diff options
author | Tom Rini <trini@konsulko.com> | 2024-10-08 13:56:50 -0600 |
---|---|---|
committer | Tom Rini <trini@konsulko.com> | 2024-10-08 13:56:50 -0600 |
commit | 0344c602eadc0802776b65ff90f0a02c856cf53c (patch) | |
tree | 236a705740939b84ff37d68ae650061dd14c3449 /scripts/mbedtls_dev/bignum_common.py |
Squashed 'lib/mbedtls/external/mbedtls/' content from commit 2ca6c285a0dd
git-subtree-dir: lib/mbedtls/external/mbedtls
git-subtree-split: 2ca6c285a0dd3f33982dd57299012dacab1ff206
Diffstat (limited to 'scripts/mbedtls_dev/bignum_common.py')
-rw-r--r-- | scripts/mbedtls_dev/bignum_common.py | 406 |
1 files changed, 406 insertions, 0 deletions
diff --git a/scripts/mbedtls_dev/bignum_common.py b/scripts/mbedtls_dev/bignum_common.py new file mode 100644 index 00000000000..eebc858b21b --- /dev/null +++ b/scripts/mbedtls_dev/bignum_common.py @@ -0,0 +1,406 @@ +"""Common features for bignum in test generation framework.""" +# Copyright The Mbed TLS Contributors +# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later +# + +from abc import abstractmethod +import enum +from typing import Iterator, List, Tuple, TypeVar, Any +from copy import deepcopy +from itertools import chain +from math import ceil + +from . import test_case +from . import test_data_generation +from .bignum_data import INPUTS_DEFAULT, MODULI_DEFAULT + +T = TypeVar('T') #pylint: disable=invalid-name + +def invmod(a: int, n: int) -> int: + """Return inverse of a to modulo n. + + Equivalent to pow(a, -1, n) in Python 3.8+. Implementation is equivalent + to long_invmod() in CPython. + """ + b, c = 1, 0 + while n: + q, r = divmod(a, n) + a, b, c, n = n, c, b - q*c, r + # at this point a is the gcd of the original inputs + if a == 1: + return b + raise ValueError("Not invertible") + +def invmod_positive(a: int, n: int) -> int: + """Return a non-negative inverse of a to modulo n.""" + inv = invmod(a, n) + return inv if inv >= 0 else inv + n + +def hex_to_int(val: str) -> int: + """Implement the syntax accepted by mbedtls_test_read_mpi(). + + This is a superset of what is accepted by mbedtls_test_read_mpi_core(). + """ + if val in ['', '-']: + return 0 + return int(val, 16) + +def quote_str(val: str) -> str: + return "\"{}\"".format(val) + +def bound_mpi(val: int, bits_in_limb: int) -> int: + """First number exceeding number of limbs needed for given input value.""" + return bound_mpi_limbs(limbs_mpi(val, bits_in_limb), bits_in_limb) + +def bound_mpi_limbs(limbs: int, bits_in_limb: int) -> int: + """First number exceeding maximum of given number of limbs.""" + bits = bits_in_limb * limbs + return 1 << bits + +def limbs_mpi(val: int, bits_in_limb: int) -> int: + """Return the number of limbs required to store value.""" + bit_length = max(val.bit_length(), 1) + return (bit_length + bits_in_limb - 1) // bits_in_limb + +def combination_pairs(values: List[T]) -> List[Tuple[T, T]]: + """Return all pair combinations from input values.""" + return [(x, y) for x in values for y in values] + +def bits_to_limbs(bits: int, bits_in_limb: int) -> int: + """ Return the appropriate ammount of limbs needed to store + a number contained in input bits""" + return ceil(bits / bits_in_limb) + +def hex_digits_for_limb(limbs: int, bits_in_limb: int) -> int: + """ Return the hex digits need for a number of limbs. """ + return 2 * ((limbs * bits_in_limb) // 8) + +def hex_digits_max_int(val: str, bits_in_limb: int) -> int: + """ Return the first number exceeding maximum the limb space + required to store the input hex-string value. This method + weights on the input str_len rather than numerical value + and works with zero-padded inputs""" + n = ((1 << (len(val) * 4)) - 1) + l = limbs_mpi(n, bits_in_limb) + return bound_mpi_limbs(l, bits_in_limb) + +def zfill_match(reference: str, target: str) -> str: + """ Zero pad target hex-string to match the limb size of + the reference input """ + lt = len(target) + lr = len(reference) + target_len = lr if lt < lr else lt + return "{:x}".format(int(target, 16)).zfill(target_len) + +class OperationCommon(test_data_generation.BaseTest): + """Common features for bignum binary operations. + + This adds functionality common in binary operation tests. + + Attributes: + symbol: Symbol to use for the operation in case description. + input_values: List of values to use as test case inputs. These are + combined to produce pairs of values. + input_cases: List of tuples containing pairs of test case inputs. This + can be used to implement specific pairs of inputs. + unique_combinations_only: Boolean to select if test case combinations + must be unique. If True, only A,B or B,A would be included as a test + case. If False, both