summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorEric Biggers <ebiggers@kernel.org>2025-06-07 13:04:53 -0700
committerEric Biggers <ebiggers@kernel.org>2025-06-30 09:31:57 -0700
commitb10749d89f5405d7c0319b86ad92a47ccc5ce00c (patch)
tree7eb80eec58c8cf74488abdeb789f2a3193e3acee /lib
parent9b2d720e8ac4b68043ef23820ff9210fa12ea50d (diff)
lib/crc: x86: Migrate optimized CRC code into lib/crc/
Move the x86-optimized CRC code from arch/x86/lib/crc* into its new location in lib/crc/x86/, and wire it up in the new way. This new way of organizing the CRC code eliminates the need to artificially split the code for each CRC variant into separate arch and generic modules, enabling better inlining and dead code elimination. For more details, see "lib/crc: Prepare for arch-optimized code in subdirs of lib/crc/". Reviewed-by: "Martin K. Petersen" <martin.petersen@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: "Jason A. Donenfeld" <Jason@zx2c4.com> Link: https://lore.kernel.org/r/20250607200454.73587-12-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Diffstat (limited to 'lib')
-rw-r--r--lib/crc/Kconfig3
-rw-r--r--lib/crc/Makefile4
-rw-r--r--lib/crc/x86/crc-pclmul-consts.h195
-rw-r--r--lib/crc/x86/crc-pclmul-template.S575
-rw-r--r--lib/crc/x86/crc-pclmul-template.h75
-rw-r--r--lib/crc/x86/crc-t10dif.h28
-rw-r--r--lib/crc/x86/crc16-msb-pclmul.S6
-rw-r--r--lib/crc/x86/crc32-pclmul.S6
-rw-r--r--lib/crc/x86/crc32.h93
-rw-r--r--lib/crc/x86/crc32c-3way.S360
-rw-r--r--lib/crc/x86/crc64-pclmul.S7
-rw-r--r--lib/crc/x86/crc64.h37
12 files changed, 1389 insertions, 0 deletions
diff --git a/lib/crc/Kconfig b/lib/crc/Kconfig
index 0eacefdccc28..436e0c8f60cf 100644
--- a/lib/crc/Kconfig
+++ b/lib/crc/Kconfig
@@ -54,6 +54,7 @@ config CRC_T10DIF_ARCH
default y if ARM64 && KERNEL_MODE_NEON
default y if PPC64 && ALTIVEC
default y if RISCV && RISCV_ISA_ZBC
+ default y if X86
config CRC32
tristate
@@ -76,6 +77,7 @@ config CRC32_ARCH
default y if RISCV && RISCV_ISA_ZBC
default y if S390
default y if SPARC64
+ default y if X86
config CRC64
tristate
@@ -90,6 +92,7 @@ config CRC64_ARCH
bool
depends on CRC64 && CRC_OPTIMIZATIONS
default y if RISCV && RISCV_ISA_ZBC && 64BIT
+ default y if X86_64
config CRC_OPTIMIZATIONS
bool "Enable optimized CRC implementations" if EXPERT
diff --git a/lib/crc/Makefile b/lib/crc/Makefile
index 81e176db0947..7543ad295ab6 100644
--- a/lib/crc/Makefile
+++ b/lib/crc/Makefile
@@ -17,6 +17,7 @@ crc-t10dif-$(CONFIG_ARM) += arm/crc-t10dif-core.o
crc-t10dif-$(CONFIG_ARM64) += arm64/crc-t10dif-core.o
crc-t10dif-$(CONFIG_PPC) += powerpc/crct10dif-vpmsum_asm.o
crc-t10dif-$(CONFIG_RISCV) += riscv/crc16_msb.o
+crc-t10dif-$(CONFIG_X86) += x86/crc16-msb-pclmul.o
endif
obj-$(CONFIG_CRC32) += crc32.o
@@ -29,6 +30,8 @@ crc32-$(CONFIG_PPC) += powerpc/crc32c-vpmsum_asm.o
crc32-$(CONFIG_RISCV) += riscv/crc32_lsb.o riscv/crc32_msb.o
crc32-$(CONFIG_S390) += s390/crc32le-vx.o s390/crc32be-vx.o
crc32-$(CONFIG_SPARC) += sparc/crc32c_asm.o
+crc32-$(CONFIG_X86) += x86/crc32-pclmul.o
+crc32-$(CONFIG_X86_64) += x86/crc32c-3way.o
endif
obj-$(CONFIG_CRC64) += crc64.o
@@ -36,6 +39,7 @@ crc64-y := crc64-main.o
ifeq ($(CONFIG_CRC64_ARCH),y)
CFLAGS_crc64-main.o += -I$(src)/$(SRCARCH)
crc64-$(CONFIG_RISCV) += riscv/crc64_lsb.o riscv/crc64_msb.o
+crc64-$(CONFIG_X86) += x86/crc64-pclmul.o
endif
obj-y += tests/
diff --git a/lib/crc/x86/crc-pclmul-consts.h b/lib/crc/x86/crc-pclmul-consts.h
new file mode 100644
index 000000000000..fcc63c064333
--- /dev/null
+++ b/lib/crc/x86/crc-pclmul-consts.h
@@ -0,0 +1,195 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * CRC constants generated by:
+ *
+ * ./scripts/gen-crc-consts.py x86_pclmul crc16_msb_0x8bb7,crc32_lsb_0xedb88320,crc64_msb_0x42f0e1eba9ea3693,crc64_lsb_0x9a6c9329ac4bc9b5
+ *
+ * Do not edit manually.
+ */
+
+/*
+ * CRC folding constants generated for most-significant-bit-first CRC-16 using
+ * G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
+ */
+static const struct {
+ u8 bswap_mask[16];
+ u64 fold_across_2048_bits_consts[2];
+ u64 fold_across_1024_bits_consts[2];
+ u64 fold_across_512_bits_consts[2];
+ u64 fold_across_256_bits_consts[2];
+ u64 fold_across_128_bits_consts[2];
+ u8 shuf_table[48];
+ u64 barrett_reduction_consts[2];
+} crc16_msb_0x8bb7_consts ____cacheline_aligned __maybe_unused = {
+ .bswap_mask = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
+ .fold_across_2048_bits_consts = {
+ 0xdccf000000000000, /* LO64_TERMS: (x^2000 mod G) * x^48 */
+ 0x4b0b000000000000, /* HI64_TERMS: (x^2064 mod G) * x^48 */
+ },
+ .fold_across_1024_bits_consts = {
+ 0x9d9d000000000000, /* LO64_TERMS: (x^976 mod G) * x^48 */
+ 0x7cf5000000000000, /* HI64_TERMS: (x^1040 mod G) * x^48 */
+ },
+ .fold_across_512_bits_consts = {
+ 0x044c000000000000, /* LO64_TERMS: (x^464 mod G) * x^48 */
+ 0xe658000000000000, /* HI64_TERMS: (x^528 mod G) * x^48 */
+ },
+ .fold_across_256_bits_consts = {
+ 0x6ee3000000000000, /* LO64_TERMS: (x^208 mod G) * x^48 */
+ 0xe7b5000000000000, /* HI64_TERMS: (x^272 mod G) * x^48 */
+ },
+ .fold_across_128_bits_consts = {
+ 0x2d56000000000000, /* LO64_TERMS: (x^80 mod G) * x^48 */
+ 0x06df000000000000, /* HI64_TERMS: (x^144 mod G) * x^48 */
+ },
+ .shuf_table = {
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ },
+ .barrett_reduction_consts = {
+ 0x8bb7000000000000, /* LO64_TERMS: (G - x^16) * x^48 */
+ 0xf65a57f81d33a48a, /* HI64_TERMS: (floor(x^79 / G) * x) - x^64 */
+ },
+};
+
+/*
+ * CRC folding constants generated for least-significant-bit-first CRC-32 using
+ * G(x) = x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 +
+ * x^5 + x^4 + x^2 + x^1 + x^0
+ */
+static const struct {
+ u64 fold_across_2048_bits_consts[2];
+ u64 fold_across_1024_bits_consts[2];
+ u64 fold_across_512_bits_consts[2];
+ u64 fold_across_256_bits_consts[2];
+ u64 fold_across_128_bits_consts[2];
+ u8 shuf_table[48];
+ u64 barrett_reduction_consts[2];
+} crc32_lsb_0xedb88320_consts ____cacheline_aligned __maybe_unused = {
+ .fold_across_2048_bits_consts = {
+ 0x00000000ce3371cb, /* HI64_TERMS: (x^2079 mod G) * x^32 */
+ 0x00000000e95c1271, /* LO64_TERMS: (x^2015 mod G) * x^32 */
+ },
+ .fold_across_1024_bits_consts = {
+ 0x0000000033fff533, /* HI64_TERMS: (x^1055 mod G) * x^32 */
