1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
// SPDX-License-Identifier: GPL-2.0
//! Atomic primitives.
//!
//! These primitives have the same semantics as their C counterparts: and the precise definitions of
//! semantics can be found at [`LKMM`]. Note that Linux Kernel Memory (Consistency) Model is the
//! only model for Rust code in kernel, and Rust's own atomics should be avoided.
//!
//! # Data races
//!
//! [`LKMM`] atomics have different rules regarding data races:
//!
//! - A normal write from C side is treated as an atomic write if
//! CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=y.
//! - Mixed-size atomic accesses don't cause data races.
//!
//! [`LKMM`]: srctree/tools/memory-model/
#[allow(dead_code, unreachable_pub)]
mod internal;
pub mod ordering;
mod predefine;
pub use internal::AtomicImpl;
pub use ordering::{Acquire, Full, Relaxed, Release};
use crate::build_error;
use internal::{AtomicBasicOps, AtomicExchangeOps, AtomicRepr};
use ordering::OrderingType;
/// A memory location which can be safely modified from multiple execution contexts.
///
/// This has the same size, alignment and bit validity as the underlying type `T`. And it disables
/// niche optimization for the same reason as [`UnsafeCell`].
///
/// The atomic operations are implemented in a way that is fully compatible with the [Linux Kernel
/// Memory (Consistency) Model][LKMM], hence they should be modeled as the corresponding
/// [`LKMM`][LKMM] atomic primitives. With the help of [`Atomic::from_ptr()`] and
/// [`Atomic::as_ptr()`], this provides a way to interact with [C-side atomic operations]
/// (including those without the `atomic` prefix, e.g. `READ_ONCE()`, `WRITE_ONCE()`,
/// `smp_load_acquire()` and `smp_store_release()`).
///
/// # Invariants
///
/// `self.0` is a valid `T`.
///
/// [`UnsafeCell`]: core::cell::UnsafeCell
/// [LKMM]: srctree/tools/memory-model/
/// [C-side atomic operations]: srctree/Documentation/atomic_t.txt
#[repr(transparent)]
pub struct Atomic<T: AtomicType>(AtomicRepr<T::Repr>);
// SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic.
unsafe impl<T: AtomicType> Sync for Atomic<T> {}
/// Types that support basic atomic operations.
///
/// # Round-trip transmutability
///
/// `T` is round-trip transmutable to `U` if and only if both of these properties hold:
///
/// - Any valid bit pattern for `T` is also a valid bit pattern for `U`.
/// - Transmuting (e.g. using [`transmute()`]) a value of type `T` to `U` and then to `T` again
/// yields a value that is in all aspects equivalent to the original value.
///
/// # Safety
///
/// - [`Self`] must have the same size and alignment as [`Self::Repr`].
/// - [`Self`] must be [round-trip transmutable] to [`Self::Repr`].
///
/// Note that this is more relaxed than requiring the bi-directional transmutability (i.e.
/// [`transmute()`] is always sound between `U` and `T`) because of the support for atomic
/// variables over unit-only enums, see [Examples].
///
/// # Limitations
///
/// Because C primitives are used to implement the atomic operations, and a C function requires a
/// valid object of a type to operate on (i.e. no `MaybeUninit<_>`), hence at the Rust <-> C
/// surface, only types with all the bits initialized can be passed. As a result, types like `(u8,
/// u16)` (padding bytes are uninitialized) are currently not supported.
///
/// # Examples
///
/// A unit-only enum that implements [`AtomicType`]:
///
/// ```
/// use kernel::sync::atomic::{AtomicType, Atomic, Relaxed};
///
/// #[derive(Clone, Copy, PartialEq, Eq)]
/// #[repr(i32)]
/// enum State {
/// Uninit = 0,
/// Working = 1,
/// Done = 2,
/// };
///
/// // SAFETY: `State` and `i32` has the same size and alignment, and it's round-trip
/// // transmutable to `i32`.
