summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/x86/nested_exceptions_test.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2025-01-25 09:55:09 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2025-01-25 09:55:09 -0800
commit0f8e26b38d7ac72b3ad764944a25dd5808f37a6e (patch)
tree9ad339193b073b1867873a1a8cec35fb3ef91435 /tools/testing/selftests/kvm/x86/nested_exceptions_test.c
parent382e391365ca12d1e5a15f109ba8b4609d58db6b (diff)
parent931656b9e2ff7029aee0b36e17780621948a6ac1 (diff)
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini: "Loongarch: - Clear LLBCTL if secondary mmu mapping changes - Add hypercall service support for usermode VMM x86: - Add a comment to kvm_mmu_do_page_fault() to explain why KVM performs a direct call to kvm_tdp_page_fault() when RETPOLINE is enabled - Ensure that all SEV code is compiled out when disabled in Kconfig, even if building with less brilliant compilers - Remove a redundant TLB flush on AMD processors when guest CR4.PGE changes - Use str_enabled_disabled() to replace open coded strings - Drop kvm_x86_ops.hwapic_irr_update() as KVM updates hardware's APICv cache prior to every VM-Enter - Overhaul KVM's CPUID feature infrastructure to track all vCPU capabilities instead of just those where KVM needs to manage state and/or explicitly enable the feature in hardware. Along the way, refactor the code to make it easier to add features, and to make it more self-documenting how KVM is handling each feature - Rework KVM's handling of VM-Exits during event vectoring; this plugs holes where KVM unintentionally puts the vCPU into infinite loops in some scenarios (e.g. if emulation is triggered by the exit), and brings parity between VMX and SVM - Add pending request and interrupt injection information to the kvm_exit and kvm_entry tracepoints respectively - Fix a relatively benign flaw where KVM would end up redoing RDPKRU when loading guest/host PKRU, due to a refactoring of the kernel helpers that didn't account for KVM's pre-checking of the need to do WRPKRU - Make the completion of hypercalls go through the complete_hypercall function pointer argument, no matter if the hypercall exits to userspace or not. Previously, the code assumed that KVM_HC_MAP_GPA_RANGE specifically went to userspace, and all the others did not; the new code need not special case KVM_HC_MAP_GPA_RANGE and in fact does not care at all whether there was an exit to userspace or not - As part of enabling TDX virtual machines, support support separation of private/shared EPT into separate roots. When TDX will be enabled, operations on private pages will need to go through the privileged TDX Module via SEAMCALLs; as a result, they are limited and relatively slow compared to reading a PTE. The patches included in 6.14 allow KVM to keep a mirror of the private EPT in host memory, and define entries in kvm_x86_ops to operate on external page tables such as the TDX private EPT - The recently introduced conversion of the NX-page reclamation kthread to vhost_task moved the task under the main process. The task is created as soon as KVM_CREATE_VM was invoked and this, of course, broke userspace that didn't expect to see any child task of the VM process until it started creating its own userspace threads. In particular crosvm refuses to fork() if procfs shows any child task, so unbreak it by creating the task lazily. This is arguably a userspace bug, as there can be other kinds of legitimate worker tasks and they wouldn't impede fork(); but it's not like userspace has a way to distinguish kernel worker tasks right now. Should they show as "Kthread: 1" in proc/.../status? x86 - Intel: - Fix a bug where KVM updates hardware's APICv cache of the highest ISR bit while L2 is active, while ultimately results in a hardware-accelerated L1 EOI effectively being lost - Honor event priority when emulating Posted Interrupt delivery during nested VM-Enter by queueing KVM_REQ_EVENT instead of immediately handling the interrupt - Rework KVM's processing of the Page-Modification Logging buffer to reap entries in the same order they were created, i.e. to mark gfns dirty in the same order that hardware marked the page/PTE dirty - Misc cleanups Generic: - Cleanup and harden kvm_set_memory_region(); add proper lockdep assertions when setting memory regions and add a dedicated API for setting KVM-internal memory regions. The API can then explicitly disallow all flags for KVM-internal memory regions - Explicitly verify the target vCPU is online in kvm_get_vcpu() to fix a bug where KVM would return a pointer to a vCPU prior to it being fully online, and give kvm_for_each_vcpu() similar treatment to fix a similar flaw - Wait for a vCPU to come online prior to executing a vCPU ioctl, to fix a bug where userspace could coerce KVM into handling the ioctl on a vCPU that isn't yet onlined - Gracefully handle xarray insertion failures; even though such failures are impossible in practice after xa_reserve(), reserving an entry is always followed by xa_store() which does not know (or differentiate) whether there was an xa_reserve() before or not RISC-V: - Zabha, Svvptc, and Ziccrse extension support for guests. None of them require anything in KVM except for detecting them and marking them as supported; Zabha adds byte and halfword atomic operations, while the others are markers for specific operation of the TLB and of LL/SC instructions respectively - Virtualize SBI system suspend extension for Guest/VM - Support firmware counters which can be used by the guests to collect statistics about traps that occur in the host Selftests: - Rework vcpu_get_reg() to return a value instead of using an out-param, and update all affected arch code accordingly - Convert the max_guest_memory_test into a more generic mmu_stress_test. The basic gist of the "conversion" is to have the test do mprotect() on guest memory while vCPUs are accessing said memory, e.g. to verify KVM and mmu_notifiers are working as intended - Play nice with treewrite builds of unsupported architectures, e.g. arm (32-bit), as KVM selftests' Makefile doesn't do anything to ensure the target architecture is actually one KVM selftests supports - Use the kernel's $(ARCH) definition instead of the target triple for arch specific directories, e.g. arm64 instead of aarch64, mainly so as not to be different from the rest of the kernel - Ensure that format strings for logging statements are checked by the compiler even when the logging statement itself is disabled - Attempt to whack the last LLC references/misses mole in the Intel PMU counters test by adding a data load and doing CLFLUSH{OPT} on the data instead of the code being executed. It seems that modern Intel CPUs have learned new code prefetching tricks that bypass the PMU counters - Fix a flaw in the Intel PMU counters test where it asserts that events are counting correctly without actually knowing what the events count given the underlying hardware; this can happen if Intel reuses a formerly microarchitecture-specific event encoding as an architectural event, as was the case for Top-Down Slots" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (151 commits) kvm: defer huge page recovery vhost task to later KVM: x86/mmu: Return RET_PF* instead of 1 in kvm_mmu_page_fault() KVM: Disallow all flags for KVM-internal memslots KVM: x86: Drop double-underscores from __kvm_set_memory_region() KVM: Add a dedicated API for setting KVM-internal memslots KVM: Assert slots_lock is held when setting memory regions KVM: Open code kvm_set_memory_region() into its sole caller (ioctl() API) LoongArch: KVM: Add hypercall service support for usermode VMM LoongArch: KVM: Clear LLBCTL if secondary mmu mapping is changed KVM: SVM: Use str_enabled_disabled() helper in svm_hardware_setup() KVM: VMX: read the PML log in the same order as it was written KVM: VMX: refactor PML terminology KVM: VMX: Fix comment of handle_vmx_instruction() KVM: VMX: Reinstate __exit attribute for vmx_exit() KVM: SVM: Use str_enabled_disabled() helper in sev_hardware_setup() KVM: x86: Avoid double RDPKRU when loading host/guest PKRU KVM: x86: Use LVT_TIMER instead of an open coded literal RISC-V: KVM: Add new exit statstics for redirected traps RISC-V: KVM: Update firmware counters for various events RISC-V: KVM: Redirect instruction access fault trap to guest ...
Diffstat (limited to 'tools/testing/selftests/kvm/x86/nested_exceptions_test.c')
-rw-r--r--tools/testing/selftests/kvm/x86/nested_exceptions_test.c288
1 files changed, 288 insertions, 0 deletions
diff --git a/tools/testing/selftests/kvm/x86/nested_exceptions_test.c b/tools/testing/selftests/kvm/x86/nested_exceptions_test.c
new file mode 100644
index 000000000000..3eb0313ffa39
--- /dev/null
+++ b/tools/testing/selftests/kvm/x86/nested_exceptions_test.c
@@ -0,0 +1,288 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include "test_util.h"
+#include "kvm_util.h"
+#include "processor.h"
+#include "vmx.h"
+#include "svm_util.h"
+
+#define L2_GUEST_STACK_SIZE 256
+
+/*
+ * Arbitrary, never shoved into KVM/hardware, just need to avoid conflict with
+ * the "real" exceptions used, #SS/#GP/#DF (12/13/8).
