summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorDavid Laight <david.laight.linux@gmail.com>2025-11-05 20:10:34 +0000
committerAndrew Morton <akpm@linux-foundation.org>2025-11-20 14:03:42 -0800
commitd10bb374c41e4c4dced04ae7d2fe2d782a5858a0 (patch)
tree7457021ad4e2c8af84bad8216525a3a8d000ca01 /lib
parent630f96a687def5616d6fa7f069adcea158320909 (diff)
lib: mul_u64_u64_div_u64(): optimise the divide code
Replace the bit by bit algorithm with one that generates 16 bits per iteration on 32bit architectures and 32 bits on 64bit ones. On my zen 5 this reduces the time for the tests (using the generic code) from ~3350ns to ~1000ns. Running the 32bit algorithm on 64bit x86 takes ~1500ns. It'll be slightly slower on a real 32bit system, mostly due to register pressure. The savings for 32bit x86 are much higher (tested in userspace). The worst case (lots of bits in the quotient) drops from ~900 clocks to ~130 (pretty much independant of the arguments). Other 32bit architectures may see better savings. It is possibly to optimise for divisors that span less than __LONG_WIDTH__/2 bits. However I suspect they don't happen that often and it doesn't remove any slow cpu divide instructions which dominate the result. Typical improvements for 64bit random divides: old new sandy bridge: 470 150 haswell: 400 144 piledriver: 960 467 I think rdpmc is very slow. zen5: 244 80 (Timing is 'rdpmc; mul_div(); rdpmc' with the multiply depending on the first rdpmc and the second rdpmc depending on the quotient.) Object code (64bit x86 test program): old 0x173 new 0x141. Link: https://lkml.kernel.org/r/20251105201035.64043-9-david.laight.linux@gmail.com Signed-off-by: David Laight <david.laight.linux@gmail.com> Reviewed-by: Nicolas Pitre <npitre@baylibre.com> Cc: Biju Das <biju.das.jz@bp.renesas.com> Cc: Borislav Betkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li RongQing <lirongqing@baidu.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleinxer <tglx@linutronix.de> Cc: Uwe Kleine-König <u.kleine-koenig@baylibre.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'lib')
-rw-r--r--lib/math/div64.c124
1 files changed, 85 insertions, 39 deletions
diff --git a/lib/math/div64.c b/lib/math/div64.c
index bb57a48ce36a..d1e92ea24fce 100644
--- a/lib/math/div64.c
+++ b/lib/math/div64.c
@@ -190,7 +190,6 @@ EXPORT_SYMBOL(iter_div_u64_rem);
#define mul_add(a, b, c) add_u64_u32(mul_u32_u32(a, b), c)
#if defined(__SIZEOF_INT128__) && !defined(test_mul_u64_add_u64_div_u64)
-
static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
{
/* native 64x64=128 bits multiplication */
@@ -199,9 +198,7 @@ static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
*p_lo = prod;
return prod >> 64;
}
-
#else
-
static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
{
/* perform a 64x64=128 bits multiplication in 32bit chunks */
@@ -216,12 +213,37 @@ static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
*p_lo = (y << 32) + (u32)x;
return add_u64_u32(z, y >> 32);
}
+#endif
+
+#ifndef BITS_PER_ITER
+#define BITS_PER_ITER (__LONG_WIDTH__ >= 64 ? 32 : 16)
+#endif
+
+#if BITS_PER_ITER == 32
+#define mul_u64_long_add_u64(p_lo, a, b, c) mul_u64_u64_add_u64(p_lo, a, b, c)
+#define add_u64_long(a, b) ((a) + (b))
+#else
+#undef BITS_PER_ITER
+#define BITS_PER_ITER 16
+static inline u32 mul_u64_long_add_u64(u64 *p_lo, u64 a, u32 b, u64 c)
+{