+ 0x00000000910eeec1, /* LO64_TERMS: (x^991 mod G) * x^32 */
+ },
+ .fold_across_512_bits_consts = {
+ 0x000000008f352d95, /* HI64_TERMS: (x^543 mod G) * x^32 */
+ 0x000000001d9513d7, /* LO64_TERMS: (x^479 mod G) * x^32 */
+ },
+ .fold_across_256_bits_consts = {
+ 0x00000000f1da05aa, /* HI64_TERMS: (x^287 mod G) * x^32 */
+ 0x0000000081256527, /* LO64_TERMS: (x^223 mod G) * x^32 */
+ },
+ .fold_across_128_bits_consts = {
+ 0x00000000ae689191, /* HI64_TERMS: (x^159 mod G) * x^32 */
+ 0x00000000ccaa009e, /* LO64_TERMS: (x^95 mod G) * x^32 */
+ },
+ .shuf_table = {
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ },
+ .barrett_reduction_consts = {
+ 0xb4e5b025f7011641, /* HI64_TERMS: floor(x^95 / G) */
+ 0x00000001db710640, /* LO64_TERMS: (G - x^32) * x^31 */
+ },
+};
+
+/*
+ * CRC folding constants generated for most-significant-bit-first CRC-64 using
+ * G(x) = x^64 + x^62 + x^57 + x^55 + x^54 + x^53 + x^52 + x^47 + x^46 + x^45 +
+ * x^40 + x^39 + x^38 + x^37 + x^35 + x^33 + x^32 + x^31 + x^29 + x^27 +
+ * x^24 + x^23 + x^22 + x^21 + x^19 + x^17 + x^13 + x^12 + x^10 + x^9 +
+ * x^7 + x^4 + x^1 + x^0
+ */
+static const struct {
+ u8 bswap_mask[16];
+ u64 fold_across_2048_bits_consts[2];
+ u64 fold_across_1024_bits_consts[2];
+ u64 fold_across_512_bits_consts[2];
+ u64 fold_across_256_bits_consts[2];
+ u64 fold_across_128_bits_consts[2];
+ u8 shuf_table[48];
+ u64 barrett_reduction_consts[2];
+} crc64_msb_0x42f0e1eba9ea3693_consts ____cacheline_aligned __maybe_unused = {
+ .bswap_mask = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
+ .fold_across_2048_bits_consts = {
+ 0x7f52691a60ddc70d, /* LO64_TERMS: (x^2048 mod G) * x^0 */
+ 0x7036b0389f6a0c82, /* HI64_TERMS: (x^2112 mod G) * x^0 */
+ },
+ .fold_across_1024_bits_consts = {
+ 0x05cf79dea9ac37d6, /* LO64_TERMS: (x^1024 mod G) * x^0 */
+ 0x001067e571d7d5c2, /* HI64_TERMS: (x^1088 mod G) * x^0 */
+ },
+ .fold_across_512_bits_consts = {
+ 0x5f6843ca540df020, /* LO64_TERMS: (x^512 mod G) * x^0 */
+ 0xddf4b6981205b83f, /* HI64_TERMS: (x^576 mod G) * x^0 */
+ },
+ .fold_across_256_bits_consts = {
+ 0x571bee0a227ef92b, /* LO64_TERMS: (x^256 mod G) * x^0 */
+ 0x44bef2a201b5200c, /* HI64_TERMS: (x^320 mod G) * x^0 */
+ },
+ .fold_across_128_bits_consts = {
+ 0x05f5c3c7eb52fab6, /* LO64_TERMS: (x^128 mod G) * x^0 */
+ 0x4eb938a7d257740e, /* HI64_TERMS: (x^192 mod G) * x^0 */
+ },
+ .shuf_table = {
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ },
+ .barrett_reduction_consts = {
+ 0x42f0e1eba9ea3693, /* LO64_TERMS: (G - x^64) * x^0 */
+ 0x578d29d06cc4f872, /* HI64_TERMS: (floor(x^127 / G) * x) - x^64 */
+ },
+};
+
+/*
+ * CRC folding constants generated for least-significant-bit-first CRC-64 using
+ * G(x) = x^64 + x^63 + x^61 + x^59 + x^58 + x^56 + x^55 + x^52 + x^49 + x^48 +
+ * x^47 + x^46 + x^44 + x^41 + x^37 + x^36 + x^34 + x^32 + x^31 + x^28 +
+ * x^26 + x^23 + x^22 + x^19 + x^16 + x^13 + x^12 + x^10 + x^9 + x^6 +
+ * x^4 + x^3 + x^0
+ */
+static const struct {
+ u64 fold_across_2048_bits_consts[2];
+ u64 fold_across_1024_bits_consts[2];
+ u64 fold_across_512_bits_consts[2];
+ u64 fold_across_256_bits_consts[2];
+ u64 fold_across_128_bits_consts[2];
+ u8 shuf_table[48];
+ u64 barrett_reduction_consts[2];
+} crc64_lsb_0x9a6c9329ac4bc9b5_consts ____cacheline_aligned __maybe_unused = {
+ .fold_across_2048_bits_consts = {
+ 0x37ccd3e14069cabc, /* HI64_TERMS: (x^2111 mod G) * x^0 */
+ 0xa043808c0f782663, /* LO64_TERMS: (x^2047 mod G) * x^0 */
+ },
+ .fold_across_1024_bits_consts = {
+ 0xa1ca681e733f9c40, /* HI64_TERMS: (x^1087 mod G) * x^0 */
+ 0x5f852fb61e8d92dc, /* LO64_TERMS: (x^1023 mod G) * x^0 */
+ },
+ .fold_across_512_bits_consts = {
+ 0x0c32cdb31e18a84a, /* HI64_TERMS: (x^575 mod G) * x^0 */
+ 0x62242240ace5045a, /* LO64_TERMS: (x^511 mod G) * x^0 */
+ },
+ .fold_across_256_bits_consts = {
+ 0xb0bc2e589204f500, /* HI64_TERMS: (x^319 mod G) * x^0 */
+ 0xe1e0bb9d45d7a44c, /* LO64_TERMS: (x^255 mod G) * x^0 */
+ },
+ .fold_across_128_bits_consts = {
+ 0xeadc41fd2ba3d420, /* HI64_TERMS: (x^191 mod G) * x^0 */
+ 0x21e9761e252621ac, /* LO64_TERMS: (x^127 mod G) * x^0 */
+ },
+ .shuf_table = {
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ },
+ .barrett_reduction_consts = {
+ 0x27ecfa329aef9f77, /* HI64_TERMS: floor(x^127 / G) */
+ 0x34d926535897936a, /* LO64_TERMS: (G - x^64 - x^0) / x */
+ },
+};
diff --git a/lib/crc/x86/crc-pclmul-template.S b/lib/crc/x86/crc-pclmul-template.S
new file mode 100644
index 000000000000..a02f7dc8053e
--- /dev/null
+++ b/lib/crc/x86/crc-pclmul-template.S
@@ -0,0 +1,575 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+//
+// Template to generate [V]PCLMULQDQ-based CRC functions for x86
+//
+// Copyright 2025 Google LLC
+//
+// Author: Eric Biggers <ebiggers@google.com>
+
+#include <linux/linkage.h>
+#include <linux/objtool.h>
+
+// Offsets within the generated constants table
+.set OFFSETOF_BSWAP_MASK, -5*16 // msb-first CRCs only
+.set OFFSETOF_FOLD_ACROSS_2048_BITS_CONSTS, -4*16 // must precede next
+.set OFFSETOF_FOLD_ACROSS_1024_BITS_CONSTS, -3*16 // must precede next
+.set OFFSETOF_FOLD_ACROSS_512_BITS_CONSTS, -2*16 // must precede next
+.set OFFSETOF_FOLD_ACROSS_256_BITS_CONSTS, -1*16 // must precede next
+.set OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS, 0*16 // must be 0
+.set OFFSETOF_SHUF_TABLE, 1*16
+.set OFFSETOF_BARRETT_REDUCTION_CONSTS, 4*16
+
+// Emit a VEX (or EVEX) coded instruction if allowed, or emulate it using the
+// corresponding non-VEX instruction plus any needed moves. The supported
+// instruction formats are:
+//
+// - Two-arg [src, dst], where the non-VEX format is the same.
+// - Three-arg [src1, src2, dst] where the non-VEX format is
+// [src1, src2_and_dst]. If src2 != dst, then src1 must != dst too.
+//
+// \insn gives the instruction without a "v" prefix and including any immediate
+// argument if needed to make the instruction follow one of the above formats.
+// If \unaligned_mem_tmp is given, then the emitted non-VEX code moves \arg1 to
+// it first; this is needed when \arg1 is an unaligned mem operand.
+.macro _cond_vex insn:req, arg1:req, arg2:req, arg3, unaligned_mem_tmp
+.if AVX_LEVEL == 0
+ // VEX not allowed. Emulate it.
+ .ifnb \arg3 // Three-arg [src1, src2, dst]
+ .ifc "\arg2", "\arg3" // src2 == dst?
