Access to a sharable nesting parent pagetable across physical IOMMUs
+ * Virtualization of various platforms IDs, e.g. RIDs and others
+ * Delivery of paravirtualized invalidation
+ * Direct assigned invalidation queues
+ * Direct assigned interrupts
+
+ Such a vIOMMU object generally has the access to a nesting parent pagetable
+ to support some HW-accelerated virtualization features. So, a vIOMMU object
+ must be created given a nesting parent HWPT_PAGING object, and then it would
+ encapsulate that HWPT_PAGING object. Therefore, a vIOMMU object can be used
+ to allocate an HWPT_NESTED object in place of the encapsulated HWPT_PAGING.
+
+ .. note::
+
+ The name "vIOMMU" isn't necessarily identical to a virtualized IOMMU in a
+ VM. A VM can have one giant virtualized IOMMU running on a machine having
+ multiple physical IOMMUs, in which case the VMM will dispatch the requests
+ or configurations from this single virtualized IOMMU instance to multiple
+ vIOMMU objects created for individual slices of different physical IOMMUs.
+ In other words, a vIOMMU object is always a representation of one physical
+ IOMMU, not necessarily of a virtualized IOMMU. For VMMs that want the full
+ virtualization features from physical IOMMUs, it is suggested to build the
+ same number of virtualized IOMMUs as the number of physical IOMMUs, so the
+ passed-through devices would be connected to their own virtualized IOMMUs
+ backed by corresponding vIOMMU objects, in which case a guest OS would do
+ the "dispatch" naturally instead of VMM trappings.
+
+- IOMMUFD_OBJ_VDEVICE, representing a virtual device for an IOMMUFD_OBJ_DEVICE
+ against an IOMMUFD_OBJ_VIOMMU. This virtual device holds the device's virtual
+ information or attributes (related to the vIOMMU) in a VM. An immediate vDATA
+ example can be the virtual ID of the device on a vIOMMU, which is a unique ID
+ that VMM assigns to the device for a translation channel/port of the vIOMMU,
+ e.g. vSID of ARM SMMUv3, vDeviceID of AMD IOMMU, and vRID of Intel VT-d to a
+ Context Table. Potential use cases of some advanced security information can
+ be forwarded via this object too, such as security level or realm information
+ in a Confidential Compute Architecture. A VMM should create a vDEVICE object
+ to forward all the device information in a VM, when it connects a device to a
+ vIOMMU, which is a separate ioctl call from attaching the same device to an
+ HWPT_PAGING that the vIOMMU holds.
All user-visible objects are destroyed via the IOMMU_DESTROY uAPI.
-The diagram below shows relationship between user-visible objects and kernel
+The diagrams below show relationships between user-visible objects and kernel
datastructures (external to iommufd), with numbers referred to operations
creating the objects and links::
- _________________________________________________________
- | iommufd |
- | [1] |
- | _________________ |
- | | | |
- | | | |
- | | | |
- | | | |
- | | | |
- | | | |
- | | | [3] [2] |
- | | | ____________ __________ |
- | | IOAS |<--| |<------| | |
- | | | |HW_PAGETABLE| | DEVICE | |
- | | | |____________| |__________| |
- | | | | | |
- | | | | | |
- | | | | | |
- | | | | | |
- | | | | | |
- | |_________________| | | |
- | | | | |
- |_________|___________________|___________________|_______|
- | | |
- | _____v______ _______v_____
- | PFN storage | | | |
- |------------>|iommu_domain| |struct device|
- |____________| |_____________|
+ _______________________________________________________________________
+ | iommufd (HWPT_PAGING only) |
+ | |
+ | [1] [3] [2] |
+ | ________________ _____________ ________ |
+ | | | | | | | |
+ | | IOAS |<---| HWPT_PAGING |<---------------------| DEVICE | |
+ | |________________| |_____________| |________| |
