summaryrefslogtreecommitdiff
path: root/include/uapi/linux/prctl.h
AgeCommit message (Collapse)Author
2025-09-13mm/huge_memory: respect MADV_COLLAPSE with PR_THP_DISABLE_EXCEPT_ADVISEDDavid Hildenbrand
Let's allow for making MADV_COLLAPSE succeed on areas that neither have VM_HUGEPAGE nor VM_NOHUGEPAGE when we have THP disabled unless explicitly advised (PR_THP_DISABLE_EXCEPT_ADVISED). MADV_COLLAPSE is a clear advice that we want to collapse. Note that we still respect the VM_NOHUGEPAGE flag, just like MADV_COLLAPSE always does. So consequently, MADV_COLLAPSE is now only refused on VM_NOHUGEPAGE with PR_THP_DISABLE_EXCEPT_ADVISED, including for shmem. Link: https://lkml.kernel.org/r/20250815135549.130506-4-usamaarif642@gmail.com Co-developed-by: Usama Arif <usamaarif642@gmail.com> Signed-off-by: Usama Arif <usamaarif642@gmail.com> Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Barry Song <baohua@kernel.org> Cc: Dev Jain <dev.jain@arm.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Mariano Pache <npache@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yafang <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-09-13prctl: extend PR_SET_THP_DISABLE to optionally exclude VM_HUGEPAGEDavid Hildenbrand
Patch series "prctl: extend PR_SET_THP_DISABLE to only provide THPs when advised", v5. This will allow individual processes to opt-out of THP = "always" into THP = "madvise", without affecting other workloads on the system. This has been extensively discussed on the mailing list and has been summarized very well by David in the first patch which also includes the links to alternatives, please refer to the first patch commit message for the motivation for this series. Patch 1 adds the PR_THP_DISABLE_EXCEPT_ADVISED flag to implement this, along with the MMF changes. Patch 2 is a cleanup patch for tva_flags that will allow the forced collapse case to be transmitted to vma_thp_disabled (which is done in patch 3). Patch 4 adds documentation for PR_SET_THP_DISABLE/PR_GET_THP_DISABLE. Patches 6-7 implement the selftests for PR_SET_THP_DISABLE for completely disabling THPs (old behaviour) and only enabling it at advise (PR_THP_DISABLE_EXCEPT_ADVISED). This patch (of 7): People want to make use of more THPs, for example, moving from the "never" system policy to "madvise", or from "madvise" to "always". While this is great news for every THP desperately waiting to get allocated out there, apparently there are some workloads that require a bit of care during that transition: individual processes may need to opt-out from this behavior for various reasons, and this should be permitted without needing to make all other workloads on the system similarly opt-out. The following scenarios are imaginable: (1) Switch from "none" system policy to "madvise"/"always", but keep THPs disabled for selected workloads. (2) Stay at "none" system policy, but enable THPs for selected workloads, making only these workloads use the "madvise" or "always" policy. (3) Switch from "madvise" system policy to "always", but keep the "madvise" policy for selected workloads: allocate THPs only when advised. (4) Stay at "madvise" system policy, but enable THPs even when not advised for selected workloads -- "always" policy. Once can emulate (2) through (1), by setting the system policy to "madvise"/"always" while disabling THPs for all processes that don't want THPs. It requires configuring all workloads, but that is a user-space problem to sort out. (4) can be emulated through (3) in a similar way. Back when (1) was relevant in the past, as people started enabling THPs, we added PR_SET_THP_DISABLE, so relevant workloads that were not ready yet (i.e., used by Redis) were able to just disable THPs completely. Redis still implements the option to use this interface to disable THPs completely. With PR_SET_THP_DISABLE, we added a way to force-disable THPs for a workload -- a process, including fork+exec'ed process hierarchy. That essentially made us support (1): simply disable THPs for all workloads that are not ready for THPs yet, while still enabling THPs system-wide. The quest for handling (3) and (4) started, but current approaches (completely new prctl, options to set other policies per process, alternatives to prctl -- mctrl, cgroup handling) don't look particularly promising. Likely, the future will use bpf or something similar to implement better policies, in particular to also make better decisions about THP sizes to use, but this will certainly take a while as that work just started. Long story short: a simple enable/disable is not really suitable for the future, so we're not willing to add completely new toggles. While we could emulate (3)+(4) through (1)+(2) by simply disabling THPs completely for these processes, this is a step backwards, because these processes can no longer allocate THPs in regions where THPs were explicitly advised: regions flagged as VM_HUGEPAGE. Apparently, that imposes a problem for relevant workloads, because "not THPs" is certainly worse than "THPs only when advised". Could we simply relax PR_SET_THP_DISABLE, to "disable THPs unless not explicitly advised by the app through MAD_HUGEPAGE"? *maybe*, but this would change the documented semantics quite a bit, and the versatility to use it for debugging purposes, so I am not 100% sure that is what we want -- although it would certainly be much easier. So instead, as an easy way forward for (3) and (4), add an option to make PR_SET_THP_DISABLE disable *less* THPs for a process. In essence, this patch: (A) Adds PR_THP_DISABLE_EXCEPT_ADVISED, to be used as a flag in arg3 of prctl(PR_SET_THP_DISABLE) when disabling THPs (arg2 != 0). prctl(PR_SET_THP_DISABLE, 1, PR_THP_DISABLE_EXCEPT_ADVISED). (B) Makes prctl(PR_GET_THP_DISABLE) return 3 if PR_THP_DISABLE_EXCEPT_ADVISED was set while disabling. Previously, it would return 1 if THPs were disabled completely. Now it returns the set flags as well: 3 if PR_THP_DISABLE_EXCEPT_ADVISED was set. (C) Renames MMF_DISABLE_THP to MMF_DISABLE_THP_COMPLETELY, to express the semantics clearly. Fortunately, there are only two instances outside of prctl() code. (D) Adds MMF_DISABLE_THP_EXCEPT_ADVISED to express "no THP except for VMAs with VM_HUGEPAGE" -- essentially "thp=madvise" behavior Fortunately, we only have to extend vma_thp_disabled(). (E) Indicates "THP_enabled: 0" in /proc/pid/status only if THPs are disabled completely Only indicating that THPs are disabled when they are really disabled completely, not only partially. For now, we don't add another interface to obtained whether THPs are disabled partially (PR_THP_DISABLE_EXCEPT_ADVISED was set). If ever required, we could add a new entry. The documented semantics in the man page for PR_SET_THP_DISABLE "is inherited by a child created via fork(2) and is preserved across execve(2)" is maintained. This behavior, for example, allows for disabling THPs for a workload through the launching process (e.g., systemd where we fork() a helper process to then exec()). For now, MADV_COLLAPSE will *fail* in regions without VM_HUGEPAGE and VM_NOHUGEPAGE. As MADV_COLLAPSE is a clear advise that user space thinks a THP is a good idea, we'll enable that separately next (requiring a bit of cleanup first). There is currently not way to prevent that a process will not issue PR_SET_THP_DISABLE itself to re-enable THP. There are not really known users for re-enabling it, and it's against the purpose of the original interface. So if ever required, we could investigate just forbidding to re-enable them, or make this somehow configurable. Link: https://lkml.kernel.org/r/20250815135549.130506-1-usamaarif642@gmail.com Link: https://lkml.kernel.org/r/20250815135549.130506-2-usamaarif642@gmail.com Acked-by: Zi Yan <ziy@nvidia.com> Acked-by: Usama Arif <usamaarif642@gmail.com> Tested-by: Usama Arif <usamaarif642@gmail.com> Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Signed-off-by: Usama Arif <usamaarif642@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Barry Song <baohua@kernel.org> Cc: Dev Jain <dev.jain@arm.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Mariano Pache <npache@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yafang <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-29Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "A quick summary: perf support for Branch Record Buffer Extensions (BRBE), typical PMU hardware updates, small additions to MTE for store-only tag checking and exposing non-address bits to signal handlers, HAVE_LIVEPATCH enabled on arm64, VMAP_STACK forced on. There is also a TLBI optimisation on hardware that does not require break-before-make when changing the user PTEs between contiguous and non-contiguous. More details: Perf and PMU updates: - Add support for new (v3) Hisilicon SLLC and DDRC PMUs - Add support for Arm-NI PMU integrations that share interrupts between clock domains within a given instance - Allow SPE to be configured with a lower sample period than the minimum recommendation advertised by PMSIDR_EL1.Interval - Add suppport for Arm's "Branch Record Buffer Extension" (BRBE) - Adjust the perf watchdog period according to cpu frequency changes - Minor driver fixes and cleanups Hardware features: - Support for MTE store-only checking (FEAT_MTE_STORE_ONLY) - Support for reporting the non-address bits during a synchronous MTE tag check fault (FEAT_MTE_TAGGED_FAR) - Optimise the TLBI when folding/unfolding contiguous PTEs on hardware with FEAT_BBM (break-before-make) level 2 and no TLB conflict aborts Software features: - Enable HAVE_LIVEPATCH after implementing arch_stack_walk_reliable() and using the text-poke API for late module relocations - Force VMAP_STACK always on and change arm64_efi_rt_init() to use arch_alloc_vmap_stack() in order to avoid KASAN false positives ACPI: - Improve SPCR handling and messaging on systems lacking an SPCR table Debug: - Simplify the debug exception entry path - Drop redundant DBG_MDSCR_* macros Kselftests: - Cleanups and improvements for SME, SVE and FPSIMD tests Miscellaneous: - Optimise loop to reduce redundant operations in contpte_ptep_get() - Remove ISB when resetting POR_EL0 during signal handling - Mark the kernel as tainted on SEA and SError panic - Remove redundant gcs_free() call" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (93 commits) arm64/gcs: task_gcs_el0_enable() should use passed task arm64: Kconfig: Keep selects somewhat alphabetically ordered arm64: signal: Remove ISB when resetting POR_EL0 kselftest/arm64: Handle attempts to disable SM on SME only systems kselftest/arm64: Fix SVE write data generation for SME only systems kselftest/arm64: Test SME on SME only systems in fp-ptrace kselftest/arm64: Test FPSIMD format data writes via NT_ARM_SVE in fp-ptrace kselftest/arm64: Allow sve-ptrace to run on SME only systems arm64/mm: Drop redundant addr increment in set_huge_pte_at() kselftest/arm4: Provide local defines for AT_HWCAP3 arm64: Mark kernel as tainted on SAE and SError panic arm64/gcs: Don't call gcs_free() when releasing task_struct drivers/perf: hisi: Support PMUs with no interrupt drivers/perf: hisi: Relax the event number check of v2 PMUs drivers/perf: hisi: Add support for HiSilicon SLLC v3 PMU driver drivers/perf: hisi: Use ACPI driver_data to retrieve SLLC PMU information drivers/perf: hisi: Add support for HiSilicon DDRC v3 PMU driver drivers/perf: hisi: Simplify the probe process for each DDRC version perf/arm-ni: Support sharing IRQs within an NI instance perf/arm-ni: Consolidate CPU affinity handling ...