/// unsafe impl AtomicType for State {
/// type Repr = i32;
/// }
///
/// let s = Atomic::new(State::Uninit);
///
/// assert_eq!(State::Uninit, s.load(Relaxed));
/// ```
/// [`transmute()`]: core::mem::transmute
/// [round-trip transmutable]: AtomicType#round-trip-transmutability
/// [Examples]: AtomicType#examples
pub unsafe trait AtomicType: Sized + Send + Copy {
/// The backing atomic implementation type.
type Repr: AtomicImpl;
}
#[inline(always)]
const fn into_repr<T: AtomicType>(v: T) -> T::Repr {
// SAFETY: Per the safety requirement of `AtomicType`, `T` is round-trip transmutable to
// `T::Repr`, therefore the transmute operation is sound.
unsafe { core::mem::transmute_copy(&v) }
}
/// # Safety
///
/// `r` must be a valid bit pattern of `T`.
#[inline(always)]
const unsafe fn from_repr<T: AtomicType>(r: T::Repr) -> T {
// SAFETY: Per the safety requirement of the function, the transmute operation is sound.
unsafe { core::mem::transmute_copy(&r) }
}
impl<T: AtomicType> Atomic<T> {
/// Creates a new atomic `T`.
pub const fn new(v: T) -> Self {
// INVARIANT: Per the safety requirement of `AtomicType`, `into_repr(v)` is a valid `T`.
Self(AtomicRepr::new(into_repr(v)))
}
/// Creates a reference to an atomic `T` from a pointer of `T`.
///
/// This usually is used when communicating with C side or manipulating a C struct, see
/// examples below.
///
/// # Safety
///
/// - `ptr` is aligned to `align_of::<T>()`.
/// - `ptr` is valid for reads and writes for `'a`.
/// - For the duration of `'a`, other accesses to `*ptr` must not cause data races (defined
/// by [`LKMM`]) against atomic operations on the returned reference. Note that if all other
/// accesses are atomic, then this safety requirement is trivially fulfilled.
///
/// [`LKMM`]: srctree/tools/memory-model
///
/// # Examples
///
/// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can
/// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or
/// `WRITE_ONCE()`/`smp_store_release()` in C side:
///
/// ```
/// # use kernel::types::Opaque;
/// use kernel::sync::atomic::{Atomic, Relaxed, Release};
///
/// // Assume there is a C struct `foo`.
/// mod cbindings {
/// #[repr(C)]
/// pub(crate) struct foo {
/// pub(crate) a: i32,
/// pub(crate) b: i32
/// }
/// }
///
/// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2 });
///
/// // struct foo *foo_ptr = ..;
/// let foo_ptr = tmp.get();
///
/// // SAFETY: `foo_ptr` is valid, and `.a` is in bounds.
/// let foo_a_ptr = unsafe { &raw mut (*foo_ptr).a };
///
/// // a = READ_ONCE(foo_ptr->a);
/// //
/// // SAFETY: `foo_a_ptr` is valid for read, and all other accesses on it is atomic, so no
/// // data race.
/// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed);
/// # assert_eq!(a, 1);
///
/// // smp_store_release(&foo_ptr->a, 2);
/// //
/// // SAFETY: `foo_a_ptr` is valid for writes, and all other accesses on it is atomic, so
/// // no data race.
/// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release);
/// ```
pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self
where
T: Sync,
{
// CAST: `T` and `Atomic<T>` have the same size, alignment and bit validity.
// SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will
// live long enough. It's safe to return a `&Atomic<T>` because function safety requirement
// guarantees other accesses won't cause data races.
unsafe { &*ptr.cast::<Self>() }
}
/// Returns a pointer to the underlying atomic `T`.
///
/// Note that use of the return pointer must not cause data races defined by [`LKMM`].
///
/// # Guarantees
///
/// The returned pointer is valid and properly aligned (i.e. aligned to [`align_of::<T>()`]).
///
/// [`LKMM`]: srctree/tools/memory-model
/// [`align_of::<T>()`]: core::mem::align_of
pub const fn as_ptr(&self) -> *mut T {
// GUARANTEE: Per the function guarantee of `AtomicRepr::as_ptr()`, the `self.0.as_ptr()`
// must be a valid and properly aligned pointer for `T::Repr`, and per the safety guarantee
// of `AtomicType`, it's a valid and properly aligned pointer of `T`.
self.0.as_ptr().cast()
}
/// Returns a mutable reference to the underlying atomic `T`.