+ */
+#define FAKE_TRIPLE_FAULT_VECTOR 0xaa
+
+/* Arbitrary 32-bit error code injected by this test. */
+#define SS_ERROR_CODE 0xdeadbeef
+
+/*
+ * Bit '0' is set on Intel if the exception occurs while delivering a previous
+ * event/exception. AMD's wording is ambiguous, but presumably the bit is set
+ * if the exception occurs while delivering an external event, e.g. NMI or INTR,
+ * but not for exceptions that occur when delivering other exceptions or
+ * software interrupts.
+ *
+ * Note, Intel's name for it, "External event", is misleading and much more
+ * aligned with AMD's behavior, but the SDM is quite clear on its behavior.
+ */
+#define ERROR_CODE_EXT_FLAG BIT(0)
+
+/*
+ * Bit '1' is set if the fault occurred when looking up a descriptor in the
+ * IDT, which is the case here as the IDT is empty/NULL.
+ */
+#define ERROR_CODE_IDT_FLAG BIT(1)
+
+/*
+ * The #GP that occurs when vectoring #SS should show the index into the IDT
+ * for #SS, plus have the "IDT flag" set.
+ */
+#define GP_ERROR_CODE_AMD ((SS_VECTOR * 8) | ERROR_CODE_IDT_FLAG)
+#define GP_ERROR_CODE_INTEL ((SS_VECTOR * 8) | ERROR_CODE_IDT_FLAG | ERROR_CODE_EXT_FLAG)
+
+/*
+ * Intel and AMD both shove '0' into the error code on #DF, regardless of what
+ * led to the double fault.
+ */
+#define DF_ERROR_CODE 0
+
+#define INTERCEPT_SS (BIT_ULL(SS_VECTOR))
+#define INTERCEPT_SS_DF (INTERCEPT_SS | BIT_ULL(DF_VECTOR))
+#define INTERCEPT_SS_GP_DF (INTERCEPT_SS_DF | BIT_ULL(GP_VECTOR))
+
+static void l2_ss_pending_test(void)
+{
+ GUEST_SYNC(SS_VECTOR);
+}
+
+static void l2_ss_injected_gp_test(void)
+{
+ GUEST_SYNC(GP_VECTOR);
+}
+
+static void l2_ss_injected_df_test(void)
+{
+ GUEST_SYNC(DF_VECTOR);
+}
+
+static void l2_ss_injected_tf_test(void)
+{
+ GUEST_SYNC(FAKE_TRIPLE_FAULT_VECTOR);
+}
+
+static void svm_run_l2(struct svm_test_data *svm, void *l2_code, int vector,
+ uint32_t error_code)
+{
+ struct vmcb *vmcb = svm->vmcb;
+ struct vmcb_control_area *ctrl = &vmcb->control;
+
+ vmcb->save.rip = (u64)l2_code;
+ run_guest(vmcb, svm->vmcb_gpa);
+
+ if (vector == FAKE_TRIPLE_FAULT_VECTOR)
+ return;
+
+ GUEST_ASSERT_EQ(ctrl->exit_code, (SVM_EXIT_EXCP_BASE + vector));
+ GUEST_ASSERT_EQ(ctrl->exit_info_1, error_code);
+}
+
+static void l1_svm_code(struct svm_test_data *svm)
+{
+ struct vmcb_control_area *ctrl = &svm->vmcb->control;
+ unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
+
+ generic_svm_setup(svm, NULL, &l2_guest_stack[L2_GUEST_STACK_SIZE]);
+ svm->vmcb->save.idtr.limit = 0;
+ ctrl->intercept |= BIT_ULL(INTERCEPT_SHUTDOWN);
+
+ ctrl->intercept_exceptions = INTERCEPT_SS_GP_DF;
+ svm_run_l2(svm, l2_ss_pending_test, SS_VECTOR, SS_ERROR_CODE);
+ svm_run_l2(svm, l2_ss_injected_gp_test, GP_VECTOR, GP_ERROR_CODE_AMD);
+
+ ctrl->intercept_exceptions = INTERCEPT_SS_DF;
+ svm_run_l2(svm, l2_ss_injected_df_test, DF_VECTOR, DF_ERROR_CODE);
+
+ ctrl->intercept_exceptions = INTERCEPT_SS;
+ svm_run_l2(svm, l2_ss_injected_tf_test, FAKE_TRIPLE_FAULT_VECTOR, 0);
+ GUEST_ASSERT_EQ(ctrl->exit_code, SVM_EXIT_SHUTDOWN);
+
+ GUEST_DONE();
+}
+
+static void vmx_run_l2(void *l2_code, int vector, uint32_t error_code)
+{
+ GUEST_ASSERT(!vmwrite(GUEST_RIP, (u64)l2_code));
+