2025-07-29Merge tag 'core-entry-2025-07-29' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull generic entry code updates from Thomas Gleixner: - Split the code into syscall and exception/interrupt parts to ease the conversion of ARM[64] to the generic entry infrastructure - Extend syscall user dispatching to support a single intercepted range instead of the default single non-intercepted range. That allows monitoring/analysis of a specific executable range, e.g. a library, and also provides flexibility for sandboxing scenarios - Cleanup and extend the user dispatch selftest * tag 'core-entry-2025-07-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: entry: Split generic entry into generic exception and syscall entry selftests: Add tests for PR_SYS_DISPATCH_INCLUSIVE_ON syscall_user_dispatch: Add PR_SYS_DISPATCH_INCLUSIVE_ON selftests: Fix errno checking in syscall_user_dispatch test
2025-07-11futex: Remove support for IMMUTABLESebastian Andrzej Siewior
The FH_FLAG_IMMUTABLE flag was meant to avoid the reference counting on the private hash and so to avoid the performance regression on big machines. With the switch to per-CPU counter this is no longer needed. That flag was never useable on any released kernel. Remove any support for IMMUTABLE while preserve the flags argument and enforce it to be zero. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20250710110011.384614-5-bigeasy@linutronix.de
2025-07-02prctl: Introduce PR_MTE_STORE_ONLYYeoreum Yun
PR_MTE_STORE_ONLY is used to restrict the MTE tag check for store opeartion only. Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Tested-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20250618092957.2069907-3-yeoreum.yun@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2025-06-13syscall_user_dispatch: Add PR_SYS_DISPATCH_INCLUSIVE_ONDmitry Vyukov
There are two possible scenarios for syscall filtering: - having a trusted/allowed range of PCs, and intercepting everything else - or the opposite: a single untrusted/intercepted range and allowing everything else (this is relevant for any kind of sandboxing scenario, or monitoring behavior of a single library) The current API only allows the former use case due to allowed range wrap-around check. Add PR_SYS_DISPATCH_INCLUSIVE_ON that enables the second use case. Add PR_SYS_DISPATCH_EXCLUSIVE_ON alias for PR_SYS_DISPATCH_ON to make it clear how it's different from the new PR_SYS_DISPATCH_INCLUSIVE_ON. Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/97947cc8e205ff49675826d7b0327ef2e2c66eea.1747839857.git.dvyukov@google.com
2025-05-03futex: Allow to make the private hash immutableSebastian Andrzej Siewior
My initial testing showed that: perf bench futex hash reported less operations/sec with private hash. After using the same amount of buckets in the private hash as used by the global hash then the operations/sec were about the same. This changed once the private hash became resizable. This feature added an RCU section and reference counting via atomic inc+dec operation into the hot path. The reference counting can be avoided if the private hash is made immutable. Extend PR_FUTEX_HASH_SET_SLOTS by a fourth argument which denotes if the private should be made immutable. Once set (to true) the a further resize is not allowed (same if set to global hash). Add PR_FUTEX_HASH_GET_IMMUTABLE which returns true if the hash can not be changed. Update "perf bench" suite. For comparison, results of "perf bench futex hash -s": - Xeon CPU E5-2650, 2 NUMA nodes, total 32 CPUs: - Before the introducing task local hash shared Averaged 1.487.148 operations/sec (+- 0,53%), total secs = 10 private Averaged 2.192.405 operations/sec (+- 0,07%), total secs = 10 - With the series shared Averaged 1.326.342 operations/sec (+- 0,41%), total secs = 10 -b128 Averaged 141.394 operations/sec (+- 1,15%), total secs = 10 -Ib128 Averaged 851.490 operations/sec (+- 0,67%), total secs = 10 -b8192 Averaged 131.321 operations/sec (+- 2,13%), total secs = 10 -Ib8192 Averaged 1.923.077 operations/sec (+- 0,61%), total secs = 10 128 is the default allocation of hash buckets. 8192 was the previous amount of allocated hash buckets. - Xeon(R) CPU E7-8890 v3, 4 NUMA nodes, total 144 CPUs: - Before the introducing task local hash shared Averaged 1.810.936 operations/sec (+- 0,26%), total secs = 20 private Averaged 2.505.801 operations/sec (+- 0,05%), total secs = 20 - With the series shared Averaged 1.589.002 operations/sec (+- 0,25%), total secs = 20 -b1024 Averaged 42.410 operations/sec (+- 0,20%), total secs = 20 -Ib1024 Averaged 740.638 operations/sec (+- 1,51%), total secs = 20 -b65536 Averaged 48.811 operations/sec (+- 1,35%), total secs = 20 -Ib65536 Averaged 1.963.165 operations/sec (+- 0,18%), total secs = 20 1024 is the default allocation of hash buckets. 65536 was the previous amount of allocated hash buckets. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Shrikanth Hegde <sshegde@linux.ibm.com> Link: https://lore.kernel.org/r/20250416162921.513656-16-bigeasy@linutronix.de
2025-05-03futex: Add basic infrastructure for local task local hashSebastian Andrzej Siewior
The futex hash is system wide and shared by all tasks. Each slot is hashed based on futex address and the VMA of the thread. Due to randomized VMAs (and memory allocations) the same logical lock (pointer) can end up in a different hash bucket on each invocation of the application. This in turn means that different applications may share a hash bucket on the first invocation but not on the second and it is not always clear which applications will be involved. This can result in high latency's to acquire the futex_hash_bucket::lock especially if the lock owner is limited to a CPU and can not be effectively PI boosted. Introduce basic infrastructure for process local hash which is shared by all threads of process. This hash will only be used for a PROCESS_PRIVATE FUTEX operation. The hashmap can be allocated via: prctl(PR_FUTEX_HASH, PR_FUTEX_HASH_SET_SLOTS, num); A `num' of 0 means that the global hash is used instead of a private hash. Other values for `num' specify the number of slots for the hash and the number must be power of two, starting with two. The prctl() returns zero on success. This function can only be used before a thread is created. The current status for the private hash can be queried via: num = prctl(PR_FUTEX_HASH, PR_FUTEX_HASH_GET_SLOTS); which return the current number of slots. The value 0 means that the global hash is used. Values greater than 0 indicate the number of slots that are used. A negative number indicates an error. For optimisation, for the private hash jhash2() uses only two arguments the address and the offset. This omits the VMA which is always the same. [peterz: Use 0 for global hash. A bit shuffling and renaming. ] Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20250416162921.513656-13-bigeasy@linutronix.de
2025-03-13posix-timers: Provide a mechanism to allocate a given timer IDThomas Gleixner
Checkpoint/Restore in Userspace (CRIU) requires to reconstruct posix timers with the same timer ID on restore. It uses sys_timer_create() and relies on the monotonic increasing timer ID provided by this syscall. It creates and deletes timers until the desired ID is reached. This is can loop for a long time, when the checkpointed process had a very sparse timer ID range. It has been debated to implement a new syscall to allow the creation of timers with a given timer ID, but that's tideous due to the 32/64bit compat issues of sigevent_t and of dubious value. The restore mechanism of CRIU creates the timers in a state where all threads of the restored process are held on a barrier and cannot issue syscalls. That means the restorer task has exclusive control. This allows to address this issue with a prctl() so that the restorer thread can do: if (prctl(PR_TIMER_CREATE_RESTORE_IDS, PR_TIMER_CREATE_RESTORE_IDS_ON)) goto linear_mode; create_timers_with_explicit_ids(); prctl(PR_TIMER_CREATE_RESTORE_IDS, PR_TIMER_CREATE_RESTORE_IDS_OFF); This is backwards compatible because the prctl() fails on older kernels and CRIU can fall back to the linear timer ID mechanism. CRIU versions which do not know about the prctl() just work as before. Implement the prctl() and modify timer_create() so that it copies the requested timer ID from userspace by utilizing the existing timer_t pointer, which is used to copy out the allocated timer ID on success. If the prctl() is disabled, which it is by default, timer_create() works as before and does not try to read from the userspace pointer. There is no problem when a broken or rogue user space application enables the prctl(). If the user space pointer does not contain a valid ID, then timer_create() fails. If the data is not initialized, but constains a random valid ID, timer_create() will create that random timer ID or fail if the ID is already given out. As CRIU must use the raw syscall to avoid manipulating the internal state of the restored process, this has no library dependencies and can be adopted by CRIU right away. Recreating two timers with IDs 1000000 and 2000000 takes 1.5 seconds with the create/delete method. With the prctl() it takes 3 microseconds. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com> Tested-by: Cyrill Gorcunov <gorcunov@gmail.com> Link: https://lore.kernel.org/all/87jz8vz0en.ffs@tglx
2024-11-27Merge tag 'riscv-for-linus-6.13-mw1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux Pull RISC-v updates from Palmer Dabbelt: - Support for pointer masking in userspace - Support for probing vector misaligned access performance - Support for qspinlock on systems with Zacas and Zabha * tag 'riscv-for-linus-6.13-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (38 commits) RISC-V: Remove unnecessary include from compat.h riscv: Fix default misaligned access trap riscv: Add qspinlock support dt-bindings: riscv: Add Ziccrse ISA extension description riscv: Add ISA extension parsing for Ziccrse asm-generic: ticket-lock: Add separate ticket-lock.h asm-generic: ticket-lock: Reuse arch_spinlock_t of qspinlock riscv: Implement xchg8/16() using Zabha riscv: Implement arch_cmpxchg128() using Zacas riscv: Improve zacas fully-ordered cmpxchg() riscv: Implement cmpxchg8/16() using Zabha dt-bindings: riscv: Add Zabha ISA extension description riscv: Implement cmpxchg32/64() using Zacas riscv: Do not fail to build on byte/halfword operations with Zawrs riscv: Move cpufeature.h macros into their own header KVM: riscv: selftests: Add Smnpm and Ssnpm to get-reg-list test RISC-V: KVM: Allow Smnpm and Ssnpm extensions for guests riscv: hwprobe: Export the Supm ISA extension riscv: selftests: Add a pointer masking test riscv: Allow ptrace control of the tagged address ABI ...