+ u64 n_lo = mul_add(a, b, c);
+ u64 n_med = mul_add(a >> 32, b, c >> 32);
+
+ n_med = add_u64_u32(n_med, n_lo >> 32);
+ *p_lo = n_med << 32 | (u32)n_lo;
+ return n_med >> 32;
+}
+#define add_u64_long(a, b) add_u64_u32(a, b)
#endif
u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
{
- u64 n_lo, n_hi;
+ unsigned long d_msig, q_digit;
+ unsigned int reps, d_z_hi;
+ u64 quotient, n_lo, n_hi;
+ u32 overflow;
n_hi = mul_u64_u64_add_u64(&n_lo, a, b, c);
@@ -240,46 +262,70 @@ u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
return ~0ULL;
}
- int shift = __builtin_ctzll(d);
-
- /* try reducing the fraction in case the dividend becomes <= 64 bits */
- if ((n_hi >> shift) == 0) {
- u64 n = shift ? (n_lo >> shift) | (n_hi << (64 - shift)) : n_lo;
-
- return div64_u64(n, d >> shift);
- /*
- * The remainder value if needed would be:
- * res = div64_u64_rem(n, d >> shift, &rem);
- * rem = (rem << shift) + (n_lo - (n << shift));
- */
+ /* Left align the divisor, shifting the dividend to match */
+ d_z_hi = __builtin_clzll(d);
+ if (d_z_hi) {
+ d <<= d_z_hi;
+ n_hi = n_hi << d_z_hi | n_lo >> (64 - d_z_hi);
+ n_lo <<= d_z_hi;
}
- /* Do the full 128 by 64 bits division */
-
- shift = __builtin_clzll(d);
- d <<= shift;
-
- int p = 64 + shift;
- u64 res = 0;
- bool carry;
+ reps = 64 / BITS_PER_ITER;
+ /* Optimise loop count for small dividends */
+ if (!(u32)(n_hi >> 32)) {
+ reps -= 32 / BITS_PER_ITER;
+ n_hi = n_hi << 32 | n_lo >> 32;
+ n_lo <<= 32;
+ }
+#if BITS_PER_ITER == 16
+ if (!(u32)(n_hi >> 48)) {
+ reps--;
+ n_hi = add_u64_u32(n_hi << 16, n_lo >> 48);
+ n_lo <<= 16;
+ }
+#endif
- do {
- carry = n_hi >> 63;
- shift = carry ? 1 : __builtin_clzll(n_hi);
- if (p < shift)
- break;
- p -= shift;
- n_hi <<= shift;
- n_hi |= n_lo >> (64 - shift);
- n_lo <<= shift;
- if (carry || (n_hi >= d)) {
- n_hi -= d;
- res |= 1ULL << p;
+ /* Invert the dividend so we can use add instead of subtract. */
+ n_lo = ~n_lo;
+ n_hi = ~n_hi;
+
+ /*
+ * Get the most significant BITS_PER_ITER bits of the divisor.
+ * This is used to get a low 'guestimate' of the quotient digit.
+ */
+ d_msig = (d >> (64 - BITS_PER_ITER)) + 1;
+
+ /*
+ * Now do a 'long division' with BITS_PER_ITER bit 'digits'.
+ * The 'guess' quotient digit can be low and BITS_PER_ITER+1 bits.
+ * The worst case is dividing ~0 by 0x8000 which requires two subtracts.
+ */
+ quotient = 0;
+ while (reps--) {
+ q_digit = (unsigned long)(~n_hi >> (64 - 2 * BITS_PER_ITER)) / d_msig;
+ /* Shift 'n' left to align with the product q_digit * d */
+ overflow = n_hi >> (64 - BITS_PER_ITER);
+ n_hi = add_u64_u32(n_hi << BITS_PER_ITER, n_lo >> (64 - BITS_PER_ITER));
+ n_lo <<= BITS_PER_ITER;
+ /* Add product to negated divisor */
+ overflow += mul_u64_long_add_u64(&n_hi, d, q_digit, n_hi);
+ /* Adjust for the q_digit 'guestimate' being low */
+ while (overflow < 0xffffffff >> (32 - BITS_PER_ITER)) {
+ q_digit++;
+ n_hi += d;
+ overflow += n_hi < d;
}
- } while (n_hi);
- /* The remainder value if needed would be n_hi << p */
+ quotient = add_u64_long(quotient << BITS_PER_ITER, q_digit);
+ }
- return res;
+ /*
+ * The above only ensures the remainder doesn't overflow,
+ * it can still be possible to add (aka subtract) another copy
+ * of the divisor.
+ */
+ if ((n_hi + d) > n_hi)
+ quotient++;
+ return quotient;
}
#if !defined(test_mul_u64_add_u64_div_u64)
EXPORT_SYMBOL(mul_u64_add_u64_div_u64);