+ GUEST_ASSERT_EQ(vector == SS_VECTOR ? vmlaunch() : vmresume(), 0);
+
+ if (vector == FAKE_TRIPLE_FAULT_VECTOR)
+ return;
+
+ GUEST_ASSERT_EQ(vmreadz(VM_EXIT_REASON), EXIT_REASON_EXCEPTION_NMI);
+ GUEST_ASSERT_EQ((vmreadz(VM_EXIT_INTR_INFO) & 0xff), vector);
+ GUEST_ASSERT_EQ(vmreadz(VM_EXIT_INTR_ERROR_CODE), error_code);
+}
+
+static void l1_vmx_code(struct vmx_pages *vmx)
+{
+ unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
+
+ GUEST_ASSERT_EQ(prepare_for_vmx_operation(vmx), true);
+
+ GUEST_ASSERT_EQ(load_vmcs(vmx), true);
+
+ prepare_vmcs(vmx, NULL, &l2_guest_stack[L2_GUEST_STACK_SIZE]);
+ GUEST_ASSERT_EQ(vmwrite(GUEST_IDTR_LIMIT, 0), 0);
+
+ /*
+ * VMX disallows injecting an exception with error_code[31:16] != 0,
+ * and hardware will never generate a VM-Exit with bits 31:16 set.
+ * KVM should likewise truncate the "bad" userspace value.
+ */
+ GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS_GP_DF), 0);
+ vmx_run_l2(l2_ss_pending_test, SS_VECTOR, (u16)SS_ERROR_CODE);
+ vmx_run_l2(l2_ss_injected_gp_test, GP_VECTOR, GP_ERROR_CODE_INTEL);
+
+ GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS_DF), 0);
+ vmx_run_l2(l2_ss_injected_df_test, DF_VECTOR, DF_ERROR_CODE);
+
+ GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS), 0);
+ vmx_run_l2(l2_ss_injected_tf_test, FAKE_TRIPLE_FAULT_VECTOR, 0);
+ GUEST_ASSERT_EQ(vmreadz(VM_EXIT_REASON), EXIT_REASON_TRIPLE_FAULT);
+
+ GUEST_DONE();
+}
+
+static void __attribute__((__flatten__)) l1_guest_code(void *test_data)
+{
+ if (this_cpu_has(X86_FEATURE_SVM))
+ l1_svm_code(test_data);
+ else
+ l1_vmx_code(test_data);
+}
+
+static void assert_ucall_vector(struct kvm_vcpu *vcpu, int vector)
+{
+ struct ucall uc;
+
+ TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
+
+ switch (get_ucall(vcpu, &uc)) {
+ case UCALL_SYNC:
+ TEST_ASSERT(vector == uc.args[1],
+ "Expected L2 to ask for %d, got %ld", vector, uc.args[1]);
+ break;
+ case UCALL_DONE:
+ TEST_ASSERT(vector == -1,
+ "Expected L2 to ask for %d, L2 says it's done", vector);
+ break;
+ case UCALL_ABORT:
+ REPORT_GUEST_ASSERT(uc);
+ break;
+ default:
+ TEST_FAIL("Expected L2 to ask for %d, got unexpected ucall %lu", vector, uc.cmd);
+ }
+}
+
+static void queue_ss_exception(struct kvm_vcpu *vcpu, bool inject)
+{
+ struct kvm_vcpu_events events;
+
+ vcpu_events_get(vcpu, &events);
+
+ TEST_ASSERT(!events.exception.pending,
+ "Vector %d unexpectedlt pending", events.exception.nr);
+ TEST_ASSERT(!events.exception.injected,
+ "Vector %d unexpectedly injected", events.exception.nr);
+
+ events.flags = KVM_VCPUEVENT_VALID_PAYLOAD;
+ events.exception.pending = !inject;
+ events.exception.injected = inject;
+ events.exception.nr = SS_VECTOR;
+ events.exception.has_error_code = true;
+ events.exception.error_code = SS_ERROR_CODE;
+ vcpu_events_set(vcpu, &events);
+}
+
+/*
+ * Verify KVM_{G,S}ET_EVENTS play nice with pending vs. injected exceptions
+ * when an exception is being queued for L2. Specifically, verify that KVM
+ * honors L1 exception intercept controls when a #SS is pending/injected,
+ * triggers a #GP on vectoring the #SS, morphs to #DF if #GP isn't intercepted
+ * by L1, and finally causes (nested) SHUTDOWN if #DF isn't intercepted by L1.