2024-10-24riscv: Add support for userspace pointer maskingSamuel Holland
RISC-V supports pointer masking with a variable number of tag bits (which is called "PMLEN" in the specification) and which is configured at the next higher privilege level. Wire up the PR_SET_TAGGED_ADDR_CTRL and PR_GET_TAGGED_ADDR_CTRL prctls so userspace can request a lower bound on the number of tag bits and determine the actual number of tag bits. As with arm64's PR_TAGGED_ADDR_ENABLE, the pointer masking configuration is thread-scoped, inherited on clone() and fork() and cleared on execve(). Reviewed-by: Charlie Jenkins <charlie@rivosinc.com> Tested-by: Charlie Jenkins <charlie@rivosinc.com> Signed-off-by: Samuel Holland <samuel.holland@sifive.com> Link: https://lore.kernel.org/r/20241016202814.4061541-5-samuel.holland@sifive.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2024-10-04prctl: arch-agnostic prctl for shadow stackMark Brown
Three architectures (x86, aarch64, riscv) have announced support for shadow stacks with fairly similar functionality. While x86 is using arch_prctl() to control the functionality neither arm64 nor riscv uses that interface so this patch adds arch-agnostic prctl() support to get and set status of shadow stacks and lock the current configuation to prevent further changes, with support for turning on and off individual subfeatures so applications can limit their exposure to features that they do not need. The features are: - PR_SHADOW_STACK_ENABLE: Tracking and enforcement of shadow stacks, including allocation of a shadow stack if one is not already allocated. - PR_SHADOW_STACK_WRITE: Writes to specific addresses in the shadow stack. - PR_SHADOW_STACK_PUSH: Push additional values onto the shadow stack. These features are expected to be inherited by new threads and cleared on exec(), unknown features should be rejected for enable but accepted for locking (in order to allow for future proofing). This is based on a patch originally written by Deepak Gupta but modified fairly heavily, support for indirect landing pads is removed, additional modes added and the locking interface reworked. The set status prctl() is also reworked to just set flags, if setting/reading the shadow stack pointer is required this could be a separate prctl. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Yury Khrustalev <yury.khrustalev@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Deepak Gupta <debug@rivosinc.com> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-4-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-05-22Merge tag 'riscv-for-linus-6.10-mw1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux Pull RISC-V updates from Palmer Dabbelt: - Add byte/half-word compare-and-exchange, emulated via LR/SC loops - Support for Rust - Support for Zihintpause in hwprobe - Add PR_RISCV_SET_ICACHE_FLUSH_CTX prctl() - Support lockless lockrefs * tag 'riscv-for-linus-6.10-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (42 commits) riscv: defconfig: Enable CONFIG_CLK_SOPHGO_CV1800 riscv: select ARCH_HAS_FAST_MULTIPLIER riscv: mm: still create swiotlb buffer for kmalloc() bouncing if required riscv: Annotate pgtable_l{4,5}_enabled with __ro_after_init riscv: Remove redundant CONFIG_64BIT from pgtable_l{4,5}_enabled riscv: mm: Always use an ASID to flush mm contexts riscv: mm: Preserve global TLB entries when switching contexts riscv: mm: Make asid_bits a local variable riscv: mm: Use a fixed layout for the MM context ID riscv: mm: Introduce cntx2asid/cntx2version helper macros riscv: Avoid TLB flush loops when affected by SiFive CIP-1200 riscv: Apply SiFive CIP-1200 workaround to single-ASID sfence.vma riscv: mm: Combine the SMP and UP TLB flush code riscv: Only send remote fences when some other CPU is online riscv: mm: Broadcast kernel TLB flushes only when needed riscv: Use IPIs for remote cache/TLB flushes by default riscv: Factor out page table TLB synchronization riscv: Flush the instruction cache during SMP bringup riscv: hwprobe: export Zihintpause ISA extension riscv: misaligned: remove CONFIG_RISCV_M_MODE specific code ...
2024-05-06powerpc/dexcr: Add DEXCR prctl interfaceBenjamin Gray
Now that we track a DEXCR on a per-task basis, individual tasks are free to configure it as they like. The interface is a pair of getter/setter prctl's that work on a single aspect at a time (multiple aspects at once is more difficult if there are different rules applied for each aspect, now or in future). The getter shows the current state of the process config, and the setter allows setting/clearing the aspect. Signed-off-by: Benjamin Gray <bgray@linux.ibm.com> [mpe: Account for PR_RISCV_SET_ICACHE_FLUSH_CTX, shrink some longs lines] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://msgid.link/20240417112325.728010-5-bgray@linux.ibm.com
2024-04-18riscv: Include riscv_set_icache_flush_ctx prctlCharlie Jenkins
Support new prctl with key PR_RISCV_SET_ICACHE_FLUSH_CTX to enable optimization of cross modifying code. This prctl enables userspace code to use icache flushing instructions such as fence.i with the guarantee that the icache will continue to be clean after thread migration. Signed-off-by: Charlie Jenkins <charlie@rivosinc.com> Reviewed-by: Atish Patra <atishp@rivosinc.com> Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> Reviewed-by: Samuel Holland <samuel.holland@sifive.com> Link: https://lore.kernel.org/r/20240312-fencei-v13-2-4b6bdc2bbf32@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-10-06mm: add a NO_INHERIT flag to the PR_SET_MDWE prctlFlorent Revest
This extends the current PR_SET_MDWE prctl arg with a bit to indicate that the process doesn't want MDWE protection to propagate to children. To implement this no-inherit mode, the tag in current->mm->flags must be absent from MMF_INIT_MASK. This means that the encoding for "MDWE but without inherit" is different in the prctl than in the mm flags. This leads to a bit of bit-mangling in the prctl implementation. Link: https://lkml.kernel.org/r/20230828150858.393570-6-revest@chromium.org Signed-off-by: Florent Revest <revest@chromium.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alexey Izbyshev <izbyshev@ispras.ru> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ayush Jain <ayush.jain3@amd.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: KP Singh <kpsingh@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Szabolcs Nagy <Szabolcs.Nagy@arm.com> Cc: Topi Miettinen <toiwoton@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-06mm: make PR_MDWE_REFUSE_EXEC_GAIN an unsigned longFlorent Revest
Defining a prctl flag as an int is a footgun because on a 64 bit machine and with a variadic implementation of prctl (like in musl and glibc), when used directly as a prctl argument, it can get casted to long with garbage upper bits which would result in unexpected behaviors. This patch changes the constant to an unsigned long to eliminate that possibilities. This does not break UAPI. I think that a stable backport would be "nice to have": to reduce the chances that users build binaries that could end up with garbage bits in their MDWE prctl arguments. We are not aware of anyone having yet encountered this corner case with MDWE prctls but a backport would reduce the likelihood it happens, since this sort of issues has happened with other prctls. But If this is perceived as a backporting burden, I suppose we could also live without a stable backport. Link: https://lkml.kernel.org/r/20230828150858.393570-5-revest@chromium.org Fixes: b507808ebce2 ("mm: implement memory-deny-write-execute as a prctl") Signed-off-by: Florent Revest <revest@chromium.org> Suggested-by: Alexey Izbyshev <izbyshev@ispras.ru> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ayush Jain <ayush.jain3@amd.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: KP Singh <kpsingh@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Szabolcs Nagy <Szabolcs.Nagy@arm.com> Cc: Topi Miettinen <toiwoton@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-08riscv: Add prctl controls for userspace vector managementAndy Chiu
This patch add two riscv-specific prctls, to allow usespace control the use of vector unit: * PR_RISCV_V_SET_CONTROL: control the permission to use Vector at next, or all following execve for a thread. Turning off a thread's Vector live is not possible since libraries may have registered ifunc that may execute Vector instructions. * PR_RISCV_V_GET_CONTROL: get the same permission setting for the current thread, and the setting for following execve(s). Signed-off-by: Andy Chiu <andy.chiu@sifive.com> Reviewed-by: Greentime Hu <greentime.hu@sifive.com> Reviewed-by: Vincent Chen <vincent.chen@sifive.com> Link: https://lore.kernel.org/r/20230605110724.21391-22-andy.chiu@sifive.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-04-21mm: add new api to enable ksm per processStefan Roesch
Patch series "mm: process/cgroup ksm support", v9. So far KSM can only be enabled by calling madvise for memory regions. To be able to use KSM for more workloads, KSM needs to have the ability to be enabled / disabled at the process / cgroup level. Use case 1: The madvise call is not available in the programming language. An example for this are programs with forked workloads using a garbage collected language without pointers. In such a language madvise cannot be made available. In addition the addresses of objects get moved around as they are garbage collected. KSM sharing needs to be enabled "from the outside" for these type of workloads. Use case 2: The same interpreter can also be used for workloads where KSM brings no benefit or even has overhead. We'd like to be able to enable KSM on a workload by workload basis. Use case 3: With the madvise call sharing opportunities are only enabled for the current process: it is a workload-local decision. A considerable number of sharing opportunities may exist across multiple workloads or jobs (if they are part of the same security domain). Only a higler level entity like a job scheduler or container can know for certain if its running one or more instances of a job. That job scheduler however doesn't have the necessary internal workload knowledge to make targeted madvise calls. Security concerns: In previous discussions security concerns have been brought up. The problem is that an individual workload does not have the knowledge about what else is running on a machine. Therefore it has to be very conservative in what memory areas can be shared or not. However, if the system is dedicated to running multiple jobs within the same security domain, its the job scheduler that has the knowledge that sharing can be safely enabled and is even desirable. Performance: Experiments with using UKSM have shown a capacity increase of around 20%. Here are the metrics from an instagram workload (taken from a machine with 64GB main memory): full_scans: 445 general_profit: 20158298048 max_page_sharing: 256 merge_across_nodes: 1 pages_shared: 129547 pages_sharing: 5119146 pages_to_scan: 4000 pages_unshared: 1760924 pages_volatile: 10761341 run: 1 sleep_millisecs: 20 stable_node_chains: 167 stable_node_chains_prune_millisecs: 2000 stable_node_dups: 2751 use_zero_pages: 0 zero_pages_sharing: 0 After the service is running for 30 minutes to an hour, 4 to 5 million shared pages are common for this workload when using KSM. Detailed changes: 1. New options for prctl system command This patch series adds two new options to the prctl system call. The first one allows to enable KSM at the process level and the second one to query the setting. The setting will be inherited by child processes. With the above setting, KSM can be enabled for the seed process of a cgroup and all processes in the cgroup will inherit the setting. 