diff options
Diffstat (limited to 'drivers/ram/stm32mp1/stm32mp1_tuning.c')
| -rw-r--r-- | drivers/ram/stm32mp1/stm32mp1_tuning.c | 1380 | 
1 files changed, 1380 insertions, 0 deletions
| diff --git a/drivers/ram/stm32mp1/stm32mp1_tuning.c b/drivers/ram/stm32mp1/stm32mp1_tuning.c new file mode 100644 index 00000000000..4e1c1fab54c --- /dev/null +++ b/drivers/ram/stm32mp1/stm32mp1_tuning.c @@ -0,0 +1,1380 @@ +// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause +/* + * Copyright (C) 2019, STMicroelectronics - All Rights Reserved + */ +#include <common.h> +#include <console.h> +#include <clk.h> +#include <ram.h> +#include <reset.h> +#include <asm/io.h> + +#include "stm32mp1_ddr_regs.h" +#include "stm32mp1_ddr.h" +#include "stm32mp1_tests.h" + +#define MAX_DQS_PHASE_IDX _144deg +#define MAX_DQS_UNIT_IDX 7 +#define MAX_GSL_IDX 5 +#define MAX_GPS_IDX 3 + +/* Number of bytes used in this SW. ( min 1--> max 4). */ +#define NUM_BYTES 4 + +enum dqs_phase_enum { +	_36deg = 0, +	_54deg = 1, +	_72deg = 2, +	_90deg = 3, +	_108deg = 4, +	_126deg = 5, +	_144deg = 6 +}; + +/* BIST Result struct */ +struct BIST_result { +	/* Overall test result: +	 * 0 Fail (any bit failed) , +	 * 1 Success (All bits success) +	 */ +	bool test_result; +	/* 1: true, all fail /  0: False, not all bits fail */ +	bool all_bits_fail; +	bool bit_i_test_result[8];  /* 0 fail / 1 success */ +}; + +/* a struct that defines tuning parameters of a byte. */ +struct tuning_position { +	u8 phase; /* DQS phase */ +	u8 unit; /* DQS unit delay */ +	u32 bits_delay; /* Bits deskew in this byte */ +}; + +/* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */ +const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12}; + +static u8 BIST_error_max = 1; +static u32 BIST_seed = 0x1234ABCD; + +static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl) +{ +	u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK; +	u8 nb_bytes = NUM_BYTES; + +	switch (data_bus) { +	case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF: +		nb_bytes /= 2; +		break; +	case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER: +		nb_bytes /= 4; +		break; +	default: +		break; +	} + +	return nb_bytes; +} + +static void itm_soft_reset(struct stm32mp1_ddrphy *phy) +{ +	stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST); +} + +/* Read DQ unit delay register and provides the retrieved value for DQS + * We are assuming that we have the same delay when clocking + * by DQS and when clocking by DQSN + */ +static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit) +{ +	u32 index; +	u32 addr = DXNDQTR(phy, byte); + +	/* We are assuming that we have the same delay when clocking by DQS +	 * and when clocking by DQSN : use only the low bits +	 */ +	index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit)) +		& DDRPHYC_DXNDQTR_DQDLY_LOW_MASK; + +	pr_debug("%s: [%x]: %x => DQ unit index = %x\n", +		 __func__, addr, readl(addr), index); + +	return index; +} + +/* Sets the DQS phase delay for a byte lane. + *phase delay is specified by giving the index of the desired delay + * in the dx_dll_phase array. + */ +static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx) +{ +	u8 sdphase_val = 0; + +	/*	Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */ +	sdphase_val = dx_dll_phase[phase_idx]; +	clrsetbits_le32(DXNDLLCR(phy, byte), +			DDRPHYC_DXNDLLCR_SDPHASE_MASK, +			sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT); +} + +/* Sets the DQS unit delay for a byte lane. + * unit delay is specified by giving the index of the desired delay + * for dgsdly and dqsndly (same value). + */ +static void DQS_unit_delay(struct stm32mp1_ddrphy *phy, +			   u8 byte, u8 unit_dly_idx) +{ +	/* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */ +	clrsetbits_le32(DXNDQSTR(phy, byte), +			DDRPHYC_DXNDQSTR_DQSDLY_MASK | +			DDRPHYC_DXNDQSTR_DQSNDLY_MASK, +			(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) | +			(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT)); + +	/* After changing this value, an ITM soft reset (PIR.ITMSRST=1, +	 * plus PIR.INIT=1) must be issued. +	 */ +	stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST); +} + +/* Sets the DQ unit delay for a bit line in particular byte lane. + * unit