summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/mmu/mmu.c
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2025-01-20 07:15:58 -0500
committerPaolo Bonzini <pbonzini@redhat.com>2025-01-20 07:15:58 -0500
commit86eb1aef7279ec68fe9b7a44685efc09aa56a8f0 (patch)
tree992801fdbb37a1fc544add725ed3268423edee3e /arch/x86/kvm/mmu/mmu.c
parent3eba032bb720931c6fe8ab3575d0c9bf05bcf8c5 (diff)
parent7c54803863002989ac979adc14847fea5c80bf4b (diff)
Merge branch 'kvm-mirror-page-tables' into HEAD
As part of enabling TDX virtual machines, support support separation of private/shared EPT into separate roots. Confidential computing solutions almost invariably have concepts of private and shared memory, but they may different a lot in the details. In SEV, for example, the bit is handled more like a permission bit as far as the page tables are concerned: the private/shared bit is not included in the physical address. For TDX, instead, the bit is more like a physical address bit, with the host mapping private memory in one half of the address space and shared in another. Furthermore, the two halves are mapped by different EPT roots and only the shared half is managed by KVM; the private half (also called Secure EPT in Intel documentation) gets managed by the privileged TDX Module via SEAMCALLs. As a result, the operations that actually change the private half of the EPT are limited and relatively slow compared to reading a PTE. For this reason the design for KVM is to keep a mirror of the private EPT in host memory. This allows KVM to quickly walk the EPT and only perform the slower private EPT operations when it needs to actually modify mid-level private PTEs. There are thus three sets of EPT page tables: external, mirror and direct. In the case of TDX (the only user of this framework) the first two cover private memory, whereas the third manages shared memory: external EPT - Hidden within the TDX module, modified via TDX module calls. mirror EPT - Bookkeeping tree used as an optimization by KVM, not used by the processor. direct EPT - Normal EPT that maps unencrypted shared memory. Managed like the EPT of a normal VM. Modifying external EPT ---------------------- Modifications to the mirrored page tables need to also perform the same operations to the private page tables, which will be handled via kvm_x86_ops. Although this prep series does not interact with the TDX module at all to actually configure the private EPT, it does lay the ground work for doing this. In some ways updating the private EPT is as simple as plumbing PTE modifications through to also call into the TDX module; however, the locking is more complicated because inserting a single PTE cannot anymore be done atomically with a single CMPXCHG. For this reason, the existing FROZEN_SPTE mechanism is used whenever a call to the TDX module updates the private EPT. FROZEN_SPTE acts basically as a spinlock on a PTE. Besides protecting operation of KVM, it limits the set of cases in which the TDX module will encounter contention on its own PTE locks. Zapping external EPT -------------------- While the framework tries to be relatively generic, and to be understandable without knowing TDX much in detail, some requirements of TDX sometimes leak; for example the private page tables also cannot be zapped while the range has anything mapped, so the mirrored/private page tables need to be protected from KVM operations that zap any non-leaf PTEs, for example kvm_mmu_reset_context() or kvm_mmu_zap_all_fast(). For normal VMs, guest memory is zapped for several reasons: user memory getting paged out by the guest, memslots getting deleted, passthrough of devices with non-coherent DMA. Confidential computing adds to these the conversion of memory between shared and privates. These operations must not zap any private memory that is in use by the guest. This is possible because the only zapping that is out of the control of KVM/userspace is paging out userspace memory, which cannot apply to guestmemfd operations. Thus a TDX VM will only zap private memory from memslot deletion and from conversion between private and shared memory which is triggered by the guest. To avoid zapping too much memory, enums are introduced so that operations can choose to target only private or shared memory, and thus only direct or mirror EPT. For example: Memslot deletion - Private and shared MMU notifier based zapping - Shared only Conversion to shared - Private only Conversion to private - Shared only Other cases of zapping will not be supported for KVM, for example APICv update or non-coherent DMA status update; for the latter, TDX will simply require that the CPU supports self-snoop and honor guest PAT unconditionally for shared memory.
Diffstat (limited to 'arch/x86/kvm/mmu/mmu.c')
-rw-r--r--arch/x86/kvm/mmu/mmu.c60
1 files changed, 51 insertions, 9 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 74fa38ebddbf..26b4ba7e7cb5 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -599,6 +599,12 @@ static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
if (r)
return r;
+ if (kvm_has_mirrored_tdp(vcpu->kvm)) {
+ r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache,
+ PT64_ROOT_MAX_LEVEL);
+ if (r)
+ return r;
+ }
r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
PT64_ROOT_MAX_LEVEL);
if (r)
@@ -618,6 +624,7 @@ static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
+ kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache);
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
}
@@ -3656,8 +3663,13 @@ static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
unsigned i;
int r;
- if (tdp_mmu_enabled)
- return kvm_tdp_mmu_alloc_root(vcpu);
+ if (tdp_mmu_enabled) {
+ if (kvm_has_mirrored_tdp(vcpu->kvm) &&
+ !VALID_PAGE(mmu->mirror_root_hpa))
+ kvm_tdp_mmu_alloc_root(vcpu, true);
+ kvm_tdp_mmu_alloc_root(vcpu, false);
+ return 0;
+ }
write_lock(&vcpu->kvm->mmu_lock);
r = make_mmu_pages_available(vcpu);
@@ -4379,8 +4391,12 @@ static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
struct kvm_page_fault *fault, unsigned int access)
{
struct kvm_memory_slot *slot = fault->slot;
+ struct kvm *kvm = vcpu->kvm;
int ret;
+ if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm))
+ return -EFAULT;
+
/*
* Note that the mmu_invalidate_seq also serves to detect a concurrent
* change in attributes. is_page_fault_stale() will detect an
@@ -4394,7 +4410,7 @@ static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
* Now that we have a snapshot of mmu_invalidate_seq we can check for a
* private vs. shared mismatch.
*/
- if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) {
+ if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) {
kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
return -EFAULT;
}
@@ -4456,7 +4472,7 @@ static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
* *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
* to detect retry guarantees the worst case latency for the vCPU.
*/
- if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn))
+ if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn))
return RET_PF_RETRY;
ret = __kvm_mmu_faultin_pfn(vcpu, fault);
@@ -4476,7 +4492,7 @@ static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
* overall cost of failing to detect the invalidation until after
* mmu_lock is acquired.
*/
- if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) {
+ if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) {
kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY);
return RET_PF_RETRY;
}
@@ -6095,8 +6111,16 @@ int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 err
else if (r == RET_PF_SPURIOUS)
vcpu->stat.pf_spurious++;
+ /*
+ * None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or
+ * kvm_mmu_write_protect_fault() return RET_PF_CONTINUE.
+ * kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to
+ * indicate continuing the page fault handling until to the final
+ * page table mapping phase.
+ */
+ WARN_ON_ONCE(r == RET_PF_CONTINUE);
if (r != RET_PF_EMULATE)
- return 1;
+ return r;
emulate:
return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
@@ -6272,6 +6296,7 @@ static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
mmu->root.hpa = INVALID_PAGE;
mmu->root.pgd = 0;
+ mmu->mirror_root_hpa = INVALID_PAGE;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
@@ -6441,8 +6466,13 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm)
* write and in the same critical section as making the reload request,
* e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
*/
- if (tdp_mmu_enabled)
- kvm_tdp_mmu_invalidate_all_roots(kvm);
+ if (tdp_mmu_enabled) {
+ /*
+ * External page tables don't support fast zapping, therefore
+ * their mirrors must be invalidated separately by the caller.
+ */
+ kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS);
+ }
/*
* Notify all vcpus to reload its shadow page table and flush TLB.
@@ -6467,7 +6497,7 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm)
* lead to use-after-free.
*/
if (tdp_mmu_enabled)
- kvm_tdp_mmu_zap_invalidated_roots(kvm);
+ kvm_tdp_mmu_zap_invalidated_roots(kvm, true);
}
void kvm_mmu_init_vm(struct kvm *kvm)
@@ -7220,6 +7250,12 @@ out:
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
kvm_mmu_unload(vcpu);
+ if (tdp_mmu_enabled) {
+ read_lock(&vcpu->kvm->mmu_lock);
+ mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa,
+ NULL);
+ read_unlock(&vcpu->kvm->mmu_lock);
+ }
free_mmu_pages(&vcpu->arch.root_mmu);
free_mmu_pages(&vcpu->arch.guest_mmu);
mmu_free_memory_caches(vcpu);
@@ -7452,6 +7488,12 @@ bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
return false;
+ /* Unmap the old attribute page. */
+ if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE)
+ range->attr_filter = KVM_FILTER_SHARED;
+ else
+ range->attr_filter = KVM_FILTER_PRIVATE;
+
return kvm_unmap_gfn_range(kvm, range);
}