2. Changes to KSM processing When KSM is enabled at the process level, the KSM code will iterate over all the VMA's and enable KSM for the eligible VMA's. When forking a process that has KSM enabled, the setting will be inherited by the new child process. 3. Add general_profit metric The general_profit metric of KSM is specified in the documentation, but not calculated. This adds the general profit metric to /sys/kernel/debug/mm/ksm. 4. Add more metrics to ksm_stat This adds the process profit metric to /proc/<pid>/ksm_stat. 5. Add more tests to ksm_tests and ksm_functional_tests This adds an option to specify the merge type to the ksm_tests. This allows to test madvise and prctl KSM. It also adds a two new tests to ksm_functional_tests: one to test the new prctl options and the other one is a fork test to verify that the KSM process setting is inherited by client processes. This patch (of 3): So far KSM can only be enabled by calling madvise for memory regions. To be able to use KSM for more workloads, KSM needs to have the ability to be enabled / disabled at the process / cgroup level. 1. New options for prctl system command This patch series adds two new options to the prctl system call. The first one allows to enable KSM at the process level and the second one to query the setting. The setting will be inherited by child processes. With the above setting, KSM can be enabled for the seed process of a cgroup and all processes in the cgroup will inherit the setting. 2. Changes to KSM processing When KSM is enabled at the process level, the KSM code will iterate over all the VMA's and enable KSM for the eligible VMA's. When forking a process that has KSM enabled, the setting will be inherited by the new child process. 1) Introduce new MMF_VM_MERGE_ANY flag This introduces the new flag MMF_VM_MERGE_ANY flag. When this flag is set, kernel samepage merging (ksm) gets enabled for all vma's of a process. 2) Setting VM_MERGEABLE on VMA creation When a VMA is created, if the MMF_VM_MERGE_ANY flag is set, the VM_MERGEABLE flag will be set for this VMA. 3) support disabling of ksm for a process This adds the ability to disable ksm for a process if ksm has been enabled for the process with prctl. 4) add new prctl option to get and set ksm for a process This adds two new options to the prctl system call - enable ksm for all vmas of a process (if the vmas support it). - query if ksm has been enabled for a process. 3. Disabling MMF_VM_MERGE_ANY for storage keys in s390 In the s390 architecture when storage keys are used, the MMF_VM_MERGE_ANY will be disabled. Link: https://lkml.kernel.org/r/20230418051342.1919757-1-shr@devkernel.io Link: https://lkml.kernel.org/r/20230418051342.1919757-2-shr@devkernel.io Signed-off-by: Stefan Roesch <shr@devkernel.io> Acked-by: David Hildenbrand <david@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Bagas Sanjaya <bagasdotme@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18prctl: add PR_GET_AUXV to copy auxv to userspaceJosh Triplett
If a library wants to get information from auxv (for instance, AT_HWCAP/AT_HWCAP2), it has a few options, none of them perfectly reliable or ideal: - Be main or the pre-main startup code, and grub through the stack above main. Doesn't work for a library. - Call libc getauxval. Not ideal for libraries that are trying to be libc-independent and/or don't otherwise require anything from other libraries. - Open and read /proc/self/auxv. Doesn't work for libraries that may run in arbitrarily constrained environments that may not have /proc mounted (e.g. libraries that might be used by an init program or a container setup tool). - Assume you're on the main thread and still on the original stack, and try to walk the stack upwards, hoping to find auxv. Extremely bad idea. - Ask the caller to pass auxv in for you. Not ideal for a user-friendly library, and then your caller may have the same problem. Add a prctl that copies current->mm->saved_auxv to a userspace buffer. Link: https://lkml.kernel.org/r/d81864a7f7f43bca6afa2a09fc2e850e4050ab42.1680611394.git.josh@joshtriplett.org Signed-off-by: Josh Triplett <josh@joshtriplett.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-02mm: implement memory-deny-write-execute as a prctlJoey Gouly
Patch series "mm: In-kernel support for memory-deny-write-execute (MDWE)", v2. The background to this is that systemd has a configuration option called MemoryDenyWriteExecute [2], implemented as a SECCOMP BPF filter. Its aim is to prevent a user task from inadvertently creating an executable mapping that is (or was) writeable. Since such BPF filter is stateless, it cannot detect mappings that were previously writeable but subsequently changed to read-only. Therefore the filter simply rejects any mprotect(PROT_EXEC). The side-effect is that on arm64 with BTI support (Branch Target Identification), the dynamic loader cannot change an ELF section from PROT_EXEC to PROT_EXEC|PROT_BTI using mprotect(). For libraries, it can resort to unmapping and re-mapping but for the main executable it does not have a file descriptor. The original bug report in the Red Hat bugzilla - [3] - and subsequent glibc workaround for libraries - [4]. This series adds in-kernel support for this feature as a prctl PR_SET_MDWE, that is inherited on fork(). The prctl denies PROT_WRITE | PROT_EXEC mappings. Like the systemd BPF filter it also denies adding PROT_EXEC to mappings. However unlike the BPF filter it only denies it if the mapping didn't previous have PROT_EXEC. This allows to PROT_EXEC -> PROT_EXEC | PROT_BTI with mprotect(), which is a problem with the BPF filter. This patch (of 2): The aim of such policy is to prevent a user task from creating an executable mapping that is also writeable. An example of mmap() returning -EACCESS if the policy is enabled: mmap(0, size, PROT_READ | PROT_WRITE | PROT_EXEC, flags, 0, 0); Similarly, mprotect() would return -EACCESS below: addr = mmap(0, size, PROT_READ | PROT_EXEC, flags, 0, 0); mprotect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC); The BPF filter that systemd MDWE uses is stateless, and disallows mprotect() with PROT_EXEC completely. This new prctl allows PROT_EXEC to be enabled if it was already PROT_EXEC, which allows the following case: addr = mmap(0, size, PROT_READ | PROT_EXEC, flags, 0, 0); mprotect(addr, size, PROT_READ | PROT_EXEC | PROT_BTI); where PROT_BTI enables branch tracking identification on arm64. Link: https://lkml.kernel.org/r/20230119160344.54358-1-joey.gouly@arm.com Link: https://lkml.kernel.org/r/20230119160344.54358-2-joey.gouly@arm.com Signed-off-by: Joey Gouly <joey.gouly@arm.com> Co-developed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Jeremy Linton <jeremy.linton@arm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Lennart Poettering <lennart@poettering.net> Cc: Mark Brown <broonie@kernel.org> Cc: nd <nd@arm.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Szabolcs Nagy <szabolcs.nagy@arm.com> Cc: Topi Miettinen <toiwoton@gmail.com> Cc: Zbigniew Jędrzejewski-Szmek <zbyszek@in.waw.pl> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-22arm64/sme: Implement vector length configuration prctl()sMark Brown
As for SVE provide a prctl() interface which allows processes to configure their SME vector length. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20220419112247.711548-12-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2022-01-15mm: add a field to store names for private anonymous memoryColin Cross
In many userspace applications, and especially in VM based applications like Android uses heavily, there are multiple different allocators in use. At a minimum there is libc malloc and the stack, and in many cases there are libc malloc, the stack, direct syscalls to mmap anonymous memory, and multiple VM heaps (one for small objects, one for big objects, etc.). Each of these layers usually has its own tools to inspect its usage; malloc by compiling a debug version, the VM through heap inspection tools, and for direct syscalls there is usually no way to track them. On Android we heavily use a set of tools that use an extended version of the logic covered in Documentation/vm/pagemap.txt to walk all pages mapped in userspace and slice their usage by process, shared (COW) vs. unique mappings, backing, etc. This can account for real physical memory usage even in cases like fork without exec (which Android uses heavily to share as many private COW pages as possible between processes), Kernel SamePage Merging, and clean zero pages. It produces a measurement of the pages that only exist in that process (USS, for unique), and a measurement of the physical memory usage of that process with the cost of shared pages being evenly split between processes that share them (PSS). If all anonymous memory is indistinguishable then figuring out the real physical memory usage (PSS) of each heap requires either a pagemap walking tool that can understand the heap debugging of every layer, or for every layer's heap debugging tools to implement the pagemap walking logic, in which case it is hard to get a consistent view of memory across the whole system. Tracking the information in userspace leads to all sorts of problems. It either needs to be stored inside the process, which means every process has to have an API to export its current heap information upon request, or it has to be stored externally in a filesystem that somebody needs to clean up on crashes. It needs to be readable while the process is still running, so it has to have some sort of synchronization with every layer of userspace. Efficiently tracking the ranges requires reimplementing something like the kernel vma trees, and linking to it from every layer of userspace. It requires more memory, more syscalls, more runtime cost, and more complexity to separately track regions that the kernel