+ .ifnb \unaligned_mem_tmp
+ movdqu \arg1, \unaligned_mem_tmp
+ \insn \unaligned_mem_tmp, \arg3
+ .else
+ \insn \arg1, \arg3
+ .endif
+ .else // src2 != dst
+ .ifc "\arg1", "\arg3"
+ .error "Can't have src1 == dst when src2 != dst"
+ .endif
+ .ifnb \unaligned_mem_tmp
+ movdqu \arg1, \unaligned_mem_tmp
+ movdqa \arg2, \arg3
+ \insn \unaligned_mem_tmp, \arg3
+ .else
+ movdqa \arg2, \arg3
+ \insn \arg1, \arg3
+ .endif
+ .endif
+ .else // Two-arg [src, dst]
+ .ifnb \unaligned_mem_tmp
+ movdqu \arg1, \unaligned_mem_tmp
+ \insn \unaligned_mem_tmp, \arg2
+ .else
+ \insn \arg1, \arg2
+ .endif
+ .endif
+.else
+ // VEX is allowed. Emit the desired instruction directly.
+ .ifnb \arg3
+ v\insn \arg1, \arg2, \arg3
+ .else
+ v\insn \arg1, \arg2
+ .endif
+.endif
+.endm
+
+// Broadcast an aligned 128-bit mem operand to all 128-bit lanes of a vector
+// register of length VL.
+.macro _vbroadcast src, dst
+.if VL == 16
+ _cond_vex movdqa, \src, \dst
+.elseif VL == 32
+ vbroadcasti128 \src, \dst
+.else
+ vbroadcasti32x4 \src, \dst
+.endif
+.endm
+
+// Load \vl bytes from the unaligned mem operand \src into \dst, and if the CRC
+// is msb-first use \bswap_mask to reflect the bytes within each 128-bit lane.
+.macro _load_data vl, src, bswap_mask, dst
+.if \vl < 64
+ _cond_vex movdqu, "\src", \dst
+.else
+ vmovdqu8 \src, \dst
+.endif
+.if !LSB_CRC
+ _cond_vex pshufb, \bswap_mask, \dst, \dst
+.endif
+.endm
+
+.macro _prepare_v0 vl, v0, v1, bswap_mask
+.if LSB_CRC
+ .if \vl < 64
+ _cond_vex pxor, (BUF), \v0, \v0, unaligned_mem_tmp=\v1
+ .else
+ vpxorq (BUF), \v0, \v0
+ .endif
+.else
+ _load_data \vl, (BUF), \bswap_mask, \v1
+ .if \vl < 64
+ _cond_vex pxor, \v1, \v0, \v0
+ .else
+ vpxorq \v1, \v0, \v0
+ .endif
+.endif
+.endm
+
+// The x^0..x^63 terms, i.e. poly128 mod x^64, i.e. the physically low qword for
+// msb-first order or the physically high qword for lsb-first order
+#define LO64_TERMS 0
+
+// The x^64..x^127 terms, i.e. floor(poly128 / x^64), i.e. the physically high
+// qword for msb-first order or the physically low qword for lsb-first order
+#define HI64_TERMS 1
+
+// Multiply the given \src1_terms of each 128-bit lane of \src1 by the given
+// \src2_terms of each 128-bit lane of \src2, and write the result(s) to \dst.
+.macro _pclmulqdq src1, src1_terms, src2, src2_terms, dst
+ _cond_vex "pclmulqdq $((\src1_terms ^ LSB_CRC) << 4) ^ (\src2_terms ^ LSB_CRC),", \
+ \src1, \src2, \dst
+.endm
+
+// Fold \acc into \data and store the result back into \acc. \data can be an
+// unaligned mem operand if using VEX is allowed and the CRC is lsb-first so no
+// byte-reflection is needed; otherwise it must be a vector register. \consts
+// is a vector register containing the needed fold constants, and \tmp is a
+// temporary vector register. All arguments must be the same length.
+.macro _fold_vec acc, data, consts, tmp
+ _pclmulqdq \consts, HI64_TERMS, \acc, HI64_TERMS, \tmp
+ _pclmulqdq \consts, LO64_TERMS, \acc, LO64_TERMS, \acc
+.if AVX_LEVEL <= 2
+ _cond_vex pxor, \data, \tmp, \tmp
+ _cond_vex pxor, \tmp, \acc, \acc
+.else
+ vpternlogq $0x96, \data, \tmp, \acc
+.endif
+.endm
+
+// Fold \acc into \data and store the result back into \acc. \data is an
+// unaligned mem operand, \consts is a vector register containing the needed
+// fold constants, \bswap_mask is a vector register containing the
+// byte-reflection table if the CRC is msb-first, and \tmp1 and \tmp2 are
+// temporary vector registers. All arguments must have length \vl.
+.macro _fold_vec_mem vl, acc, data, consts, bswap_mask, tmp1, tmp2
+.if AVX_LEVEL == 0 || !LSB_CRC
+ _load_data \vl, \data, \bswap_mask, \tmp1
+ _fold_vec \acc, \tmp1, \consts, \tmp2
+.else
+ _fold_vec \acc, \data, \consts, \tmp1
+.endif
+.endm
+
+// Load the constants for folding across 2**i vectors of length VL at a time
+// into all 128-bit lanes of the vector register CONSTS.
+.macro _load_vec_folding_consts i
+ _vbroadcast OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS+(4-LOG2_VL-\i)*16(CONSTS_PTR), \
+ CONSTS
+.endm
+
+// Given vector registers \v0 and \v1 of length \vl, fold \v0 into \v1 and store
+// the result back into \v0. If the remaining length mod \vl is nonzero, also
+// fold \vl data bytes from BUF. For both operations the fold distance is \vl.
+// \consts must be a register of length \vl containing the fold constants.
+.macro _fold_vec_final vl, v0, v1, consts, bswap_mask, tmp1, tmp2
+ _fold_vec \v0, \v1, \consts, \tmp1
+ test $\vl, LEN8
+ jz .Lfold_vec_final_done\@
+ _fold_vec_mem \vl, \v0, (BUF), \consts, \bswap_mask, \tmp1, \tmp2
+ add $\vl, BUF
+.Lfold_vec_final_done\@:
+.endm
+
+// This macro generates the body of a CRC function with the following prototype:
+//
+// crc_t crc_func(crc_t crc, const u8 *buf, size_t len, const void *consts);
+//
+// |crc| is the initial CRC, and crc_t is a data type wide enough to hold it.
+// |buf| is the data to checksum. |len| is the data length in bytes, which must
+// be at least 16. |consts| is a pointer to the fold_across_128_bits_consts
+// field of the constants struct that was generated for the chosen CRC variant.
+//
+// Moving onto the macro parameters, \n is the number of bits in the CRC, e.g.
+// 32 for a CRC-32. Currently the supported values are 8, 16, 32, and 64. If
+// the file is compiled in i386 mode, then the maximum supported value is 32.
+//
+// \lsb_crc is 1 if the CRC processes the least significant bit of each byte
+// first, i.e. maps bit0 to x^7, bit1 to x^6, ..., bit7 to x^0. \lsb_crc is 0
+// if the CRC processes the most significant bit of each byte first, i.e. maps
+// bit0 to x^0, bit1 to x^1, bit7 to x^7.
+//
+// \vl is the maximum length of vector register to use in bytes: 16, 32, or 64.
+//
+// \avx_level is the level of AVX support to use: 0 for SSE only, 2 for AVX2, or
+// 512 for AVX512.
+//
+// If \vl == 16 && \avx_level == 0, the generated code requires:
+// PCLMULQDQ && SSE4.1. (Note: all known CPUs with PCLMULQDQ also have SSE4.1.)
+//
+// If \vl == 32 && \avx_level == 2, the generated code requires:
+// VPCLMULQDQ && AVX2.
+//
+// If \vl == 64 && \avx_level == 512, the generated code requires:
+// VPCLMULQDQ && AVX512BW && AVX512VL.
+//
+// Other \vl and \avx_level combinations are either not supported or not useful.
+.macro _crc_pclmul n, lsb_crc, vl, avx_level
+ .set LSB_CRC, \lsb_crc
+ .set VL, \vl
+ .set AVX_LEVEL, \avx_level
+
+ // Define aliases for the xmm, ymm, or zmm registers according to VL.
+.irp i, 0,1,2,3,4,5,6,7
+ .if VL == 16
+ .set V\i, %xmm\i
+ .set LOG2_VL, 4
+ .elseif VL == 32
+ .set V\i, %ymm\i
+ .set LOG2_VL, 5
+ .elseif VL == 64
+ .set V\i, %zmm\i
+ .set LOG2_VL, 6
+ .else
+ .error "Unsupported vector length"
+ .endif
+.endr
+ // Define aliases for the function parameters.
+ // Note: when crc_t is shorter than u32, zero-extension to 32 bits is
+ // guaranteed by the ABI. Zero-extension to 64 bits is *not* guaranteed
+ // when crc_t is shorter than u64.
+#ifdef __x86_64__
+.if \n <= 32
+ .set CRC, %edi
+.else
+ .set CRC, %rdi
+.endif
+ .set BUF, %rsi
+ .set LEN, %rdx
+ .set LEN32, %edx
+ .set LEN8, %dl
+ .set CONSTS_PTR, %rcx
+#else
+ // 32-bit support, assuming -mregparm=3 and not including support for
+ // CRC-64 (which would use both eax and edx to pass the crc parameter).