+ */
+int main(int argc, char *argv[])
+{
+ vm_vaddr_t nested_test_data_gva;
+ struct kvm_vcpu_events events;
+ struct kvm_vcpu *vcpu;
+ struct kvm_vm *vm;
+
+ TEST_REQUIRE(kvm_has_cap(KVM_CAP_EXCEPTION_PAYLOAD));
+ TEST_REQUIRE(kvm_cpu_has(X86_FEATURE_SVM) || kvm_cpu_has(X86_FEATURE_VMX));
+
+ vm = vm_create_with_one_vcpu(&vcpu, l1_guest_code);
+ vm_enable_cap(vm, KVM_CAP_EXCEPTION_PAYLOAD, -2ul);
+
+ if (kvm_cpu_has(X86_FEATURE_SVM))
+ vcpu_alloc_svm(vm, &nested_test_data_gva);
+ else
+ vcpu_alloc_vmx(vm, &nested_test_data_gva);
+
+ vcpu_args_set(vcpu, 1, nested_test_data_gva);
+
+ /* Run L1 => L2. L2 should sync and request #SS. */
+ vcpu_run(vcpu);
+ assert_ucall_vector(vcpu, SS_VECTOR);
+
+ /* Pend #SS and request immediate exit. #SS should still be pending. */
+ queue_ss_exception(vcpu, false);
+ vcpu->run->immediate_exit = true;
+ vcpu_run_complete_io(vcpu);
+
+ /* Verify the pending events comes back out the same as it went in. */
+ vcpu_events_get(vcpu, &events);
+ TEST_ASSERT_EQ(events.flags & KVM_VCPUEVENT_VALID_PAYLOAD,
+ KVM_VCPUEVENT_VALID_PAYLOAD);
+ TEST_ASSERT_EQ(events.exception.pending, true);
+ TEST_ASSERT_EQ(events.exception.nr, SS_VECTOR);
+ TEST_ASSERT_EQ(events.exception.has_error_code, true);
+ TEST_ASSERT_EQ(events.exception.error_code, SS_ERROR_CODE);
+
+ /*
+ * Run for real with the pending #SS, L1 should get a VM-Exit due to
+ * #SS interception and re-enter L2 to request #GP (via injected #SS).
+ */
+ vcpu->run->immediate_exit = false;
+ vcpu_run(vcpu);
+ assert_ucall_vector(vcpu, GP_VECTOR);
+
+ /*
+ * Inject #SS, the #SS should bypass interception and cause #GP, which
+ * L1 should intercept before KVM morphs it to #DF. L1 should then
+ * disable #GP interception and run L2 to request #DF (via #SS => #GP).
+ */
+ queue_ss_exception(vcpu, true);
+ vcpu_run(vcpu);
+ assert_ucall_vector(vcpu, DF_VECTOR);
+
+ /*
+ * Inject #SS, the #SS should bypass interception and cause #GP, which
+ * L1 is no longer interception, and so should see a #DF VM-Exit. L1
+ * should then signal that is done.
+ */
+ queue_ss_exception(vcpu, true);
+ vcpu_run(vcpu);
+ assert_ucall_vector(vcpu, FAKE_TRIPLE_FAULT_VECTOR);
+
+ /*
+ * Inject #SS yet again. L1 is not intercepting #GP or #DF, and so
+ * should see nested TRIPLE_FAULT / SHUTDOWN.
+ */
+ queue_ss_exception(vcpu, true);
+ vcpu_run(vcpu);
+ assert_ucall_vector(vcpu, -1);
+
+ kvm_vm_free(vm);
+}