+ | | | | |
+ |_________|____________________|__________________________________|_____|
+ | | |
+ | ______v_____ ___v__
+ | PFN storage | (paging) | |struct|
+ |------------>|iommu_domain|<-----------------------|device|
+ |____________| |______|
+
+ _______________________________________________________________________
+ | iommufd (with HWPT_NESTED) |
+ | |
+ | [1] [3] [4] [2] |
+ | ________________ _____________ _____________ ________ |
+ | | | | | | | | | |
+ | | IOAS |<---| HWPT_PAGING |<---| HWPT_NESTED |<--| DEVICE | |
+ | |________________| |_____________| |_____________| |________| |
+ | | | | | |
+ |_________|____________________|__________________|_______________|_____|
+ | | | |
+ | ______v_____ ______v_____ ___v__
+ | PFN storage | (paging) | | (nested) | |struct|
+ |------------>|iommu_domain|<----|iommu_domain|<----|device|
+ |____________| |____________| |______|
+
+ _______________________________________________________________________
+ | iommufd (with vIOMMU/vDEVICE) |
+ | |
+ | [5] [6] |
+ | _____________ _____________ |
+ | | | | | |
+ | |----------------| vIOMMU |<---| vDEVICE |<----| |
+ | | | | |_____________| | |
+ | | | | | |
+ | | [1] | | [4] | [2] |
+ | | ______ | | _____________ _|______ |
+ | | | | | [3] | | | | | |
+ | | | IOAS |<---|(HWPT_PAGING)|<---| HWPT_NESTED |<--| DEVICE | |
+ | | |______| |_____________| |_____________| |________| |
+ | | | | | | |
+ |______|________|______________|__________________|_______________|_____|
+ | | | | |
+ ______v_____ | ______v_____ ______v_____ ___v__
+ | struct | | PFN | (paging) | | (nested) | |struct|
+ |iommu_device| |------>|iommu_domain|<----|iommu_domain|<----|device|
+ |____________| storage|____________| |____________| |______|
1. IOMMUFD_OBJ_IOAS is created via the IOMMU_IOAS_ALLOC uAPI. An iommufd can
hold multiple IOAS objects. IOAS is the most generic object and does not
@@ -94,21 +181,63 @@ creating the objects and links::
device. The driver must also set the driver_managed_dma flag and must not
touch the device until this operation succeeds.
-3. IOMMUFD_OBJ_HW_PAGETABLE is created when an external driver calls the IOMMUFD
- kAPI to attach a bound device to an IOAS. Similarly the external driver uAPI
- allows userspace to initiate the attaching operation. If a compatible
- pagetable already exists then it is reused for the attachment. Otherwise a
- new pagetable object and iommu_domain is created. Successful completion of
- this operation sets up the linkages among IOAS, device and iommu_domain. Once
- this completes the device could do DMA.
-
- Every iommu_domain inside the IOAS is also represented to userspace as a
- HW_PAGETABLE object.
+3. IOMMUFD_OBJ_HWPT_PAGING can be created in two ways:
+
+ * IOMMUFD_OBJ_HWPT_PAGING is automatically created when an external driver
+ calls the IOMMUFD kAPI to attach a bound device to an IOAS. Similarly the
+ external driver uAPI allows userspace to initiate the attaching operation.
+ If a compatible member HWPT_PAGING object exists in the IOAS's HWPT_PAGING
+ list, then it will be reused. Otherwise a new HWPT_PAGING that represents
+ an iommu_domain to userspace will be created, and then added to the list.
+ Successful completion of this operation sets up the linkages among IOAS,
+ device and iommu_domain. Once this completes the device could do DMA.
+
+ * IOMMUFD_OBJ_HWPT_PAGING can be manually created via the IOMMU_HWPT_ALLOC
+ uAPI, provided an ioas_id via @pt_id to associate the new HWPT_PAGING to
+ the corresponding IOAS object. The benefit of this manual allocation is to
+ allow allocation flags (defined in enum iommufd_hwpt_alloc_flags), e.g. it
+ allocates a nesting parent HWPT_PAGING if the IOMMU_HWPT_ALLOC_NEST_PARENT
+ flag is set.