+ .set CRC, %eax
+ .set BUF, %edx
+ .set LEN, %ecx
+ .set LEN32, %ecx
+ .set LEN8, %cl
+ .set CONSTS_PTR, %ebx // Passed on stack
+#endif
+
+ // Define aliases for some local variables. V0-V5 are used without
+ // aliases (for accumulators, data, temporary values, etc). Staying
+ // within the first 8 vector registers keeps the code 32-bit SSE
+ // compatible and reduces the size of 64-bit SSE code slightly.
+ .set BSWAP_MASK, V6
+ .set BSWAP_MASK_YMM, %ymm6
+ .set BSWAP_MASK_XMM, %xmm6
+ .set CONSTS, V7
+ .set CONSTS_YMM, %ymm7
+ .set CONSTS_XMM, %xmm7
+
+ // Use ANNOTATE_NOENDBR to suppress an objtool warning, since the
+ // functions generated by this macro are called only by static_call.
+ ANNOTATE_NOENDBR
+
+#ifdef __i386__
+ push CONSTS_PTR
+ mov 8(%esp), CONSTS_PTR
+#endif
+
+ // Create a 128-bit vector that contains the initial CRC in the end
+ // representing the high-order polynomial coefficients, and the rest 0.
+ // If the CRC is msb-first, also load the byte-reflection table.
+.if \n <= 32
+ _cond_vex movd, CRC, %xmm0
+.else
+ _cond_vex movq, CRC, %xmm0
+.endif
+.if !LSB_CRC
+ _cond_vex pslldq, $(128-\n)/8, %xmm0, %xmm0
+ _vbroadcast OFFSETOF_BSWAP_MASK(CONSTS_PTR), BSWAP_MASK
+.endif
+
+ // Load the first vector of data and XOR the initial CRC into the
+ // appropriate end of the first 128-bit lane of data. If LEN < VL, then
+ // use a short vector and jump ahead to the final reduction. (LEN >= 16
+ // is guaranteed here but not necessarily LEN >= VL.)
+.if VL >= 32
+ cmp $VL, LEN
+ jae .Lat_least_1vec\@
+ .if VL == 64
+ cmp $32, LEN32
+ jb .Lless_than_32bytes\@
+ _prepare_v0 32, %ymm0, %ymm1, BSWAP_MASK_YMM
+ add $32, BUF
+ jmp .Lreduce_256bits_to_128bits\@
+.Lless_than_32bytes\@:
+ .endif
+ _prepare_v0 16, %xmm0, %xmm1, BSWAP_MASK_XMM
+ add $16, BUF
+ vmovdqa OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM
+ jmp .Lcheck_for_partial_block\@
+.Lat_least_1vec\@:
+.endif
+ _prepare_v0 VL, V0, V1, BSWAP_MASK
+
+ // Handle VL <= LEN < 4*VL.
+ cmp $4*VL-1, LEN
+ ja .Lat_least_4vecs\@
+ add $VL, BUF
+ // If VL <= LEN < 2*VL, then jump ahead to the reduction from 1 vector.
+ // If VL==16 then load fold_across_128_bits_consts first, as the final
+ // reduction depends on it and it won't be loaded anywhere else.
+ cmp $2*VL-1, LEN32
+.if VL == 16
+ _cond_vex movdqa, OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM
+.endif
+ jbe .Lreduce_1vec_to_128bits\@
+ // Otherwise 2*VL <= LEN < 4*VL. Load one more vector and jump ahead to
+ // the reduction from 2 vectors.
+ _load_data VL, (BUF), BSWAP_MASK, V1
+ add $VL, BUF
+ jmp .Lreduce_2vecs_to_1\@
+
+.Lat_least_4vecs\@:
+ // Load 3 more vectors of data.
+ _load_data VL, 1*VL(BUF), BSWAP_MASK, V1
+ _load_data VL, 2*VL(BUF), BSWAP_MASK, V2
+ _load_data VL, 3*VL(BUF), BSWAP_MASK, V3
+ sub $-4*VL, BUF // Shorter than 'add 4*VL' when VL=32
+ add $-4*VL, LEN // Shorter than 'sub 4*VL' when VL=32
+
+ // Main loop: while LEN >= 4*VL, fold the 4 vectors V0-V3 into the next
+ // 4 vectors of data and write the result back to V0-V3.
+ cmp $4*VL-1, LEN // Shorter than 'cmp 4*VL' when VL=32
+ jbe .Lreduce_4vecs_to_2\@
+ _load_vec_folding_consts 2
+.Lfold_4vecs_loop\@:
+ _fold_vec_mem VL, V0, 0*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ _fold_vec_mem VL, V1, 1*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ _fold_vec_mem VL, V2, 2*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ _fold_vec_mem VL, V3, 3*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ sub $-4*VL, BUF
+ add $-4*VL, LEN
+ cmp $4*VL-1, LEN
+ ja .Lfold_4vecs_loop\@
+
+ // Fold V0,V1 into V2,V3 and write the result back to V0,V1. Then fold
+ // two more vectors of data from BUF, if at least that much remains.
+.Lreduce_4vecs_to_2\@:
+ _load_vec_folding_consts 1
+ _fold_vec V0, V2, CONSTS, V4
+ _fold_vec V1, V3, CONSTS, V4
+ test $2*VL, LEN8
+ jz .Lreduce_2vecs_to_1\@
+ _fold_vec_mem VL, V0, 0*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ _fold_vec_mem VL, V1, 1*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ sub $-2*VL, BUF
+
+ // Fold V0 into V1 and write the result back to V0. Then fold one more
+ // vector of data from BUF, if at least that much remains.
+.Lreduce_2vecs_to_1\@:
+ _load_vec_folding_consts 0
+ _fold_vec_final VL, V0, V1, CONSTS, BSWAP_MASK, V4, V5
+
+.Lreduce_1vec_to_128bits\@:
+.if VL == 64
+ // Reduce 512-bit %zmm0 to 256-bit %ymm0. Then fold 256 more bits of
+ // data from BUF, if at least that much remains.
+ vbroadcasti128 OFFSETOF_FOLD_ACROSS_256_BITS_CONSTS(CONSTS_PTR), CONSTS_YMM
+ vextracti64x4 $1, %zmm0, %ymm1
+ _fold_vec_final 32, %ymm0, %ymm1, CONSTS_YMM, BSWAP_MASK_YMM, %ymm4, %ymm5
+.Lreduce_256bits_to_128bits\@:
+.endif
+.if VL >= 32
+ // Reduce 256-bit %ymm0 to 128-bit %xmm0. Then fold 128 more bits of
+ // data from BUF, if at least that much remains.
+ vmovdqa OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM
+ vextracti128 $1, %ymm0, %xmm1
+ _fold_vec_final 16, %xmm0, %xmm1, CONSTS_XMM, BSWAP_MASK_XMM, %xmm4, %xmm5
+.Lcheck_for_partial_block\@:
+.endif
+ and $15, LEN32
+ jz .Lreduce_128bits_to_crc\@
+
+ // 1 <= LEN <= 15 data bytes remain in BUF. The polynomial is now
+ // A*(x^(8*LEN)) + B, where A is the 128-bit polynomial stored in %xmm0
+ // and B is the polynomial of the remaining LEN data bytes. To reduce
+ // this to 128 bits without needing fold constants for each possible
+ // LEN, rearrange this expression into C1*(x^128) + C2, where
+ // C1 = floor(A / x^(128 - 8*LEN)) and C2 = A*x^(8*LEN) + B mod x^128.
+ // Then fold C1 into C2, which is just another fold across 128 bits.
+
+.if !LSB_CRC || AVX_LEVEL == 0
+ // Load the last 16 data bytes. Note that originally LEN was >= 16.
+ _load_data 16, "-16(BUF,LEN)", BSWAP_MASK_XMM, %xmm2
+.endif // Else will use vpblendvb mem operand later.
+.if !LSB_CRC
+ neg LEN // Needed for indexing shuf_table
+.endif
+
+ // tmp = A*x^(8*LEN) mod x^128
+ // lsb: pshufb by [LEN, LEN+1, ..., 15, -1, -1, ..., -1]
+ // i.e. right-shift by LEN bytes.
+ // msb: pshufb by [-1, -1, ..., -1, 0, 1, ..., 15-LEN]
+ // i.e. left-shift by LEN bytes.
+ _cond_vex movdqu, "OFFSETOF_SHUF_TABLE+16(CONSTS_PTR,LEN)", %xmm3
+ _cond_vex pshufb, %xmm3, %xmm0, %xmm1
+
+ // C1 = floor(A / x^(128 - 8*LEN))
+ // lsb: pshufb by [-1, -1, ..., -1, 0, 1, ..., LEN-1]
+ // i.e. left-shift by 16-LEN bytes.
+ // msb: pshufb by [16-LEN, 16-LEN+1, ..., 15, -1, -1, ..., -1]
+ // i.e. right-shift by 16-LEN bytes.
+ _cond_vex pshufb, "OFFSETOF_SHUF_TABLE+32*!LSB_CRC(CONSTS_PTR,LEN)", \
+ %xmm0, %xmm0, unaligned_mem_tmp=%xmm4
+
+ // C2 = tmp + B. This is just a blend of tmp with the last 16 data
+ // bytes (reflected if msb-first). The blend mask is the shuffle table
+ // that was used to create tmp. 0 selects tmp, and 1 last16databytes.
+.if AVX_LEVEL == 0
+ movdqa %xmm0, %xmm4
+ movdqa %xmm3, %xmm0
+ pblendvb %xmm2, %xmm1 // uses %xmm0 as implicit operand
+ movdqa %xmm4, %xmm0
+.elseif LSB_CRC
+ vpblendvb %xmm3, -16(BUF,LEN), %xmm1, %xmm1
+.else
+ vpblendvb %xmm3, %xmm2, %xmm1, %xmm1
+.endif
+
+ // Fold C1 into C2 and store the 128-bit result in %xmm0.
+ _fold_vec %xmm0, %xmm1, CONSTS_XMM, %xmm4
+
+.Lreduce_128bits_to_crc\@:
+ // Compute the CRC as %xmm0 * x^n mod G. Here %xmm0 means the 128-bit
+ // polynomial stored in %xmm0 (using either lsb-first or msb-first bit
+ // order according to LSB_CRC), and G is the CRC's generator polynomial.
+
+ // First, multiply %xmm0 by x^n and reduce the result to 64+n bits:
+ //
+ // t0 := (x^(64+n) mod G) * floor(%xmm0 / x^64) +
+ // x^n * (%xmm0 mod x^64)
+ //
+ // Store t0 * x^(64-n) in %xmm0. I.e., actually do:
+ //
+ // %xmm0 := ((x^(64+n) mod G) * x^(64-n)) * floor(%xmm0 / x^64) +
+ // x^64 * (%xmm0 mod x^64)
+ //
+ // The extra unreduced factor of x^(64-n) makes floor(t0 / x^n) aligned
+ // to the HI64_TERMS of %xmm0 so that the next pclmulqdq can easily
+ // select it. The 64-bit constant (x^(64+n) mod G) * x^(64-n) in the
+ // msb-first case, or (x^(63+n) mod G) * x^(64-n) in the lsb-first case
+ // (considering the extra factor of x that gets implicitly introduced by
+ // each pclmulqdq when using lsb-first order), is identical to the
+ // constant that was used earlier for folding the LO64_TERMS across 128
+ // bits. Thus it's already available in LO64_TERMS of CONSTS_XMM.
+ _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm0, HI64_TERMS, %xmm1
+.if LSB_CRC
+ _cond_vex psrldq, $8, %xmm0, %xmm0 // x^64 * (%xmm0 mod x^64)
+.else
+ _cond_vex pslldq, $8, %xmm0, %xmm0 // x^64 * (%xmm0 mod x^64)
+.endif
+ _cond_vex pxor, %xmm1, %xmm0, %xmm0
+ // The HI64_TERMS of %xmm0 now contain floor(t0 / x^n).
+ // The LO64_TERMS of %xmm0 now contain (t0 mod x^n) * x^(64-n).
+
+ // First step of Barrett reduction: Compute floor(t0 / G). This is the
+ // polynomial by which G needs to be multiplied to cancel out the x^n
+ // and higher terms of t0, i.e. to reduce t0 mod G. First do:
+ //
+ // t1 := floor(x^(63+n) / G) * x * floor(t0 / x^n)
+ //
+ // Then the desired value floor(t0 / G) is floor(t1 / x^64). The 63 in
+ // x^(63+n) is the maximum degree of floor(t0 / x^n) and thus the lowest
+ // value that makes enough precision be carried through the calculation.
+ //
+ // The '* x' makes it so the result is floor(t1 / x^64) rather than
+ // floor(t1 / x^63), making it qword-aligned in HI64_TERMS so that it
+ // can be extracted much more easily in the next step. In the lsb-first
+ // case the '* x' happens implicitly. In the msb-first case it must be
+ // done explicitly; floor(x^(63+n) / G) * x is a 65-bit constant, so the
+ // constant passed to pclmulqdq is (floor(x^(63+n) / G) * x) - x^64, and
+ // the multiplication by the x^64 term is handled using a pxor. The
+ // pxor causes the low 64 terms of t1 to be wrong, but they are unused.
+ _cond_vex movdqa, OFFSETOF_BARRETT_REDUCTION_CONSTS(CONSTS_PTR), CONSTS_XMM
+ _pclmulqdq CONSTS_XMM, HI64_TERMS, %xmm0, HI64_TERMS, %xmm1
+.if !LSB_CRC
+ _cond_vex pxor, %xmm0, %xmm1, %xmm1 // += x^64 * floor(t0 / x^n)
+.endif
+ // The HI64_TERMS of %xmm1 now contain floor(t1 / x^64) = floor(t0 / G).
+
+ // Second step of Barrett reduction: Cancel out the x^n and higher terms
+ // of t0 by subtracting the needed multiple of G. This gives the CRC:
+ //
+ // crc := t0 - (G * floor(t0 / G))
+ //
+ // But %xmm0 contains t0 * x^(64-n), so it's more convenient to do:
+ //
+ // crc := ((t0 * x^(64-n)) - ((G * x^(64-n)) * floor(t0 / G))) / x^(64-n)
+ //
+ // Furthermore, since the resulting CRC is n-bit, if mod x^n is
+ // explicitly applied to it then the x^n term of G makes no difference
+ // in the result and can be omitted. This helps keep the constant
+ // multiplier in 64 bits in most cases. This gives the following:
+ //
+ // %xmm0 := %xmm0 - (((G - x^n) * x^(64-n)) * floor(t0 / G))
+ // crc := (%xmm0 / x^(64-n)) mod x^n
+ //
+ // In the lsb-first case, each pclmulqdq implicitly introduces
+ // an extra factor of x, so in that case the constant that needs to be
+ // passed to pclmulqdq is actually '(G - x^n) * x^(63-n)' when n <= 63.
+ // For lsb-first CRCs where n=64, the extra factor of x cannot be as
+ // easily avoided. In that case, instead pass '(G - x^n - x^0) / x' to
+ // pclmulqdq and handle the x^0 term (i.e. 1) separately. (All CRC
+ // polynomials have nonzero x^n and x^0 terms.) It works out as: the
+ // CRC has be XORed with the physically low qword of %xmm1, representing
+ // floor(t0 / G). The most efficient way to do that is to move it to
+ // the physically high qword and use a ternlog to combine the two XORs.
+.if LSB_CRC && \n == 64
+ _cond_vex punpcklqdq, %xmm1, %xmm2, %xmm2
+ _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm1, HI64_TERMS, %xmm1
+ .if AVX_LEVEL <= 2
+ _cond_vex pxor, %xmm2, %xmm0, %xmm0
+ _cond_vex pxor, %xmm1, %xmm0, %xmm0
+ .else
+ vpternlogq $0x96, %xmm2, %xmm1, %xmm0
+ .endif
+ _cond_vex "pextrq $1,", %xmm0, %rax // (%xmm0 / x^0) mod x^64
+.else
+ _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm1, HI64_TERMS, %xmm1
+ _cond_vex pxor, %xmm1, %xmm0, %xmm0
+ .if \n == 8
+ _cond_vex "pextrb $7 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^56) mod x^8
+ .elseif \n == 16
+ _cond_vex "pextrw $3 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^48) mod x^16
+ .elseif \n == 32
+ _cond_vex "pextrd $1 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^32) mod x^32
+ .else // \n == 64 && !LSB_CRC
+ _cond_vex movq, %xmm0, %rax // (%xmm0 / x^0) mod x^64
+ .endif
+.endif
+
+.if VL > 16
+ vzeroupper // Needed when ymm or zmm registers may have been used.
+.endif
+#ifdef __i386__
+ pop CONSTS_PTR
+#endif
+ RET
+.endm
+
+#define DEFINE_CRC_PCLMUL_FUNCS(prefix, bits, lsb) \
+SYM_FUNC_START(prefix##_pclmul_sse); \
+ _crc_pclmul n=bits, lsb_crc=lsb, vl=16, avx_level=0; \
+SYM_FUNC_END(prefix##_pclmul_sse); \
+ \
+SYM_FUNC_START(prefix##_vpclmul_avx2); \
+ _crc_pclmul n=bits, lsb_crc=lsb, vl=32, avx_level=2; \
+SYM_FUNC_END(prefix##_vpclmul_avx2); \
+ \
+SYM_FUNC_START(prefix##_vpclmul_avx512); \
+ _crc_pclmul n=bits, lsb_crc=lsb, vl=64, avx_level=512; \
+SYM_FUNC_END(prefix##_vpclmul_avx512);
diff --git a/lib/crc/x86/crc-pclmul-template.h b/lib/crc/x86/crc-pclmul-template.h
new file mode 100644
index 000000000000..51cba520a7db
--- /dev/null
+++ b/lib/crc/x86/crc-pclmul-template.h
@@ -0,0 +1,75 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Macros for accessing the [V]PCLMULQDQ-based CRC functions that are
+ * instantiated by crc-pclmul-template.S
+ *
+ * Copyright 2025 Google LLC
+ *
+ * Author: Eric Biggers <ebiggers@google.com>
+ */
+#ifndef _CRC_PCLMUL_TEMPLATE_H
+#define _CRC_PCLMUL_TEMPLATE_H
+
+#include <asm/cpufeatures.h>
+#include <asm/simd.h>
+#include <crypto/internal/simd.h>
+#include <linux/static_call.h>
+#include "crc-pclmul-consts.h"
+
+#define DECLARE_CRC_PCLMUL_FUNCS(prefix, crc_t) \
+crc_t prefix##_pclmul_sse(crc_t crc, const u8 *p, size_t len, \
+ const void *consts_ptr); \
+crc_t prefix##_vpclmul_avx2(crc_t crc, const u8 *p, size_t len, \
+ const void *consts_ptr); \
+crc_t prefix##_vpclmul_avx512(crc_t crc, const u8 *p, size_t len, \
+ const void *consts_ptr); \
+DEFINE_STATIC_CALL(prefix##_pclmul, prefix##_pclmul_sse)
+
+#define INIT_CRC_PCLMUL(prefix) \
+do { \
+ if (boot_cpu_has(X86_FEATURE_VPCLMULQDQ) && \
+ boot_cpu_has(X86_FEATURE_AVX2) && \
+ cpu_has_xfeatures(XFEATURE_MASK_YMM, NULL)) { \
+ if (boot_cpu_has(X86_FEATURE_AVX512BW) && \
+ boot_cpu_has(X86_FEATURE_AVX512VL) && \
+ !boot_cpu_has(X86_FEATURE_PREFER_YMM) && \
+ cpu_has_xfeatures(XFEATURE_MASK_AVX512, NULL)) { \
+ static_call_update(prefix##_pclmul, \
+ prefix##_vpclmul_avx512); \
+ } else { \
+ static_call_update(prefix##_pclmul, \
+ prefix##_vpclmul_avx2); \
+ } \
+ } \
+} while (0)
+
+/*
+ * Call a [V]PCLMULQDQ optimized CRC function if the data length is at least 16
+ * bytes, the CPU has PCLMULQDQ support, and the current context may use SIMD.
+ *
+ * 16 bytes is the minimum length supported by the [V]PCLMULQDQ functions.
+ * There is overhead associated with kernel_fpu_begin() and kernel_fpu_end(),
+ * varying by CPU and factors such as which parts of the "FPU" state userspace
+ * has touched, which could result in a larger cutoff being better. Indeed, a
+ * larger cutoff is usually better for a *single* message. However, the
+ * overhead of the FPU section gets amortized if multiple FPU sections get
+ * executed before returning to userspace, since the XSAVE and XRSTOR occur only
+ * once. Considering that and the fact that the [V]PCLMULQDQ code is lighter on
+ * the dcache than the table-based code is, a 16-byte cutoff seems to work well.
+ */
+#define CRC_PCLMUL(crc, p, len, prefix, consts, have_pclmulqdq) \
+do { \
+ if ((len) >= 16 && static_branch_likely(&(have_pclmulqdq)) && \
+ crypto_simd_usable()) { \
+ const void *consts_ptr; \
+ \
+ consts_ptr = (consts).fold_across_128_bits_consts; \
+ kernel_fpu_begin(); \
+ crc = static_call(prefix##_pclmul)((crc), (p), (len), \
+ consts_ptr); \
+ kernel_fpu_end(); \
+ return crc; \
+ } \
+} while (0)
+
+#endif /* _CRC_PCLMUL_TEMPLATE_H */
diff --git a/lib/crc/x86/crc-t10dif.h b/lib/crc/x86/crc-t10dif.h
new file mode 100644
index 000000000000..eb1f23db4daa
--- /dev/null
+++ b/lib/crc/x86/crc-t10dif.h
@@ -0,0 +1,28 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * CRC-T10DIF using [V]PCLMULQDQ instructions
+ *
+ * Copyright 2024 Google LLC
+ */
+
+#include "crc-pclmul-template.h"
+
+static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_pclmulqdq);
+
+DECLARE_CRC_PCLMUL_FUNCS(crc16_msb, u16);
+
+static inline u16 crc_t10dif_arch(u16 crc, const u8 *p, size_t len)
+{
+ CRC_PCLMUL(crc, p, len, crc16_msb, crc16_msb_0x8bb7_consts,
+ have_pclmulqdq);
+ return crc_t10dif_generic(crc, p, len);
+}
+
+#define crc_t10dif_mod_init_arch crc_t10dif_mod_init_arch
+static inline void crc_t10dif_mod_init_arch(void)
+{
+ if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) {
+ static_branch_enable(&have_pclmulqdq);
+ INIT_CRC_PCLMUL(crc16_msb);
+ }
+}
diff --git a/lib/crc/x86/crc16-msb-pclmul.S b/lib/crc/x86/crc16-msb-pclmul.S
new file mode 100644
index 000000000000..e9fe248093a8
--- /dev/null
+++ b/lib/crc/x86/crc16-msb-pclmul.S
@@ -0,0 +1,6 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+// Copyright 2025 Google LLC
+
+#include "crc-pclmul-template.S"
+
+DEFINE_CRC_PCLMUL_FUNCS(crc16_msb, /* bits= */ 16, /* lsb= */ 0)
diff --git a/lib/crc/x86/crc32-pclmul.S b/lib/crc/x86/crc32-pclmul.S
new file mode 100644
index 000000000000..f20f40fb0172
--- /dev/null
+++ b/lib/crc/x86/crc32-pclmul.S
@@ -0,0 +1,6 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+// Copyright 2025 Google LLC
+
+#include "crc-pclmul-template.S"
+
+DEFINE_CRC_PCLMUL_FUNCS(crc32_lsb, /* bits= */ 32, /* lsb= */ 1)
diff --git a/lib/crc/x86/crc32.h b/lib/crc/x86/crc32.h
new file mode 100644
index 000000000000..28451d5769c3
--- /dev/null
+++ b/lib/crc/x86/crc32.h
@@ -0,0 +1,93 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * x86-optimized CRC32 functions
+ *
+ * Copyright (C) 2008 Intel Corporation
+ * Copyright 2012 Xyratex Technology Limited
+ * Copyright 2024 Google LLC
+ */
+
+#include "crc-pclmul-template.h"
+
+static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_crc32);
+static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_pclmulqdq);
+
+DECLARE_CRC_PCLMUL_FUNCS(crc32_lsb, u32);
+
+static inline u32 crc32_le_arch(u32 crc, const u8 *p, size_t len)
+{
+ CRC_PCLMUL(crc, p, len, crc32_lsb, crc32_lsb_0xedb88320_consts,
+ have_pclmulqdq);
+ return crc32_le_base(crc, p, len);
+}
+
+#ifdef CONFIG_X86_64
+#define CRC32_INST "crc32q %1, %q0"
+#else
+#define CRC32_INST "crc32l %1, %0"
+#endif
+
+/*
+ * Use carryless multiply version of crc32c when buffer size is >= 512 to
+ * account for FPU state save/restore overhead.
+ */
+#define CRC32C_PCLMUL_BREAKEVEN 512
+
+asmlinkage u32 crc32c_x86_3way(u32 crc, const u8 *buffer, size_t len);
+
+static inline u32 crc32c_arch(u32 crc, const u8 *p, size_t len)
+{
+ size_t num_longs;
+
+ if (!static_branch_likely(&have_crc32))
+ return crc32c_base(crc, p, len);
+
+ if (IS_ENABLED(CONFIG_X86_64) && len >= CRC32C_PCLMUL_BREAKEVEN &&
+ static_branch_likely(&have_pclmulqdq) && crypto_simd_usable()) {
+ kernel_fpu_begin();
+ crc = crc32c_x86_3way(crc, p, len);
+ kernel_fpu_end();
+ return crc;
+ }
+
+ for (num_longs = len / sizeof(unsigned long);
+ num_longs != 0; num_longs--, p += sizeof(unsigned long))
+ asm(CRC32_INST : "+r" (crc) : ASM_INPUT_RM (*(unsigned long *)p));
+
+ if (sizeof(unsigned long) > 4 && (len & 4)) {
+ asm("crc32l %1, %0" : "+r" (crc) : ASM_INPUT_RM (*(u32 *)p));
+ p += 4;
+ }
+ if (len & 2) {
+ asm("crc32w %1, %0" : "+r" (crc) : ASM_INPUT_RM (*(u16 *)p));
+ p += 2;
+ }
+ if (len & 1)
+ asm("crc32b %1, %0" : "+r" (crc) : ASM_INPUT_RM (*p));
+
+ return crc;
+}
+
+#define crc32_be_arch crc32_be_base /* not implemented on this arch */
+
+#define crc32_mod_init_arch crc32_mod_init_arch
+static inline void crc32_mod_init_arch(void)
+{
+ if (boot_cpu_has(X86_FEATURE_XMM4_2))
+ static_branch_enable(&have_crc32);
+ if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) {
+ static_branch_enable(&have_pclmulqdq);
+ INIT_CRC_PCLMUL(crc32_lsb);
+ }
+}
+
+static inline u32 crc32_optimizations_arch(void)
+{
+ u32 optimizations = 0;
+
+ if (static_key_enabled(&have_crc32))
+ optimizations |= CRC32C_OPTIMIZATION;
+ if (static_key_enabled(&have_pclmulqdq))
+ optimizations |= CRC32_LE_OPTIMIZATION;
+ return optimizations;
+}
diff --git a/lib/crc/x86/crc32c-3way.S b/lib/crc/x86/crc32c-3way.S
new file mode 100644
index 000000000000..9b8770503bbc
--- /dev/null
+++ b/lib/crc/x86/crc32c-3way.S
@@ -0,0 +1,360 @@
+/*
+ * Implement fast CRC32C with PCLMULQDQ instructions. (x86_64)
+ *
+ * The white papers on CRC32C calculations with PCLMULQDQ instruction can be
+ * downloaded from:
+ * http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/crc-iscsi-polynomial-crc32-instruction-paper.pdf
+ * http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-paper.pdf
+ *
+ * Copyright (C) 2012 Intel Corporation.
+ * Copyright 2024 Google LLC
+ *
+ * Authors:
+ * Wajdi Feghali <wajdi.k.feghali@intel.com>
+ * James Guilford <james.guilford@intel.com>
+ * David Cote <david.m.cote@intel.com>
+ * Tim Chen <tim.c.chen@linux.intel.com>
+ *
+ * This software is available to you under a choice of one of two
+ * licenses. You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ * Redistribution and use in source and binary forms, with or
+ * without modification, are permitted provided that the following
+ * conditions are met:
+ *
+ * - Redistributions of source code must retain the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer.
+ *
+ * - Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials
+ * provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include <linux/linkage.h>
+
+## ISCSI CRC 32 Implementation with crc32 and pclmulqdq Instruction
+
+# Define threshold below which buffers are considered "small" and routed to
+# regular CRC code that does not interleave the CRC instructions.
+#define SMALL_SIZE 200
+
+# u32 crc32c_x86_3way(u32 crc, const u8 *buffer, size_t len);
+
+.text
+SYM_FUNC_START(crc32c_x86_3way)
+#define crc0 %edi
+#define crc0_q %rdi
+#define bufp %rsi
+#define bufp_d %esi
+#define len %rdx
+#define len_dw %edx
+#define n_misaligned %ecx /* overlaps chunk_bytes! */
+#define n_misaligned_q %rcx
+#define chunk_bytes %ecx /* overlaps n_misaligned! */
+#define chunk_bytes_q %rcx
+#define crc1 %r8
+#define crc2 %r9
+
+ cmp $SMALL_SIZE, len
+ jb .Lsmall
+
+ ################################################################
+ ## 1) ALIGN:
+ ################################################################
+ mov bufp_d, n_misaligned
+ neg n_misaligned
+ and $7, n_misaligned # calculate the misalignment amount of
+ # the address
+ je .Laligned # Skip if aligned
+
+ # Process 1 <= n_misaligned <= 7 bytes individually in order to align
+ # the remaining data to an 8-byte boundary.
+.Ldo_align:
+ movq (bufp), %rax
+ add n_misaligned_q, bufp
+ sub n_misaligned_q, len
+.Lalign_loop:
+ crc32b %al, crc0 # compute crc32 of 1-byte
+ shr $8, %rax # get next byte
+ dec n_misaligned
+ jne .Lalign_loop
+.Laligned:
+
+ ################################################################
+ ## 2) PROCESS BLOCK:
+ ################################################################
+
+ cmp $128*24, len
+ jae .Lfull_block
+
+.Lpartial_block:
+ # Compute floor(len / 24) to get num qwords to process from each lane.
+ imul $2731, len_dw, %eax # 2731 = ceil(2^16 / 24)
+ shr $16, %eax
+ jmp .Lcrc_3lanes
+
+.Lfull_block:
+ # Processing 128 qwords from each lane.
+ mov $128, %eax
+
+ ################################################################
+ ## 3) CRC each of three lanes:
+ ################################################################
+
+.Lcrc_3lanes:
+ xor crc1,crc1
+ xor crc2,crc2
+ mov %eax, chunk_bytes
+ shl $3, chunk_bytes # num bytes to process from each lane
+ sub $5, %eax # 4 for 4x_loop, 1 for special last iter
+ jl .Lcrc_3lanes_4x_done
+
+ # Unroll the loop by a factor of 4 to reduce the overhead of the loop
+ # bookkeeping instructions, which can compete with crc32q for the ALUs.
+.Lcrc_3lanes_4x_loop:
+ crc32q (bufp), crc0_q
+ crc32q (bufp,chunk_bytes_q), crc1
+ crc32q (bufp,chunk_bytes_q,2), crc2
+ crc32q 8(bufp), crc0_q
+ crc32q 8(bufp,chunk_bytes_q), crc1
+ crc32q 8(bufp,chunk_bytes_q,2), crc2
+ crc32q 16(bufp), crc0_q
+ crc32q 16(bufp,chunk_bytes_q), crc1
+ crc32q 16(bufp,chunk_bytes_q,2), crc2
+ crc32q 24(bufp), crc0_q
+ crc32q 24(bufp,chunk_bytes_q), crc1
+ crc32q 24(bufp,chunk_bytes_q,2), crc2
+ add $32, bufp
+ sub $4, %eax
+ jge .Lcrc_3lanes_4x_loop
+
+.Lcrc_3lanes_4x_done:
+ add $4, %eax
+ jz .Lcrc_3lanes_last_qword
+
+.Lcrc_3lanes_1x_loop:
+ crc32q (bufp), crc0_q
+ crc32q (bufp,chunk_bytes_q), crc1
+ crc32q (bufp,chunk_bytes_q,2), crc2
+ add $8, bufp
+ dec %eax
+ jnz .Lcrc_3lanes_1x_loop
+
+.Lcrc_3lanes_last_qword:
+ crc32q (bufp), crc0_q
+ crc32q (bufp,chunk_bytes_q), crc1
+# SKIP crc32q (bufp,chunk_bytes_q,2), crc2 ; Don't do this one yet
+
+ ################################################################
+ ## 4) Combine three results:
+ ################################################################
+
+ lea (K_table-8)(%rip), %rax # first entry is for idx 1
+ pmovzxdq (%rax,chunk_bytes_q), %xmm0 # 2 consts: K1:K2
+ lea (chunk_bytes,chunk_bytes,2), %eax # chunk_bytes * 3
+ sub %rax, len # len -= chunk_bytes * 3
+
+ movq crc0_q, %xmm1 # CRC for block 1
+ pclmulqdq $0x00, %xmm0, %xmm1 # Multiply by K2
+
+ movq crc1, %xmm2 # CRC for block 2
+ pclmulqdq $0x10, %xmm0, %xmm2 # Multiply by K1
+
+ pxor %xmm2,%xmm1
+ movq %xmm1, %rax
+ xor (bufp,chunk_bytes_q,2), %rax
+ mov crc2, crc0_q
+ crc32 %rax, crc0_q
+ lea 8(bufp,chunk_bytes_q,2), bufp
+
+ ################################################################
+ ## 5) If more blocks remain, goto (2):
+ ################################################################
+
+ cmp $128*24, len
+ jae .Lfull_block
+ cmp $SMALL_SIZE, len
+ jae .Lpartial_block
+
+ #######################################################################
+ ## 6) Process any remainder without interleaving:
+ #######################################################################
+.Lsmall:
+ test len_dw, len_dw
+ jz .Ldone
+ mov len_dw, %eax
+ shr $3, %eax
+ jz .Ldo_dword
+.Ldo_qwords:
+ crc32q (bufp), crc0_q
+ add $8, bufp
+ dec %eax
+ jnz .Ldo_qwords
+.Ldo_dword:
+ test $4, len_dw
+ jz .Ldo_word
+ crc32l (bufp), crc0
+ add $4, bufp
+.Ldo_word:
+ test $2, len_dw
+ jz .Ldo_byte
+ crc32w (bufp), crc0
+ add $2, bufp
+.Ldo_byte:
+ test $1, len_dw
+ jz .Ldone
+ crc32b (bufp), crc0
+.Ldone:
+ mov crc0, %eax
+ RET
+SYM_FUNC_END(crc32c_x86_3way)
+
+.section .rodata, "a", @progbits
+ ################################################################