is already tracking. This patch adds a field to /proc/pid/maps and /proc/pid/smaps to show a userspace-provided name for anonymous vmas. The names of named anonymous vmas are shown in /proc/pid/maps and /proc/pid/smaps as [anon:<name>]. Userspace can set the name for a region of memory by calling prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, start, len, (unsigned long)name) Setting the name to NULL clears it. The name length limit is 80 bytes including NUL-terminator and is checked to contain only printable ascii characters (including space), except '[',']','\','$' and '`'. Ascii strings are being used to have a descriptive identifiers for vmas, which can be understood by the users reading /proc/pid/maps or /proc/pid/smaps. Names can be standardized for a given system and they can include some variable parts such as the name of the allocator or a library, tid of the thread using it, etc. The name is stored in a pointer in the shared union in vm_area_struct that points to a null terminated string. Anonymous vmas with the same name (equivalent strings) and are otherwise mergeable will be merged. The name pointers are not shared between vmas even if they contain the same name. The name pointer is stored in a union with fields that are only used on file-backed mappings, so it does not increase memory usage. CONFIG_ANON_VMA_NAME kernel configuration is introduced to enable this feature. It keeps the feature disabled by default to prevent any additional memory overhead and to avoid confusing procfs parsers on systems which are not ready to support named anonymous vmas. The patch is based on the original patch developed by Colin Cross, more specifically on its latest version [1] posted upstream by Sumit Semwal. It used a userspace pointer to store vma names. In that design, name pointers could be shared between vmas. However during the last upstreaming attempt, Kees Cook raised concerns [2] about this approach and suggested to copy the name into kernel memory space, perform validity checks [3] and store as a string referenced from vm_area_struct. One big concern is about fork() performance which would need to strdup anonymous vma names. Dave Hansen suggested experimenting with worst-case scenario of forking a process with 64k vmas having longest possible names [4]. I ran this experiment on an ARM64 Android device and recorded a worst-case regression of almost 40% when forking such a process. This regression is addressed in the followup patch which replaces the pointer to a name with a refcounted structure that allows sharing the name pointer between vmas of the same name. Instead of duplicating the string during fork() or when splitting a vma it increments the refcount. [1] https://lore.kernel.org/linux-mm/20200901161459.11772-4-sumit.semwal@linaro.org/ [2] https://lore.kernel.org/linux-mm/202009031031.D32EF57ED@keescook/ [3] https://lore.kernel.org/linux-mm/202009031022.3834F692@keescook/ [4] https://lore.kernel.org/linux-mm/5d0358ab-8c47-2f5f-8e43-23b89d6a8e95@intel.com/ Changes for prctl(2) manual page (in the options section): PR_SET_VMA Sets an attribute specified in arg2 for virtual memory areas starting from the address specified in arg3 and spanning the size specified in arg4. arg5 specifies the value of the attribute to be set. Note that assigning an attribute to a virtual memory area might prevent it from being merged with adjacent virtual memory areas due to the difference in that attribute's value. Currently, arg2 must be one of: PR_SET_VMA_ANON_NAME Set a name for anonymous virtual memory areas. arg5 should be a pointer to a null-terminated string containing the name. The name length including null byte cannot exceed 80 bytes. If arg5 is NULL, the name of the appropriate anonymous virtual memory areas will be reset. The name can contain only printable ascii characters (including space), except '[',']','\','$' and '`'. This feature is available only if the kernel is built with the CONFIG_ANON_VMA_NAME option enabled. [surenb@google.com: docs: proc.rst: /proc/PID/maps: fix malformed table] Link: https://lkml.kernel.org/r/20211123185928.2513763-1-surenb@google.com [surenb: rebased over v5.15-rc6, replaced userpointer with a kernel copy, added input sanitization and CONFIG_ANON_VMA_NAME config. The bulk of the work here was done by Colin Cross, therefore, with his permission, keeping him as the author] Link: https://lkml.kernel.org/r/20211019215511.3771969-2-surenb@google.com Signed-off-by: Colin Cross <ccross@google.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jan Glauber <jan.glauber@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rob Landley <rob@landley.net> Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com> Cc: Shaohua Li <shli@fusionio.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-10Merge tag 'kernel.sys.v5.16' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull prctl updates from Christian Brauner: "This contains the missing prctl uapi pieces for PR_SCHED_CORE. In order to activate core scheduling the caller is expected to specify the scope of the new core scheduling domain. For example, passing 2 in the 4th argument of prctl(PR_SCHED_CORE, PR_SCHED_CORE_CREATE, <pid>, 2, 0); would indicate that the new core scheduling domain encompasses all tasks in the process group of <pid>. Specifying 0 would only create a core scheduling domain for the thread identified by <pid> and 2 would encompass the whole thread-group of <pid>. Note, the values 0, 1, and 2 correspond to PIDTYPE_PID, PIDTYPE_TGID, and PIDTYPE_PGID. A first version tried to expose those values directly to which I objected because: - PIDTYPE_* is an enum that is kernel internal which we should not expose to userspace directly. - PIDTYPE_* indicates what a given struct pid is used for it doesn't express a scope. But what the 4th argument of PR_SCHED_CORE prctl() expresses is the scope of the operation, i.e. the scope of the core scheduling domain at creation time. So Eugene's patch now simply introduces three new defines PR_SCHED_CORE_SCOPE_THREAD, PR_SCHED_CORE_SCOPE_THREAD_GROUP, and PR_SCHED_CORE_SCOPE_PROCESS_GROUP. They simply express what happens. This has been on the mailing list for quite a while with all relevant scheduler folks Cced. I announced multiple times that I'd pick this up if I don't see or her anyone else doing it. None of this touches proper scheduler code but only concerns uapi so I think this is fine. With core scheduling being quite common now for vm managers (e.g. moving individual vcpu threads into their own core scheduling domain) and container managers (e.g. moving the init process into its own core scheduling domain and letting all created children inherit it) having to rely on raw numbers passed as the 4th argument in prctl() is a bit annoying and everyone is starting to come up with their own defines" * tag 'kernel.sys.v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: uapi/linux/prctl: provide macro definitions for the PR_SCHED_CORE type argument
2021-11-08arm64: mte: change PR_MTE_TCF_NONE back into an unsigned longPeter Collingbourne
This constant was previously an unsigned long, but was changed into an int in commit 433c38f40f6a ("arm64: mte: change ASYNC and SYNC TCF settings into bitfields"). This ended up causing spurious unsigned-signed comparison warnings in expressions such as: (x & PR_MTE_TCF_MASK) != PR_MTE_TCF_NONE Therefore, change it back into an unsigned long to silence these warnings. Link: https://linux-review.googlesource.com/id/I07a72310db30227a5b7d789d0b817d78b657c639 Signed-off-by: Peter Collingbourne <pcc@google.com> Link: https://lore.kernel.org/r/20211105230829.2254790-1-pcc@google.com Signed-off-by: Will Deacon <will@kernel.org>
2021-09-29uapi/linux/prctl: provide macro definitions for the PR_SCHED_CORE type argumentEugene Syromiatnikov
Commit 7ac592aa35a684ff ("sched: prctl() core-scheduling interface") made use of enum pid_type in prctl's arg4; this type and the associated enumeration definitions are not exposed to userspace. Christian has suggested to provide additional macro definitions that convey the meaning of the type argument more in alignment with its actual usage, and this patch does exactly that. Link: https://lore.kernel.org/r/20210825170613.GA3884@asgard.redhat.com Suggested-by: Christian Brauner <christian.brauner@ubuntu.com> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Eugene Syromiatnikov <esyr@redhat.com> Complements: 7ac592aa35a684ff ("sched: prctl() core-scheduling interface") Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-09-01Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - Support for 32-bit tasks on asymmetric AArch32 systems (on top of the scheduler changes merged via the tip tree). - More entry.S clean-ups and conversion to C. - MTE updates: allow a preferred tag checking mode to be set per CPU (the overhead of synchronous mode is smaller for some CPUs than others); optimisations for kernel entry/exit path; optionally disable MTE on the kernel command line. - Kselftest improvements for SVE and signal handling, PtrAuth. - Fix unlikely race where a TLBI could use stale ASID on an ASID roll-over (found by inspection). - Miscellaneous fixes: disable trapping of PMSNEVFR_EL1 to higher exception levels; drop unnecessary sigdelsetmask() call in the signal32 handling; remove BUG_ON when failing to allocate SVE state (just signal the process); SYM_CODE annotations. - Other trivial clean-ups: use macros instead of magic numbers, remove redundant returns, typos. * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (56 commits) arm64: Do not trap PMSNEVFR_EL1 arm64: mm: fix comment typo of pud_offset_phys() arm64: signal32: Drop pointless call to sigdelsetmask() arm64/sve: Better handle failure to allocate SVE register storage arm64: Document the requirement for SCR_EL3.HCE arm64: head: avoid over-mapping in map_memory arm64/sve: Add a comment documenting the binutils needed for SVE asm arm64/sve: Add some comments for sve_save/load_state() kselftest/arm64: signal: Add a TODO list for signal handling tests kselftest/arm64: signal: Add test case for SVE register state in signals kselftest/arm64: signal: Verify that signals can't change the SVE vector length kselftest/arm64: signal: Check SVE signal frame shows expected vector length kselftest/arm64: signal: Support signal frames with SVE register data kselftest/arm64: signal: Add SVE to the set of features we can check for arm64: replace in_irq() with in_hardirq() kselftest/arm64: pac: Fix skipping of tests on systems without PAC Documentation: arm64: describe asymmetric 32-bit support arm64: Remove logic to kill 32-bit tasks on 64-bit-only cores arm64: Hook up cmdline parameter to allow mismatched 32-bit EL0 arm64: Advertise CPUs capable of running 32-bit applications in sysfs ...