+
+4. IOMMUFD_OBJ_HWPT_NESTED can be only manually created via the IOMMU_HWPT_ALLOC
+ uAPI, provided an hwpt_id or a viommu_id of a vIOMMU object encapsulating a
+ nesting parent HWPT_PAGING via @pt_id to associate the new HWPT_NESTED object
+ to the corresponding HWPT_PAGING object. The associating HWPT_PAGING object
+ must be a nesting parent manually allocated via the same uAPI previously with
+ an IOMMU_HWPT_ALLOC_NEST_PARENT flag, otherwise the allocation will fail. The
+ allocation will be further validated by the IOMMU driver to ensure that the
+ nesting parent domain and the nested domain being allocated are compatible.
+ Successful completion of this operation sets up linkages among IOAS, device,
+ and iommu_domains. Once this completes the device could do DMA via a 2-stage
+ translation, a.k.a nested translation. Note that multiple HWPT_NESTED objects
+ can be allocated by (and then associated to) the same nesting parent.
.. note::
- Future IOMMUFD updates will provide an API to create and manipulate the
- HW_PAGETABLE directly.
+ Either a manual IOMMUFD_OBJ_HWPT_PAGING or an IOMMUFD_OBJ_HWPT_NESTED is
+ created via the same IOMMU_HWPT_ALLOC uAPI. The difference is at the type
+ of the object passed in via the @pt_id field of struct iommufd_hwpt_alloc.
+
+5. IOMMUFD_OBJ_VIOMMU can be only manually created via the IOMMU_VIOMMU_ALLOC
+ uAPI, provided a dev_id (for the device's physical IOMMU to back the vIOMMU)
+ and an hwpt_id (to associate the vIOMMU to a nesting parent HWPT_PAGING). The
+ iommufd core will link the vIOMMU object to the struct iommu_device that the
+ struct device is behind. And an IOMMU driver can implement a viommu_alloc op
+ to allocate its own vIOMMU data structure embedding the core-level structure
+ iommufd_viommu and some driver-specific data. If necessary, the driver can
+ also configure its HW virtualization feature for that vIOMMU (and thus for
+ the VM). Successful completion of this operation sets up the linkages between
+ the vIOMMU object and the HWPT_PAGING, then this vIOMMU object can be used
+ as a nesting parent object to allocate an HWPT_NESTED object described above.
+
+6. IOMMUFD_OBJ_VDEVICE can be only manually created via the IOMMU_VDEVICE_ALLOC
+ uAPI, provided a viommu_id for an iommufd_viommu object and a dev_id for an
+ iommufd_device object. The vDEVICE object will be the binding between these
+ two parent objects. Another @virt_id will be also set via the uAPI providing
+ the iommufd core an index to store the vDEVICE object to a vDEVICE array per
+ vIOMMU. If necessary, the IOMMU driver may choose to implement a vdevce_alloc
+ op to init its HW for virtualization feature related to a vDEVICE. Successful
+ completion of this operation sets up the linkages between vIOMMU and device.
A device can only bind to an iommufd due to DMA ownership claim and attach to at
most one IOAS object (no support of PASID yet).
@@ -120,7 +249,10 @@ User visible objects are backed by following datastructures:
- iommufd_ioas for IOMMUFD_OBJ_IOAS.
- iommufd_device for IOMMUFD_OBJ_DEVICE.
-- iommufd_hw_pagetable for IOMMUFD_OBJ_HW_PAGETABLE.
+- iommufd_hwpt_paging for IOMMUFD_OBJ_HWPT_PAGING.
+- iommufd_hwpt_nested for IOMMUFD_OBJ_HWPT_NESTED.
+- iommufd_viommu for IOMMUFD_OBJ_VIOMMU.
+- iommufd_vdevice for IOMMUFD_OBJ_VDEVICE.
Several terminologies when looking at these datastructures: