diff options
| author | Linus Torvalds <torvalds@linux-foundation.org> | 2019-08-06 11:22:22 -0700 |
|---|---|---|
| committer | Linus Torvalds <torvalds@linux-foundation.org> | 2019-08-06 11:22:22 -0700 |
| commit | 4368c4bc9d36821690d6bb2e743d5a075b6ddb55 (patch) | |
| tree | 830266f667f9315e072704282f640464dd80996b /arch/x86/entry | |
| parent | 0eb0ce0a78e1f57082bca6cbdea6fd04feedb876 (diff) | |
| parent | 4c92057661a3412f547ede95715641d7ee16ddac (diff) | |
Merge branch 'x86/grand-schemozzle' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull pti updates from Thomas Gleixner:
"The performance deterioration departement is not proud at all to
present yet another set of speculation fences to mitigate the next
chapter in the 'what could possibly go wrong' story.
The new vulnerability belongs to the Spectre class and affects GS
based data accesses and has therefore been dubbed 'Grand Schemozzle'
for secret communication purposes. It's officially listed as
CVE-2019-1125.
Conditional branches in the entry paths which contain a SWAPGS
instruction (interrupts and exceptions) can be mis-speculated which
results in speculative accesses with a wrong GS base.
This can happen on entry from user mode through a mis-speculated
branch which takes the entry from kernel mode path and therefore does
not execute the SWAPGS instruction. The following speculative accesses
are done with user GS base.
On entry from kernel mode the mis-speculated branch executes the
SWAPGS instruction in the entry from user mode path which has the same
effect that the following GS based accesses are done with user GS
base.
If there is a disclosure gadget available in these code paths the
mis-speculated data access can be leaked through the usual side
channels.
The entry from user mode issue affects all CPUs which have speculative
execution. The entry from kernel mode issue affects only Intel CPUs
which can speculate through SWAPGS. On CPUs from other vendors SWAPGS
has semantics which prevent that.
SMAP migitates both problems but only when the CPU is not affected by
the Meltdown vulnerability.
The mitigation is to issue LFENCE instructions in the entry from
kernel mode path for all affected CPUs and on the affected Intel CPUs
also in the entry from user mode path unless PTI is enabled because
the CR3 write is serializing.
The fences are as usual enabled conditionally and can be completely
disabled on the kernel command line. The Spectre V1 documentation is
updated accordingly.
A big "Thank You!" goes to Josh for doing the heavy lifting for this
round of hardware misfeature 'repair'. Of course also "Thank You!" to
everybody else who contributed in one way or the other"
* 'x86/grand-schemozzle' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation: Add swapgs description to the Spectre v1 documentation
x86/speculation/swapgs: Exclude ATOMs from speculation through SWAPGS
x86/entry/64: Use JMP instead of JMPQ
x86/speculation: Enable Spectre v1 swapgs mitigations
x86/speculation: Prepare entry code for Spectre v1 swapgs mitigations
Diffstat (limited to 'arch/x86/entry')
| -rw-r--r-- | arch/x86/entry/calling.h | 17 | ||||
| -rw-r--r-- | arch/x86/entry/entry_64.S | 21 |
2 files changed, 35 insertions, 3 deletions
diff --git a/arch/x86/entry/calling.h b/arch/x86/entry/calling.h index 830bd984182b..515c0ceeb4a3 100644 --- a/arch/x86/entry/calling.h +++ b/arch/x86/entry/calling.h @@ -314,6 +314,23 @@ For 32-bit we have the following conventions - kernel is built with #endif +/* + * Mitigate Spectre v1 for conditional swapgs code paths. + * + * FENCE_SWAPGS_USER_ENTRY is used in the user entry swapgs code path, to + * prevent a speculative swapgs when coming from kernel space. + * + * FENCE_SWAPGS_KERNEL_ENTRY is used in the kernel entry non-swapgs code path, + * to prevent the swapgs from getting speculatively skipped when coming from + * user space. + */ +.macro FENCE_SWAPGS_USER_ENTRY + ALTERNATIVE "", "lfence", X86_FEATURE_FENCE_SWAPGS_USER +.endm +.macro FENCE_SWAPGS_KERNEL_ENTRY + ALTERNATIVE "", "lfence", X86_FEATURE_FENCE_SWAPGS_KERNEL +.endm + .macro STACKLEAK_ERASE_NOCLOBBER #ifdef CONFIG_GCC_PLUGIN_STACKLEAK PUSH_AND_CLEAR_REGS diff --git a/arch/x86/entry/entry_64.S b/arch/x86/entry/entry_64.S index 3f5a978a02a7..be9ca198c581 100644 --- a/arch/x86/entry/entry_64.S +++ b/arch/x86/entry/entry_64.S @@ -519,7 +519,7 @@ ENTRY(interrupt_entry) testb $3, CS-ORIG_RAX+8(%rsp) jz 1f SWAPGS - + FENCE_SWAPGS_USER_ENTRY /* * Switch to the thread stack. The IRET frame and orig_ax are * on the stack, as well as the return address. RDI..R12 are @@ -549,8 +549,10 @@ ENTRY(interrupt_entry) UNWIND_HINT_FUNC movq (%rdi), %rdi + jmp 2f 1: - + FENCE_SWAPGS_KERNEL_ENTRY +2: PUSH_AND_CLEAR_REGS save_ret=1 ENCODE_FRAME_POINTER 8 @@ -1238,6 +1240,13 @@ ENTRY(paranoid_entry) */ SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 + /* + * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an + * unconditional CR3 write, even in the PTI case. So do an lfence + * to prevent GS speculation, regardless of whether PTI is enabled. + */ + FENCE_SWAPGS_KERNEL_ENTRY + ret END(paranoid_entry) @@ -1288,6 +1297,7 @@ ENTRY(error_entry) * from user mode due to an IRET fault. */ SWAPGS + FENCE_SWAPGS_USER_ENTRY /* We have user CR3. Change to kernel CR3. */ SWITCH_TO_KERNEL_CR3 scratch_reg=%rax @@ -1301,6 +1311,8 @@ ENTRY(error_entry) pushq %r12 ret +.Lerror_entry_done_lfence: + FENCE_SWAPGS_KERNEL_ENTRY .Lerror_entry_done: ret @@ -1318,7 +1330,7 @@ ENTRY(error_entry) cmpq %rax, RIP+8(%rsp) je .Lbstep_iret cmpq $.Lgs_change, RIP+8(%rsp) - jne .Lerror_entry_done + jne .Lerror_entry_done_lfence /* * hack: .Lgs_change can fail with user gsbase. If this happens, fix up @@ -1326,6 +1338,7 @@ ENTRY(error_entry) * .Lgs_change's error handler with kernel gsbase. */ SWAPGS + FENCE_SWAPGS_USER_ENTRY SWITCH_TO_KERNEL_CR3 scratch_reg=%rax jmp .Lerror_entry_done @@ -1340,6 +1353,7 @@ ENTRY(error_entry) * gsbase and CR3. Switch to kernel gsbase and CR3: */ SWAPGS + FENCE_SWAPGS_USER_ENTRY SWITCH_TO_KERNEL_CR3 scratch_reg=%rax /* @@ -1431,6 +1445,7 @@ ENTRY(nmi) swapgs cld + FENCE_SWAPGS_USER_ENTRY SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx movq %rsp, %rdx movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp |
