diff options
| author | Linus Torvalds <torvalds@linux-foundation.org> | 2025-05-11 17:23:03 -0700 |
|---|---|---|
| committer | Linus Torvalds <torvalds@linux-foundation.org> | 2025-05-11 17:23:03 -0700 |
| commit | 6f5bf947bab06f37ff931c359fd5770c4d9cbf87 (patch) | |
| tree | a0a0cba694124523f4d9292f1f74bb94c5328292 /tools/objtool | |
| parent | caf12fa9c066bb81e6a2f05dc441a89a1160c0fe (diff) | |
| parent | 7a9b709e7cc5ce1ffb84ce07bf6d157e1de758df (diff) | |
Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 ITS mitigation from Dave Hansen:
"Mitigate Indirect Target Selection (ITS) issue.
I'd describe this one as a good old CPU bug where the behavior is
_obviously_ wrong, but since it just results in bad predictions it
wasn't wrong enough to notice. Well, the researchers noticed and also
realized that thus bug undermined a bunch of existing indirect branch
mitigations.
Thus the unusually wide impact on this one. Details:
ITS is a bug in some Intel CPUs that affects indirect branches
including RETs in the first half of a cacheline. Due to ITS such
branches may get wrongly predicted to a target of (direct or indirect)
branch that is located in the second half of a cacheline. Researchers
at VUSec found this behavior and reported to Intel.
Affected processors:
- Cascade Lake, Cooper Lake, Whiskey Lake V, Coffee Lake R, Comet
Lake, Ice Lake, Tiger Lake and Rocket Lake.
Scope of impact:
- Guest/host isolation:
When eIBRS is used for guest/host isolation, the indirect branches
in the VMM may still be predicted with targets corresponding to
direct branches in the guest.
- Intra-mode using cBPF:
cBPF can be used to poison the branch history to exploit ITS.
Realigning the indirect branches and RETs mitigates this attack
vector.
- User/kernel:
With eIBRS enabled user/kernel isolation is *not* impacted by ITS.
- Indirect Branch Prediction Barrier (IBPB):
Due to this bug indirect branches may be predicted with targets
corresponding to direct branches which were executed prior to IBPB.
This will be fixed in the microcode.
Mitigation:
As indirect branches in the first half of cacheline are affected, the
mitigation is to replace those indirect branches with a call to thunk that
is aligned to the second half of the cacheline.
RETs that take prediction from RSB are not affected, but they may be
affected by RSB-underflow condition. So, RETs in the first half of
cacheline are also patched to a return thunk that executes the RET aligned
to second half of cacheline"
* tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
selftest/x86/bugs: Add selftests for ITS
x86/its: FineIBT-paranoid vs ITS
x86/its: Use dynamic thunks for indirect branches
x86/ibt: Keep IBT disabled during alternative patching
mm/execmem: Unify early execmem_cache behaviour
x86/its: Align RETs in BHB clear sequence to avoid thunking
x86/its: Add support for RSB stuffing mitigation
x86/its: Add "vmexit" option to skip mitigation on some CPUs
x86/its: Enable Indirect Target Selection mitigation
x86/its: Add support for ITS-safe return thunk
x86/its: Add support for ITS-safe indirect thunk
x86/its: Enumerate Indirect Target Selection (ITS) bug
Documentation: x86/bugs/its: Add ITS documentation
Diffstat (limited to 'tools/objtool')
| -rw-r--r-- | tools/objtool/arch/x86/decode.c | 9 |
1 files changed, 9 insertions, 0 deletions
diff --git a/tools/objtool/arch/x86/decode.c b/tools/objtool/arch/x86/decode.c index 3ce7b54003c2..687c5eafb49a 100644 --- a/tools/objtool/arch/x86/decode.c +++ b/tools/objtool/arch/x86/decode.c @@ -189,6 +189,15 @@ int arch_decode_instruction(struct objtool_file *file, const struct section *sec op2 = ins.opcode.bytes[1]; op3 = ins.opcode.bytes[2]; + /* + * XXX hack, decoder is buggered and thinks 0xea is 7 bytes long. + */ + if (op1 == 0xea) { + insn->len = 1; + insn->type = INSN_BUG; + return 0; + } + if (ins.rex_prefix.nbytes) { rex = ins.rex_prefix.bytes[0]; rex_w = X86_REX_W(rex) >> 3; |