2021-07-28arm64: mte: change ASYNC and SYNC TCF settings into bitfieldsPeter Collingbourne
Allow the user program to specify both ASYNC and SYNC TCF modes by repurposing the existing constants as bitfields. This will allow the kernel to select one of the modes on behalf of the user program. With this patch the kernel will always select async mode, but a subsequent patch will make this configurable. Link: https://linux-review.googlesource.com/id/Icc5923c85a8ea284588cc399ae74fd19ec291230 Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20210727205300.2554659-3-pcc@google.com Acked-by: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-07-28x86, prctl: Hook L1D flushing in via prctlBalbir Singh
Use the existing PR_GET/SET_SPECULATION_CTRL API to expose the L1D flush capability. For L1D flushing PR_SPEC_FORCE_DISABLE and PR_SPEC_DISABLE_NOEXEC are not supported. Enabling L1D flush does not check if the task is running on an SMT enabled core, rather a check is done at runtime (at the time of flush), if the task runs on a SMT sibling then the task is sent a SIGBUS which is executed before the task returns to user space or to a guest. This is better than the other alternatives of: a. Ensuring strict affinity of the task (hard to enforce without further changes in the scheduler) b. Silently skipping flush for tasks that move to SMT enabled cores. Hook up the core prctl and implement the x86 specific parts which in turn makes it functional. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Balbir Singh <sblbir@amazon.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210108121056.21940-5-sblbir@amazon.com
2021-05-12sched: prctl() core-scheduling interfaceChris Hyser
This patch provides support for setting and copying core scheduling 'task cookies' between threads (PID), processes (TGID), and process groups (PGID). The value of core scheduling isn't that tasks don't share a core, 'nosmt' can do that. The value lies in exploiting all the sharing opportunities that exist to recover possible lost performance and that requires a degree of flexibility in the API. From a security perspective (and there are others), the thread, process and process group distinction is an existent hierarchal categorization of tasks that reflects many of the security concerns about 'data sharing'. For example, protecting against cache-snooping by a thread that can just read the memory directly isn't all that useful. With this in mind, subcommands to CREATE/SHARE (TO/FROM) provide a mechanism to create and share cookies. CREATE/SHARE_TO specify a target pid with enum pidtype used to specify the scope of the targeted tasks. For example, PIDTYPE_TGID will share the cookie with the process and all of it's threads as typically desired in a security scenario. API: prctl(PR_SCHED_CORE, PR_SCHED_CORE_GET, tgtpid, pidtype, &cookie) prctl(PR_SCHED_CORE, PR_SCHED_CORE_CREATE, tgtpid, pidtype, NULL) prctl(PR_SCHED_CORE, PR_SCHED_CORE_SHARE_TO, tgtpid, pidtype, NULL) prctl(PR_SCHED_CORE, PR_SCHED_CORE_SHARE_FROM, srcpid, pidtype, NULL) where 'tgtpid/srcpid == 0' implies the current process and pidtype is kernel enum pid_type {PIDTYPE_PID, PIDTYPE_TGID, PIDTYPE_PGID, ...}. For return values, EINVAL, ENOMEM are what they say. ESRCH means the tgtpid/srcpid was not found. EPERM indicates lack of PTRACE permission access to tgtpid/srcpid. ENODEV indicates your machines lacks SMT. [peterz: complete rewrite] Signed-off-by: Chris Hyser <chris.hyser@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Don Hiatt <dhiatt@digitalocean.com> Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210422123309.039845339@infradead.org
2021-04-13arm64: Introduce prctl(PR_PAC_{SET,GET}_ENABLED_KEYS)Peter Collingbourne
This change introduces a prctl that allows the user program to control which PAC keys are enabled in a particular task. The main reason why this is useful is to enable a userspace ABI that uses PAC to sign and authenticate function pointers and other pointers exposed outside of the function, while still allowing binaries conforming to the ABI to interoperate with legacy binaries that do not sign or authenticate pointers. The idea is that a dynamic loader or early startup code would issue this prctl very early after establishing that a process may load legacy binaries, but before executing any PAC instructions. This change adds a small amount of overhead to kernel entry and exit due to additional required instruction sequences. On a DragonBoard 845c (Cortex-A75) with the powersave governor, the overhead of similar instruction sequences was measured as 4.9ns when simulating the common case where IA is left enabled, or 43.7ns when simulating the uncommon case where IA is disabled. These numbers can be seen as the worst case scenario, since in more realistic scenarios a better performing governor would be used and a newer chip would be used that would support PAC unlike Cortex-A75 and would be expected to be faster than Cortex-A75. On an Apple M1 under a hypervisor, the overhead of the entry/exit instruction sequences introduced by this patch was measured as 0.3ns in the case where IA is left enabled, and 33.0ns in the case where IA is disabled. Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Dave Martin <Dave.Martin@arm.com> Link: https://linux-review.googlesource.com/id/Ibc41a5e6a76b275efbaa126b31119dc197b927a5 Link: https://lore.kernel.org/r/d6609065f8f40397a4124654eb68c9f490b4d477.1616123271.git.pcc@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-02-06entry: Use different define for selector variable in SUDGabriel Krisman Bertazi
Michael Kerrisk suggested that, from an API perspective, it is a bad idea to share the PR_SYS_DISPATCH_ defines between the prctl operation and the selector variable. Therefore, define two new constants to be used by SUD's selector variable and update the corresponding documentation and test cases. While this changes the API syscall user dispatch has never been part of a Linux release, it will show up for the first time in 5.11. Suggested-by: Michael Kerrisk (man-pages) <mtk.manpages@gmail.com> Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210205184321.2062251-1-krisman@collabora.com
2020-12-02kernel: Implement selective syscall userspace redirectionGabriel Krisman Bertazi
Introduce a mechanism to quickly disable/enable syscall handling for a specific process and redirect to userspace via SIGSYS. This is useful for processes with parts that require syscall redirection and parts that don't, but who need to perform this boundary crossing really fast, without paying the cost of a system call to reconfigure syscall handling on each boundary transition. This is particularly important for Windows games running over Wine. The proposed interface looks like this: prctl(PR_SET_SYSCALL_USER_DISPATCH, <op>, <off>, <length>, [selector]) The range [<offset>,<offset>+<length>) is a part of the process memory map that is allowed to by-pass the redirection code and dispatch syscalls directly, such that in fast paths a process doesn't need to disable the trap nor the kernel has to check the selector. This is essential to return from SIGSYS to a blocked area without triggering another SIGSYS from rt_sigreturn. selector is an optional pointer to a char-sized userspace memory region that has a key switch for the mechanism. This key switch is set to either PR_SYS_DISPATCH_ON, PR_SYS_DISPATCH_OFF to enable and disable the redirection without calling the kernel. The feature is meant to be set per-thread and it is disabled on fork/clone/execv. Internally, this doesn't add overhead to the syscall hot path, and it requires very little per-architecture support. I avoided using seccomp, even though it duplicates some functionality, due to previous feedback that maybe it shouldn't mix with seccomp since it is not a security mechanism. And obviously, this should never be considered a security mechanism, since any part of the program can by-pass it by using the syscall dispatcher. For the sysinfo benchmark, which measures the overhead added to executing a native syscall that doesn't require interception, the overhead using only the direct dispatcher region to issue syscalls is pretty much irrelevant. The overhead of using the selector goes around 40ns for a native (unredirected) syscall in my system, and it is (as expected) dominated by the supervisor-mode user-address access. In fact, with SMAP off, the overhead is consistently less than 5ns on my test box. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20201127193238.821364-4-krisman@collabora.com
2020-09-04arm64: mte: Allow user control of the generated random tags via prctl()Catalin Marinas
The IRG, ADDG and SUBG instructions insert a random tag in the resulting address. Certain tags can be excluded via the GCR_EL1.Exclude bitmap when, for example, the user wants a certain colour for freed buffers. Since the GCR_EL1 register is not accessible at EL0, extend the prctl(PR_SET_TAGGED_ADDR_CTRL) interface to include a 16-bit field in the first argument for controlling which tags can be generated by the above instruction (an include rather than exclude mask). Note that by default all non-zero tags are excluded. This setting is per-thread. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org>
2020-09-04arm64: mte: Allow user control of the tag check mode via prctl()Catalin Marinas
By default, even if PROT_MTE is set on a memory range, there is no tag check fault reporting (SIGSEGV). Introduce a set of option to the exiting prctl(PR_SET_TAGGED_ADDR_CTRL) to allow user control of the tag check fault mode: PR_MTE_TCF_NONE - no reporting (default) PR_MTE_TCF_SYNC - synchronous tag check fault reporting PR_MTE_TCF_ASYNC - asynchronous tag check fault reporting These options translate into the corresponding SCTLR_EL1.TCF0 bitfield, context-switched by the kernel. Note that the kernel accesses to the user address space (e.g. read() system call) are not checked if the user thread tag checking mode is PR_MTE_TCF_NONE or PR_MTE_TCF_ASYNC. If the tag checking mode is PR_MTE_TCF_SYNC, the kernel makes a best effort to check its user address accesses, however it cannot always guarantee it. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org>
2020-01-28prctl: PR_{G,S}ET_IO_FLUSHER to support controlling memory reclaimMike Christie
There are several storage drivers like dm-multipath, iscsi, tcmu-runner, amd nbd that have userspace components that can run in the IO path. For example, iscsi and nbd's userspace deamons may need to recreate a socket and/or send IO on it, and dm-multipath's daemon multipathd may need to send SG IO or read/write IO to figure out the state of paths and re-set them up. In the kernel these drivers have access to GFP_NOIO/GFP_NOFS and the memalloc_*_save/restore functions to control the allocation behavior, but for userspace we would end up hitting an allocation that ended up writing data back to the same device we are trying to allocate for. The device is then in a state of deadlock, because to execute IO the device needs to allocate memory, but to allocate memory the memory layers want execute IO to the device. Here is an example with nbd using a local userspace daemon that performs network IO to a remote server. We are using XFS on top of the nbd device, but it can happen with any FS or other modules layered on top of the nbd device that can write out data to free memory. Here a nbd daemon helper thread, msgr-worker-1, is performing a write/sendmsg on a socket to execute a request. This kicks off a reclaim operation which results in a WRITE to the nbd device and the nbd thread calling back into the mm layer. [ 1626.609191] msgr-worker-1 D 0 1026 1 0x00004000 [ 1626.609193] Call Trace: [ 1626.609195] ? __schedule+0x29b/0x630 [ 1626.609197] ? wait_for_completion+0xe0/0x170 [ 1626.609198] schedule+0x30/0xb0 [ 1626.609200] schedule_timeout+0x1f6/0x2f0 [ 1626.609202] ? blk_finish_plug+0x21/0x2e [ 1626.609204] ? _xfs_buf_ioapply+0x2e6/0x410 [ 1626.609206] ? wait_for_completion+0xe0/0x170 [ 1626.609208] wait_for_completion+0x108/0x170 [ 1626.609210] ? wake_up_q+0x70/0x70 [ 1626.609212] ? __xfs_buf_submit+0x12e/0x250 [ 1626.609214] ? xfs_bwrite+0x25/0x60 [ 1626.609215] xfs_buf_iowait+0x22/0xf0 [ 1626.609218] __xfs_buf_submit+0x12e/0x250 [ 1626.609220] xfs_bwrite+0x25/0x60 [ 1626.609222] xfs_reclaim_inode+0x2e8/0x310 [ 1626.609224] xfs_reclaim_inodes_ag+0x1b6/0x300 [ 1626.609227] xfs_reclaim_inodes_nr+0x31/0x40 [ 1626.609228] super_cache_scan+0x152/0x1a0 [ 1626.609231] do_shrink_slab+0x12c/0x2d0 [ 1626.609233] shrink_slab+0x9c/0x2a0 [ 1626.609235] shrink_node+0xd7/0x470 [ 1626.609237] do_try_to_free_pages+0xbf/0x380 [ 1626.609240] try_to_free_pages+0xd9/0x1f0 [ 1626.609245] __alloc_pages_slowpath+0x3a4/0xd30 [ 1626.609251] ? ___slab_alloc+0x238/0x560 [ 1626.609254] __alloc_pages_nodemask+0x30c/0x350 [ 1626.609259] skb_page_frag_refill+0x97/0xd0 [ 1626.609274] sk_page_frag_refill+0x1d/0x80 [ 1626.609279] tcp_sendmsg_locked+0x2bb/0xdd0 [ 1626.609304] tcp_sendmsg+0x27/0x40 [ 1626.609307] sock_sendmsg+0x54/0x60 [ 1626.609308] ___sys_sendmsg+0x29f/0x320 [ 1626.609313] ? sock_poll+0x66/0xb0 [ 1626.609318] ? ep_item_poll.isra.15+0x40/0xc0 [ 1626.609320] ? ep_send_events_proc+0xe6/0x230 [ 1626.609322] ? hrtimer_try_to_cancel+0x54/0xf0 [ 1626.609324] ? ep_read_events_proc+0xc0/0xc0 [ 1626.609326] ? _raw_write_unlock_irq+0xa/0x20 [ 1626.609327] ? ep_scan_ready_list.constprop.19+0x218/0x230 [ 1626.609329] ? __hrtimer_init+0xb0/0xb0 [ 1626.609331] ? _raw_spin_unlock_irq+0xa/0x20 [ 1626.609334] ? ep_poll+0x26c/0x4a0 [ 1626.609337] ? tcp_tsq_write.part.54+0xa0/0xa0 [ 1626.609339] ? release_sock+0x43/0x90 [ 1626.609341] ? _raw_spin_unlock_bh+0xa/0x20 [ 1626.609342] __sys_sendmsg+0x47/0x80 [ 1626.609347] do_syscall_64+0x5f/0x1c0 [ 1626.609349] ? prepare_exit_to_usermode+0x75/0xa0 [ 1626.609351] entry_SYSCALL_64_after_hwframe+0x44/0xa9 This patch adds a new prctl command that daemons can use after they have done their initial setup, and before they start to do allocations that are in the IO path. It sets the PF_MEMALLOC_NOIO and PF_LESS_THROTTLE flags so both userspace block and FS threads can use it to avoid the allocation recursion and try to prevent from being throttled while writing out data to free up memory. Signed-off-by: Mike Christie <mchristi@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Tested-by: Masato Suzuki <masato.suzuki@wdc.com> Reviewed-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Link: https://lore.kernel.org/r/20191112001900.9206-1-mchristi@redhat.com Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2019-09-16Merge branch 'x86-cpu-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpu-feature updates from Ingo Molnar: - Rework the Intel model names symbols/macros, which were decades of ad-hoc extensions and added random noise. It's now a coherent, easy to follow nomenclature. - Add new Intel CPU model IDs: - "Tiger Lake" desktop and mobile models - "Elkhart Lake" model ID - and the "Lightning Mountain" variant of Airmont, plus support code - Add the new AVX512_VP2INTERSECT instruction to cpufeatures - Remove Intel MPX user-visible APIs and the self-tests, because the toolchain (gcc) is not supporting it going forward. This is the first, lowest-risk phase of MPX removal. - Remove X86_FEATURE_MFENCE_RDTSC - Various smaller cleanups and fixes * 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits) x86/cpu: Update init data for new Airmont CPU model x86/cpu: Add new Airmont variant to Intel family x86/cpu: Add Elkhart Lake to Intel family x86/cpu: Add Tiger Lake to Intel family x86: Correct misc typos x86/intel: Add common OPTDIFFs x86/intel: Aggregate microserver naming x86/intel: Aggregate big core graphics naming x86/intel: Aggregate big core mobile naming x86/intel: Aggregate big core client naming x86/cpufeature: Explain the macro duplication x86/ftrace: Remove mcount() declaration x86/PCI: Remove superfluous returns from void functions x86/msr-index: Move AMD MSRs where they belong x86/cpu: Use constant definitions for CPU models lib: Remove redundant ftrace flag removal x86/crash: Remove unnecessary comparison x86/bitops: Use __builtin_constant_p() directly instead of IS_IMMEDIATE() x86: Remove X86_FEATURE_MFENCE_RDTSC x86/mpx: Remove MPX APIs ...
2019-08-06arm64: Introduce prctl() options to control the tagged user addresses ABICatalin Marinas
It is not desirable to relax the ABI to allow tagged user addresses into the kernel indiscriminately. This patch introduces a prctl() interface for enabling or disabling the tagged ABI with a global sysctl control for preventing applications from enabling the relaxed ABI (meant for testing user-space prctl() return error checking without reconfiguring the kernel). The ABI properties are inherited by threads of the same application and fork()'ed children but cleared on execve(). A Kconfig option allows the overall disabling of the relaxed ABI. The PR_SET_TAGGED_ADDR_CTRL will be expanded in the future to handle MTE-specific settings like imprecise vs precise exceptions. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Will Deacon <will@kernel.org>
2019-07-22x86/mpx: Remove MPX APIsDave Hansen
MPX is being removed from the kernel due to a lack of support in the toolchain going forward (gcc). The first step is to remove the userspace-visible ABIs so that applications will stop using it. The most visible one are the enable/disable prctl()s. Remove them first. This is the most minimal and least invasive change needed to ensure that apps stop using MPX with new kernels. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190705175321.DB42F0AD@viggo.jf.intel.com
2019-01-29x86/speculation: Add PR_SPEC_DISABLE_NOEXECWaiman Long
With the default SPEC_STORE_BYPASS_SECCOMP/SPEC_STORE_BYPASS_PRCTL mode, the TIF_SSBD bit will be inherited when a new task is fork'ed or cloned. It will also remain when a new program is execve'ed. Only certain class of applications (like Java) that can run on behalf of multiple users on a single thread will require disabling speculative store bypass for security purposes. Those applications will call prctl(2) at startup time to disable SSB. They won't rely on the fact the SSB might have been disabled. Other applications that don't need SSBD will just move on without checking if SSBD has been turned on or not. The fact that the TIF_SSBD is inherited across execve(2) boundary will cause performance of applications that don't need SSBD but their predecessors have SSBD on to be unwittingly impacted especially if they write to memory a lot. To remedy this problem, a new PR_SPEC_DISABLE_NOEXEC argument for the PR_SET_SPECULATION_CTRL option of prctl(2) is added to allow applications to specify that the SSBD feature bit on the task structure should be cleared whenever a new program is being execve'ed. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: linux-doc@vger.kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Jiri Kosina <jikos@kernel.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: KarimAllah Ahmed <karahmed@amazon.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Link: https://lkml.kernel.org/r/1547676096-3281-1-git-send-email-longman@redhat.com
2018-12-25Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 festive updates from Will Deacon: "In the end, we ended up with quite a lot more than I expected: - Support for ARMv8.3 Pointer Authentication in userspace (CRIU and kernel-side support to come later) - Support for per-thread stack canaries, pending an update to GCC that is currently undergoing review - Support for kexec_file_load(), which permits secure boot of a kexec payload but also happens to improve the performance of kexec dramatically because we can avoid the sucky purgatory code from userspace. Kdump will come later (requires updates to libfdt). - Optimisation of our dynamic CPU feature framework, so that all detected features are enabled via a single stop_machine() invocation - KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that they can benefit from global TLB entries when KASLR is not in use - 52-bit virtual addressing for userspace (kernel remains 48-bit) - Patch in LSE atomics for per-cpu atomic operations - Custom preempt.h implementation to avoid unconditional calls to preempt_schedule() from preempt_enable() - Support for the new 'SB' Speculation Barrier instruction - Vectorised implementation of XOR checksumming and CRC32 optimisations - Workaround for Cortex-A76 erratum #1165522 - Improved compatibility with Clang/LLD - Support for TX2 system PMUS for profiling the L3 cache and DMC - Reflect read-only permissions in the linear map by default - Ensure MMIO reads are ordered with subsequent calls to Xdelay() - Initial support for memory hotplug - Tweak the threshold when we invalidate the TLB by-ASID, so that mremap() performance is improved for ranges spanning multiple PMDs. - Minor refactoring and cleanups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (125 commits) arm64: kaslr: print PHYS_OFFSET in dump_kernel_offset() arm64: sysreg: Use _BITUL() when defining register bits arm64: cpufeature: Rework ptr auth hwcaps using multi_entry_cap_matches arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4 arm64: docs: document pointer authentication arm64: ptr auth: Move per-thread keys from thread_info to thread_struct arm64: enable pointer authentication arm64: add prctl control for resetting ptrauth keys arm64: perf: strip PAC when unwinding userspace arm64: expose user PAC bit positions via ptrace arm64: add basic pointer authentication support arm64/cpufeature: detect pointer authentication arm64: Don't trap host pointer auth use to EL2 arm64/kvm: hide ptrauth from guests arm64/kvm: consistently handle host HCR_EL2 flags arm64: add pointer authentication register bits arm64: add comments about EC exception levels arm64: perf: Treat EXCLUDE_EL* bit definitions as unsigned arm64: kpti: Whitelist Cortex-A CPUs that don't implement the CSV3 field arm64: enable per-task stack canaries ...
2018-12-13arm64: add prctl control for resetting ptrauth keysKristina Martsenko
Add an arm64-specific prctl to allow a thread to reinitialize its pointer authentication keys to random values. This can be useful when exec() is not used for starting new processes, to ensure that different processes still have different keys. Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-11-28x86/speculation: Add prctl() control for indirect branch speculationThomas Gleixner
Add the PR_SPEC_INDIRECT_BRANCH option for the PR_GET_SPECULATION_CTRL and PR_SET_SPECULATION_CTRL prctls to allow fine grained per task control of indirect branch speculation via STIBP and IBPB. Invocations: Check indirect branch speculation status with - prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0); Enable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0); Disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0); Force disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0); See Documentation/userspace-api/spec_ctrl.rst. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.866780996@linutronix.de
2018-06-15docs: Fix some broken referencesMauro Carvalho Chehab
As we move stuff around, some doc references are broken. Fix some of them via this script: ./scripts/documentation-file-ref-check --fix Manually checked if the produced result is valid, removing a few false-positives. Acked-by: Takashi Iwai <tiwai@suse.de> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Stephen Boyd <sboyd@kernel.org> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Reviewed-by: Coly Li <colyli@suse.de> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Acked-by: Jonathan Corbet <corbet@lwn.net>
2018-05-05prctl: Add force disable speculationThomas Gleixner
For certain use cases it is desired to enforce mitigations so they cannot be undone afterwards. That's important for loader stubs which want to prevent a child from disabling the mitigation again. Will also be used for seccomp(). The extra state preserving of the prctl state for SSB is a preparatory step for EBPF dymanic speculation control. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-03prctl: Add speculation control prctlsThomas Gleixner
Add two new prctls to control aspects of speculation related vulnerabilites and their mitigations to provide finer grained control over performance impacting mitigations. PR_GET_SPECULATION_CTRL returns the state of the speculation misfeature which is selected with arg2 of prctl(2). The return value uses bit 0-2 with the following meaning: Bit Define Description 0 PR_SPEC_PRCTL Mitigation can be controlled per task by PR_SET_SPECULATION_CTRL 1 PR_SPEC_ENABLE The speculation feature is enabled, mitigation is disabled 2 PR_SPEC_DISABLE The speculation feature is disabled, mitigation is enabled If all bits are 0 the CPU is not affected by the speculation misfeature. If PR_SPEC_PRCTL is set, then the per task control of the mitigation is available. If not set, prctl(PR_SET_SPECULATION_CTRL) for the speculation misfeature will fail. PR_SET_SPECULATION_CTRL allows to control the speculation misfeature, which is selected by arg2 of prctl(2) per task. arg3 is used to hand in the control value, i.e. either PR_SPEC_ENABLE or PR_SPEC_DISABLE. The common return values are: EINVAL prctl is not implemented by the architecture or the unused prctl() arguments are not 0 ENODEV arg2 is selecting a not supported speculation misfeature PR_SET_SPECULATION_CTRL has these additional return values: ERANGE arg3 is incorrect, i.e. it's not either PR_SPEC_ENABLE or PR_SPEC_DISABLE ENXIO prctl control of the selected speculation misfeature is disabled The first supported controlable speculation misfeature is PR_SPEC_STORE_BYPASS. Add the define so this can be shared between architectures. Based on an initial patch from Tim Chen and mostly rewritten. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2017-11-15Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "The big highlight is support for the Scalable Vector Extension (SVE) which required extensive ABI work to ensure we don't break existing applications by blowing away their signal stack with the rather large new vector context (<= 2 kbit per vector register). There's further work to be done optimising things like exception return, but the ABI is solid now. Much of the line count comes from some new PMU drivers we have, but they're pretty self-contained and I suspect we'll have more of them in future. Plenty of acronym soup here: - initial support for the Scalable Vector Extension (SVE) - improved handling for SError interrupts (required to handle RAS events) - enable GCC support for 128-bit integer types - remove kernel text addresses from backtraces and register dumps - use of WFE to implement long delay()s - ACPI IORT updates from Lorenzo Pieralisi - perf PMU driver for the Statistical Profiling Extension (SPE) - perf PMU driver for Hisilicon's system PMUs - misc cleanups and non-critical fixes" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits) arm64: Make ARMV8_DEPRECATED depend on SYSCTL arm64: Implement __lshrti3 library function arm64: support __int128 on gcc 5+ arm64/sve: Add documentation arm64/sve: Detect SVE and activate runtime support arm64/sve: KVM: Hide SVE from CPU features exposed to guests arm64/sve: KVM: Treat guest SVE use as undefined instruction execution arm64/sve: KVM: Prevent guests from using SVE arm64/sve: Add sysctl to set the default vector length for new processes arm64/sve: Add prctl controls for userspace vector length management arm64/sve: ptrace and ELF coredump support arm64/sve: Preserve SVE registers around EFI runtime service calls arm64/sve: Preserve SVE registers around kernel-mode NEON use arm64/sve: Probe SVE capabilities and usable vector lengths arm64: cpufeature: Move sys_caps_initialised declarations arm64/sve: Backend logic for setting the vector length arm64/sve: Signal handling support arm64/sve: Support vector length resetting for new processes arm64/sve: Core task context handling arm64/sve: Low-level CPU setup ...
2017-11-03arm64/sve: Add prctl controls for userspace vector length managementDave Martin
This patch adds two arm64-specific prctls, to permit userspace to control its vector length: * PR_SVE_SET_VL: set the thread's SVE vector length and vector length inheritance mode. * PR_SVE_GET_VL: get the same information. Although these prctls resemble instruction set features in the SVE architecture, they provide additional control: the vector length inheritance mode is Linux-specific and nothing to do with the architecture, and the architecture does not permit EL0 to set its own vector length directly. Both can be used in portable tools without requiring the use of SVE instructions. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> [will: Fixed up prctl constants to avoid clash with PDEATHSIG] Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-03arm64/sve: Backend logic for setting the vector lengthDave Martin
This patch implements the core logic for changing a task's vector length on request from userspace. This will be used by the ptrace and prctl frontends that are implemented in later patches. The SVE architecture permits, but does not require, implementations to support vector lengths that are not a power of two. To handle this, logic is added to check a requested vector length against a possibly sparse bitmap of available vector lengths at runtime, so that the best supported value can be chosen. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>