A,B and B,A would be included. + input_style: Controls the way how test data is passed to the functions + in the generated test cases. "variable" passes them as they are + defined in the python source. "arch_split" pads the values with + zeroes depending on the architecture/limb size. If this is set, + test cases are generated for all architectures. + arity: the number of operands for the operation. Currently supported + values are 1 and 2. + """ + symbol = "" + input_values = INPUTS_DEFAULT # type: List[str] + input_cases = [] # type: List[Any] + dependencies = [] # type: List[Any] + unique_combinations_only = False + input_styles = ["variable", "fixed", "arch_split"] # type: List[str] + input_style = "variable" # type: str + limb_sizes = [32, 64] # type: List[int] + arities = [1, 2] + arity = 2 + suffix = False # for arity = 1, symbol can be prefix (default) or suffix + + def __init__(self, val_a: str, val_b: str = "0", bits_in_limb: int = 32) -> None: + self.val_a = val_a + self.val_b = val_b + # Setting the int versions here as opposed to making them @properties + # provides earlier/more robust input validation. + self.int_a = hex_to_int(val_a) + self.int_b = hex_to_int(val_b) + self.dependencies = deepcopy(self.dependencies) + if bits_in_limb not in self.limb_sizes: + raise ValueError("Invalid number of bits in limb!") + if self.input_style == "arch_split": + self.dependencies.append("MBEDTLS_HAVE_INT{:d}".format(bits_in_limb)) + self.bits_in_limb = bits_in_limb + + @property + def boundary(self) -> int: + if self.arity == 1: + return self.int_a + elif self.arity == 2: + return max(self.int_a, self.int_b) + raise ValueError("Unsupported number of operands!") + + @property + def limb_boundary(self) -> int: + return bound_mpi(self.boundary, self.bits_in_limb) + + @property + def limbs(self) -> int: + return limbs_mpi(self.boundary, self.bits_in_limb) + + @property + def hex_digits(self) -> int: + return hex_digits_for_limb(self.limbs, self.bits_in_limb) + + def format_arg(self, val: str) -> str: + if self.input_style not in self.input_styles: + raise ValueError("Unknown input style!") + if self.input_style == "variable": + return val + else: + return val.zfill(self.hex_digits) + + def format_result(self, res: int) -> str: + res_str = '{:x}'.format(res) + return quote_str(self.format_arg(res_str)) + + @property + def arg_a(self) -> str: + return self.format_arg(self.val_a) + + @property + def arg_b(self) -> str: + if self.arity == 1: + raise AttributeError("Operation is unary and doesn't have arg_b!") + return self.format_arg(self.val_b) + + def arguments(self) -> List[str]: + args = [quote_str(self.arg_a)] + if self.arity == 2: + args.append(quote_str(self.arg_b)) + return args + self.result() + + def description(self) -> str: + """Generate a description for the test case. + + If not set, case_description uses the form A `symbol` B, where symbol + is used to represent the operation. Descriptions of each value are + generated to provide some context to the test case. + """ + if not self.case_description: + if self.arity == 1: + format_string = "{1:x} {0}" if self.suffix else "{0} {1:x}" + self.case_description = format_string.format( + self.symbol, self.int_a + ) + elif self.arity == 2: + self.case_description = "{:x} {} {:x}".format( + self.int_a, self.symbol, self.int_b + ) + return super().description() + + @property + def is_valid(self) -> bool: + return True + + @abstractmethod + def result(self) -> List[str]: + """Get the result of the operation. + + This could be calculated during initialization and stored as `_result` + and then returned, or calculated when the method is called. + """ + raise NotImplementedError + + @classmethod + def get_value_pairs(cls) -> Iterator[Tuple[str, str]]: + """Generator to yield pairs of inputs. + + Combinations are first generated from all input values, and then + specific cases provided. + """ + if cls.arity == 1: + yield from ((a, "0") for a in cls.input_values) + elif cls.arity == 2: + if cls.unique_combinations_only: + yield from combination_pairs(cls.input_values) + else: + yield from ( + (a, b) + for a in cls.input_values + for b in cls.input_values + ) + else: + raise ValueError("Unsupported number of operands!") + + @classmethod + def generate_function_tests(cls) -> Iterator[test_case.TestCase]: + if cls.input_style not in cls.input_styles: + raise ValueError("Unknown input style!") + if cls.arity not in cls.arities: + raise ValueError("Unsupported number of operands!") + if cls.input_style == "arch_split": + test_objects = (cls(a, b, bits_in_limb=bil) + for a, b in cls.get_value_pairs() + for bil in cls.limb_sizes) + special_cases = (cls(*args, bits_in_limb=bil) # type: ignore + for args in cls.input_cases + for bil in cls.limb_sizes) + else: + test_objects = (cls(a, b) + for a, b in cls.get_value_pairs()) + special_cases = (cls(*args) for args in cls.input_cases) + yield from (valid_test_object.create_test_case() + for valid_test_object in filter( + lambda test_object: test_object.is_valid, + chain(test_objects, special_cases) + ) + ) + + +class ModulusRepresentation(enum.Enum): + """Representation selector of a modulus.""" + # Numerical values aligned with the type mbedtls_mpi_mod_rep_selector + INVALID = 0 + MONTGOMERY = 2 + OPT_RED = 3 + + def symbol(self) -> str: + """The C symbol for this representation selector.""" + return 'MBEDTLS_MPI_MOD_REP_' + self.name + + @classmethod + def supported_representations(cls) -> List['ModulusRepresentation']: + """Return all representations that are supported in positive test cases.""" + return [cls.MONTGOMERY, cls.OPT_RED] + + +class ModOperationCommon(OperationCommon): + #pylint: disable=abstract-method + """Target for bignum mod_raw test case generation.""" + moduli = MODULI_DEFAULT # type: List[str] + montgomery_form_a = False + disallow_zero_a = False + + def __init__(self, val_n: str, val_a: str, val_b: str = "0", + bits_in_limb: int = 64) -> None: + super().__init__(val_a=val_a, val_b=val_b, bits_in_limb=bits_in_limb) + self.val_n = val_n + # Setting the int versions here as opposed to making them @properties + # provides earlier/more robust input validation. + self.int_n = hex_to_int(val_n) + + def to_montgomery(self, val: int) -> int: + return (val * self.r) % self.int_n + + def from_montgomery(self, val: int) -> int: + return (val * self.r_inv) % self.int_n + + def convert_from_canonical(self, canonical: int, + rep: ModulusRepresentation) -> int: + """Convert values from canonical representation to the given representation.""" + if rep is ModulusRepresentation.MONTGOMERY: + return self.to_montgomery(canonical) + elif rep is ModulusRepresentation.OPT_RED: + return canonical + else: + raise ValueError('Modulus representation not supported: {}' + .format(rep.name)) + + @property + def boundary(self) -> int: + return self.int_n + + @property + def arg_a(self) -> str: + if self.montgomery_form_a: + value_a = self.to_montgomery(self.int_a) + else: + value_a = self.int_a + return self.format_arg('{:x}'.format(value_a)) + + @property + def arg_n(self) -> str: + return self.format_arg(self.val_n) + + def format_arg(self, val: str) -> str: + return super().format_arg(val).zfill(self.hex_digits) + + def arguments(self) -> List[str]: + return [quote_str(self.arg_n)] + super().arguments() + + @property + def r(self) -> int: # pylint: disable=invalid-name + l = limbs_mpi(self.int_n, self.bits_in_limb) + return bound_mpi_limbs(l, self.bits_in_limb) + + @property + def r_inv(self) -> int: + return invmod(self.r, self.int_n) + + @property + def r2(self) -> int: # pylint: disable=invalid-name + return pow(self.r, 2) + + @property + def is_valid(self) -> bool: + if self.int_a >= self.int_n: + return False + if self.disallow_zero_a and self.int_a == 0: + return False + if self.arity == 2 and self.int_b >= self.int_n: + return False + return True + + def description(self) -> str: + """Generate a description for the test case. + + It uses the form A `symbol` B mod N, where symbol is used to represent + the operation. + """ + + if not self.case_description: + return super().description() + " mod {:x}".format(self.int_n) + return super().description() + + @classmethod + def input_cases_args(cls) -> Iterator[Tuple[Any, Any, Any]]: + if cls.arity == 1: + yield from ((n, a, "0") for a, n in cls.input_cases) + elif cls.arity == 2: + yield from ((n, a, b) for a, b, n in cls.input_cases) + else: + raise ValueError("Unsupported number of operands!") + + @classmethod + def generate_function_tests(cls) -> Iterator[test_case.TestCase]: + if cls.input_style not in cls.input_styles: + raise ValueError("Unknown input style!") + if cls.arity not in cls.arities: + raise ValueError("Unsupported number of operands!") + if cls.input_style == "arch_split": + test_objects = (cls(n, a, b, bits_in_limb=bil) + for n in cls.moduli + for a, b in cls.get_value_pairs() + for bil in cls.limb_sizes) + special_cases = (cls(*args, bits_in_limb=bil) + for args in cls.input_cases_args() + for bil in cls.limb_sizes) + else: + test_objects = (cls(n, a, b) + for n in cls.moduli + for a, b in cls.get_value_pairs()) + special_cases = (cls(*args) for args in cls.input_cases_args()) + yield from (valid_test_object.create_test_case() + for valid_test_object in filter( + lambda test_object: test_object.is_valid, + chain(test_objects, special_cases) + )) |