+ ## PCLMULQDQ tables
+ ## Table is 128 entries x 2 words (8 bytes) each
+ ################################################################
+.align 8
+K_table:
+ .long 0x493c7d27, 0x00000001
+ .long 0xba4fc28e, 0x493c7d27
+ .long 0xddc0152b, 0xf20c0dfe
+ .long 0x9e4addf8, 0xba4fc28e
+ .long 0x39d3b296, 0x3da6d0cb
+ .long 0x0715ce53, 0xddc0152b
+ .long 0x47db8317, 0x1c291d04
+ .long 0x0d3b6092, 0x9e4addf8
+ .long 0xc96cfdc0, 0x740eef02
+ .long 0x878a92a7, 0x39d3b296
+ .long 0xdaece73e, 0x083a6eec
+ .long 0xab7aff2a, 0x0715ce53
+ .long 0x2162d385, 0xc49f4f67
+ .long 0x83348832, 0x47db8317
+ .long 0x299847d5, 0x2ad91c30
+ .long 0xb9e02b86, 0x0d3b6092
+ .long 0x18b33a4e, 0x6992cea2
+ .long 0xb6dd949b, 0xc96cfdc0
+ .long 0x78d9ccb7, 0x7e908048
+ .long 0xbac2fd7b, 0x878a92a7
+ .long 0xa60ce07b, 0x1b3d8f29
+ .long 0xce7f39f4, 0xdaece73e
+ .long 0x61d82e56, 0xf1d0f55e
+ .long 0xd270f1a2, 0xab7aff2a
+ .long 0xc619809d, 0xa87ab8a8
+ .long 0x2b3cac5d, 0x2162d385
+ .long 0x65863b64, 0x8462d800
+ .long 0x1b03397f, 0x83348832
+ .long 0xebb883bd, 0x71d111a8
+ .long 0xb3e32c28, 0x299847d5
+ .long 0x064f7f26, 0xffd852c6
+ .long 0xdd7e3b0c, 0xb9e02b86
+ .long 0xf285651c, 0xdcb17aa4
+ .long 0x10746f3c, 0x18b33a4e
+ .long 0xc7a68855, 0xf37c5aee
+ .long 0x271d9844, 0xb6dd949b
+ .long 0x8e766a0c, 0x6051d5a2
+ .long 0x93a5f730, 0x78d9ccb7
+ .long 0x6cb08e5c, 0x18b0d4ff
+ .long 0x6b749fb2, 0xbac2fd7b
+ .long 0x1393e203, 0x21f3d99c
+ .long 0xcec3662e, 0xa60ce07b
+ .long 0x96c515bb, 0x8f158014
+ .long 0xe6fc4e6a, 0xce7f39f4
+ .long 0x8227bb8a, 0xa00457f7
+ .long 0xb0cd4768, 0x61d82e56
+ .long 0x39c7ff35, 0x8d6d2c43
+ .long 0xd7a4825c, 0xd270f1a2
+ .long 0x0ab3844b, 0x00ac29cf
+ .long 0x0167d312, 0xc619809d
+ .long 0xf6076544, 0xe9adf796
+ .long 0x26f6a60a, 0x2b3cac5d
+ .long 0xa741c1bf, 0x96638b34
+ .long 0x98d8d9cb, 0x65863b64
+ .long 0x49c3cc9c, 0xe0e9f351
+ .long 0x68bce87a, 0x1b03397f
+ .long 0x57a3d037, 0x9af01f2d
+ .long 0x6956fc3b, 0xebb883bd
+ .long 0x42d98888, 0x2cff42cf
+ .long 0x3771e98f, 0xb3e32c28
+ .long 0xb42ae3d9, 0x88f25a3a
+ .long 0x2178513a, 0x064f7f26
+ .long 0xe0ac139e, 0x4e36f0b0
+ .long 0x170076fa, 0xdd7e3b0c
+ .long 0x444dd413, 0xbd6f81f8
+ .long 0x6f345e45, 0xf285651c
+ .long 0x41d17b64, 0x91c9bd4b
+ .long 0xff0dba97, 0x10746f3c
+ .long 0xa2b73df1, 0x885f087b
+ .long 0xf872e54c, 0xc7a68855
+ .long 0x1e41e9fc, 0x4c144932
+ .long 0x86d8e4d2, 0x271d9844
+ .long 0x651bd98b, 0x52148f02
+ .long 0x5bb8f1bc, 0x8e766a0c
+ .long 0xa90fd27a, 0xa3c6f37a
+ .long 0xb3af077a, 0x93a5f730
+ .long 0x4984d782, 0xd7c0557f
+ .long 0xca6ef3ac, 0x6cb08e5c
+ .long 0x234e0b26, 0x63ded06a
+ .long 0xdd66cbbb, 0x6b749fb2
+ .long 0x4597456a, 0x4d56973c
+ .long 0xe9e28eb4, 0x1393e203
+ .long 0x7b3ff57a, 0x9669c9df
+ .long 0xc9c8b782, 0xcec3662e
+ .long 0x3f70cc6f, 0xe417f38a
+ .long 0x93e106a4, 0x96c515bb
+ .long 0x62ec6c6d, 0x4b9e0f71
+ .long 0xd813b325, 0xe6fc4e6a
+ .long 0x0df04680, 0xd104b8fc
+ .long 0x2342001e, 0x8227bb8a
+ .long 0x0a2a8d7e, 0x5b397730
+ .long 0x6d9a4957, 0xb0cd4768
+ .long 0xe8b6368b, 0xe78eb416
+ .long 0xd2c3ed1a, 0x39c7ff35
+ .long 0x995a5724, 0x61ff0e01
+ .long 0x9ef68d35, 0xd7a4825c
+ .long 0x0c139b31, 0x8d96551c
+ .long 0xf2271e60, 0x0ab3844b
+ .long 0x0b0bf8ca, 0x0bf80dd2
+ .long 0x2664fd8b, 0x0167d312
+ .long 0xed64812d, 0x8821abed
+ .long 0x02ee03b2, 0xf6076544
+ .long 0x8604ae0f, 0x6a45d2b2
+ .long 0x363bd6b3, 0x26f6a60a
+ .long 0x135c83fd, 0xd8d26619
+ .long 0x5fabe670, 0xa741c1bf
+ .long 0x35ec3279, 0xde87806c
+ .long 0x00bcf5f6, 0x98d8d9cb
+ .long 0x8ae00689, 0x14338754
+ .long 0x17f27698, 0x49c3cc9c
+ .long 0x58ca5f00, 0x5bd2011f
+ .long 0xaa7c7ad5, 0x68bce87a
+ .long 0xb5cfca28, 0xdd07448e
+ .long 0xded288f8, 0x57a3d037
+ .long 0x59f229bc, 0xdde8f5b9
+ .long 0x6d390dec, 0x6956fc3b
+ .long 0x37170390, 0xa3e3e02c
+ .long 0x6353c1cc, 0x42d98888
+ .long 0xc4584f5c, 0xd73c7bea
+ .long 0xf48642e9, 0x3771e98f
+ .long 0x531377e2, 0x80ff0093
+ .long 0xdd35bc8d, 0xb42ae3d9
+ .long 0xb25b29f2, 0x8fe4c34d
+ .long 0x9a5ede41, 0x2178513a
+ .long 0xa563905d, 0xdf99fc11
+ .long 0x45cddf4e, 0xe0ac139e
+ .long 0xacfa3103, 0x6c23e841
+ .long 0xa51b6135, 0x170076fa
diff --git a/lib/crc/x86/crc64-pclmul.S b/lib/crc/x86/crc64-pclmul.S
new file mode 100644
index 000000000000..4173051b5197
--- /dev/null
+++ b/lib/crc/x86/crc64-pclmul.S
@@ -0,0 +1,7 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+// Copyright 2025 Google LLC
+
+#include "crc-pclmul-template.S"
+
+DEFINE_CRC_PCLMUL_FUNCS(crc64_msb, /* bits= */ 64, /* lsb= */ 0)
+DEFINE_CRC_PCLMUL_FUNCS(crc64_lsb, /* bits= */ 64, /* lsb= */ 1)
diff --git a/lib/crc/x86/crc64.h b/lib/crc/x86/crc64.h
new file mode 100644
index 000000000000..54aca3a9475c
--- /dev/null
+++ b/lib/crc/x86/crc64.h
@@ -0,0 +1,37 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * CRC64 using [V]PCLMULQDQ instructions
+ *
+ * Copyright 2025 Google LLC
+ */
+
+#include "crc-pclmul-template.h"
+
+static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_pclmulqdq);
+
+DECLARE_CRC_PCLMUL_FUNCS(crc64_msb, u64);
+DECLARE_CRC_PCLMUL_FUNCS(crc64_lsb, u64);
+
+static inline u64 crc64_be_arch(u64 crc, const u8 *p, size_t len)
+{
+ CRC_PCLMUL(crc, p, len, crc64_msb, crc64_msb_0x42f0e1eba9ea3693_consts,
+ have_pclmulqdq);
+ return crc64_be_generic(crc, p, len);
+}
+
+static inline u64 crc64_nvme_arch(u64 crc, const u8 *p, size_t len)
+{
+ CRC_PCLMUL(crc, p, len, crc64_lsb, crc64_lsb_0x9a6c9329ac4bc9b5_consts,
+ have_pclmulqdq);
+ return crc64_nvme_generic(crc, p, len);
+}
+
+#define crc64_mod_init_arch crc64_mod_init_arch
+static inline void crc64_mod_init_arch(void)
+{
+ if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) {
+ static_branch_enable(&have_pclmulqdq);
+ INIT_CRC_PCLMUL(crc64_msb);
+ INIT_CRC_PCLMUL(crc64_lsb);
+ }
+}