///
/// This is safe because the mutable reference of the atomic `T` guarantees exclusive access.
pub fn get_mut(&mut self) -> &mut T {
// CAST: `T` and `T::Repr` has the same size and alignment per the safety requirement of
// `AtomicType`, and per the type invariants `self.0` is a valid `T`, therefore the casting
// result is a valid pointer of `T`.
// SAFETY: The pointer is valid per the CAST comment above, and the mutable reference
// guarantees exclusive access.
unsafe { &mut *self.0.as_ptr().cast() }
}
}
impl<T: AtomicType> Atomic<T>
where
T::Repr: AtomicBasicOps,
{
/// Loads the value from the atomic `T`.
///
/// # Examples
///
/// ```
/// use kernel::sync::atomic::{Atomic, Relaxed};
///
/// let x = Atomic::new(42i32);
///
/// assert_eq!(42, x.load(Relaxed));
///
/// let x = Atomic::new(42i64);
///
/// assert_eq!(42, x.load(Relaxed));
/// ```
#[doc(alias("atomic_read", "atomic64_read"))]
#[inline(always)]
pub fn load<Ordering: ordering::AcquireOrRelaxed>(&self, _: Ordering) -> T {
let v = {
match Ordering::TYPE {
OrderingType::Relaxed => T::Repr::atomic_read(&self.0),
OrderingType::Acquire => T::Repr::atomic_read_acquire(&self.0),
_ => build_error!("Wrong ordering"),
}
};
// SAFETY: `v` comes from reading `self.0`, which is a valid `T` per the type invariants.
unsafe { from_repr(v) }
}
/// Stores a value to the atomic `T`.
///
/// # Examples
///
/// ```
/// use kernel::sync::atomic::{Atomic, Relaxed};
///
/// let x = Atomic::new(42i32);
///
/// assert_eq!(42, x.load(Relaxed));
///
/// x.store(43, Relaxed);
///
/// assert_eq!(43, x.load(Relaxed));
/// ```
#[doc(alias("atomic_set", "atomic64_set"))]
#[inline(always)]
pub fn store<Ordering: ordering::ReleaseOrRelaxed>(&self, v: T, _: Ordering) {
let v = into_repr(v);
// INVARIANT: `v` is a valid `T`, and is stored to `self.0` by `atomic_set*()`.
match Ordering::TYPE {
OrderingType::Relaxed => T::Repr::atomic_set(&self.0, v),
OrderingType::Release => T::Repr::atomic_set_release(&self.0, v),
_ => build_error!("Wrong ordering"),
}
}
}
impl<T: AtomicType> Atomic<T>
where
T::Repr: AtomicExchangeOps,
{
/// Atomic exchange.
///
/// Atomically updates `*self` to `v` and returns the old value of `*self`.
///
/// # Examples
///
/// ```
/// use kernel::sync::atomic::{Atomic, Acquire, Relaxed};
///
/// let x = Atomic::new(42);
///
/// assert_eq!(42, x.xchg(52, Acquire));
/// assert_eq!(52, x.load(Relaxed));
/// ```
#[doc(alias("atomic_xchg", "atomic64_xchg", "swap"))]
#[inline(always)]
pub fn xchg<Ordering: ordering::Ordering>(&self, v: T, _: Ordering) -> T {
let v = into_repr(v);
// INVARIANT: `self.0` is a valid `T` after `atomic_xchg*()` because `v` is transmutable to
// `T`.
let ret = {
match Ordering::TYPE {
OrderingType::Full => T::Repr::atomic_xchg(&self.0, v),
OrderingType::Acquire => T::Repr::atomic_xchg_acquire(&self.0, v),
OrderingType::Release => T::Repr::atomic_xchg_release(&self.0, v),
OrderingType::Relaxed => T::Repr::atomic_xchg_relaxed(&self.0, v),
}
};
// SAFETY: `ret` comes from reading `*self`, which is a valid `T` per type invariants.
unsafe { from_repr(ret) }
}
/// Atomic compare and exchange.
///
/// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
/// modified.
///
/// Compare: The comparison is done via the byte level comparison between `*self` and `old`.
///
/// Ordering: When succeeds, provides the corresponding ordering as the `Ordering` type
/// parameter indicates, and a failed one doesn't provide any ordering, the load part of a
/// failed cmpxchg is a [`Relaxed`] load.
///
/// Returns `Ok(value)` if cmpxchg succeeds, and `value` is guaranteed to be equal to `old`,
/// otherwise returns `Err(value)`, and `value` is the current value of `*self`.
///
/// # Examples
///
/// ```
/// use kernel::sync::atomic::{Atomic, Full, Relaxed};
///
/// let x = Atomic::new(42);
///
/// // Checks whether cmpxchg succeeded.
/// let success = x.cmpxchg(52, 64, Relaxed).is_ok();
/// # assert!(!success);
///
/// // Checks whether cmpxchg failed.
/// let failure = x.cmpxchg(52, 64, Relaxed).is_err();
/// # assert!(failure);
///
/// // Uses the old value if failed, probably re-try cmpxchg.
/// match x.cmpxchg(52, 64, Relaxed) {
/// Ok(_) => { },
/// Err(old) => {
/// // do something with `old`.
/// # assert_eq!(old, 42);
/// }
/// }
///
/// // Uses the latest value regardlessly, same as atomic_cmpxchg() in C.
/// let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
/// # assert_eq!(42, latest);
/// assert_eq!(64, x.load(Relaxed));
/// ```
///
/// [`Relaxed`]: ordering::Relaxed
#[doc(alias(
"atomic_cmpxchg",
"atomic64_cmpxchg",
"atomic_try_cmpxchg",
"atomic64_try_cmpxchg",
"compare_exchange"
))]
#[inline(always)]
pub fn cmpxchg<Ordering: ordering::Ordering>(
&self,
mut old: T,
new: T,
o: Ordering,
) -> Result<T, T> {
// Note on code generation:
//
// try_cmpxchg() is used to implement cmpxchg(), and if the helper functions are inlined,
// the compiler is able to figure out that branch is not needed if the users don't care
// about whether the operation succeeds or not. One exception is on x86, due to commit
// 44fe84459faf ("locking/atomic: Fix atomic_try_cmpxchg() semantics"), the
// atomic_try_cmpxchg() on x86 has a branch even if the caller doesn't care about the
// success of cmpxchg and only wants to use the old value. For example, for code like:
//
// let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
//
// It will still generate code:
//
// movl $0x40, %ecx
// movl $0x34, %eax
// lock
// cmpxchgl %ecx, 0x4(%rsp)
// jne 1f
// 2:
// ...
// 1: movl %eax, %ecx
// jmp 2b
//
// This might be "fixed" by introducing a try_cmpxchg_exclusive() that knows the "*old"
// location in the C function is always safe to write.
if self.try_cmpxchg(&mut old, new, o) {
Ok(old)
} else {
Err(old)
}
}
/// Atomic compare and exchange and returns whether the operation succeeds.
///
/// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
/// modified, `*old` is updated to the current value of `*self`.
///
/// "Compare" and "Ordering" part are the same as [`Atomic::cmpxchg()`].
///
/// Returns `true` means the cmpxchg succeeds otherwise returns `false`.
#[inline(always)]
fn try_cmpxchg<Ordering: ordering::Ordering>(&self, old: &mut T, new: T, _: Ordering) -> bool {
let mut tmp = into_repr(*old);
let new = into_repr(new);
// INVARIANT: `self.0` is a valid `T` after `atomic_try_cmpxchg*()` because `new` is
// transmutable to `T`.
let ret = {
match Ordering::TYPE {
OrderingType::Full => T::Repr::atomic_try_cmpxchg(&self.0, &mut tmp, new),
OrderingType::Acquire => {
T::Repr::atomic_try_cmpxchg_acquire(&self.0, &mut tmp, new)
}
OrderingType::Release => {
T::Repr::atomic_try_cmpxchg_release(&self.0, &mut tmp, new)
}
OrderingType::Relaxed => {
T::Repr::atomic_try_cmpxchg_relaxed(&self.0, &mut tmp, new)
}
}
};
// SAFETY: `tmp` comes from reading `*self`, which is a valid `T` per type invariants.
*old = unsafe { from_repr(tmp) };
ret
}
}
|