delay is specified by giving the desired delay + */ +static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy, +			      u8 byte, u8 bit, +			      u8 dq_delay_index) +{ +	u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2); + +	/* same value on delay for clock DQ an DQS_b */ +	clrsetbits_le32(DXNDQTR(phy, byte), +			DDRPHYC_DXNDQTR_DQDLY_MASK +			<< DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit), +			dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit)); +} + +static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy, +			     u8 byte, u8 r0dgsl_idx) +{ +	clrsetbits_le32(DXNDQSTR(phy, byte), +			DDRPHYC_DXNDQSTR_R0DGSL_MASK, +			r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT); +} + +static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy, +			     u8 byte, u8 r0dgps_idx) +{ +	clrsetbits_le32(DXNDQSTR(phy, byte), +			DDRPHYC_DXNDQSTR_R0DGPS_MASK, +			r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT); +} + +/* Basic BIST configuration for data lane tests. */ +static void config_BIST(struct stm32mp1_ddrphy *phy) +{ +	/* Selects the SDRAM bank address to be used during BIST. */ +	u32 bbank = 0; +	/* Selects the SDRAM row address to be used during BIST. */ +	u32 brow = 0; +	/* Selects the SDRAM column address to be used during BIST. */ +	u32 bcol = 0; +	/* Selects the value by which the SDRAM address is incremented +	 * for each write/read access. +	 */ +	u32 bainc = 0x00000008; +	/* Specifies the maximum SDRAM rank to be used during BIST. +	 * The default value is set to maximum ranks minus 1. +	 * must be 0 with single rank +	 */ +	u32 bmrank = 0; +	/* Selects the SDRAM rank to be used during BIST. +	 * must be 0 with single rank +	 */ +	u32 brank = 0; +	/* Specifies the maximum SDRAM bank address to be used during +	 * BIST before the address & increments to the next rank. +	 */ +	u32 bmbank = 1; +	/* Specifies the maximum SDRAM row address to be used during +	 * BIST before the address & increments to the next bank. +	 */ +	u32 bmrow = 0x7FFF; /* To check */ +	/* Specifies the maximum SDRAM column address to be used during +	 * BIST before the address & increments to the next row. +	 */ +	u32 bmcol = 0x3FF;  /* To check */ +	u32 bmode_conf = 0x00000001;  /* DRam mode */ +	u32 bdxen_conf = 0x00000001;  /* BIST on Data byte */ +	u32 bdpat_conf = 0x00000002;  /* Select LFSR pattern */ + +	/*Setup BIST for DRAM mode,  and LFSR-random data pattern.*/ +	/*Write BISTRR.BMODE = 1?b1;*/ +	/*Write BISTRR.BDXEN = 1?b1;*/ +	/*Write BISTRR.BDPAT = 2?b10;*/ + +	/* reset BIST */ +	writel(0x3, &phy->bistrr); + +	writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17), +	       &phy->bistrr); + +	/*Setup BIST Word Count*/ +	/*Write BISTWCR.BWCNT = 16?b0008;*/ +	writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */ + +	writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0); +	writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1); + +	/* To check this line : */ +	writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2); +} + +/* Select the Byte lane to be tested by BIST. */ +static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8) +{ +	clrsetbits_le32(&phy->bistrr, +			DDRPHYC_BISTRR_BDXSEL_MASK, +			datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT); + +	/*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/ +	/* Write BISTRR.BDXSEL = datx8; */ +} + +/* Perform BIST Write_Read test on a byte lane and return test result. */ +static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte, +		      struct BIST_result *bist) +{ +	bool result = true; /* BIST_SUCCESS */ +	u32 cnt = 0; +	u32 error = 0; + +	bist->test_result = true; + +run: +	itm_soft_reset(phy); + +	/*Perform BIST Reset*/ +	/* Write BISTRR.BINST = 3?b011; */ +	clrsetbits_le32(&phy->bistrr, +			0x00000007, +			0x00000003); + +	/*Re-seed LFSR*/ +	/* Write BISTLSR.SEED = 32'h1234ABCD; */ +	if (BIST_seed) +		writel(BIST_seed, &phy->bistlsr); +	else +		writel(rand(), &phy->bistlsr); + +	/* some delay to reset BIST */ +	mdelay(1); + +	/*Perform BIST Run*/ +	clrsetbits_le32(&phy->bistrr, +			0x00000007, +			0x00000001); +	/* Write BISTRR.BINST = 3?b001; */ + +	/* Wait for a number of CTL clocks before reading BIST register*/ +	/* Wait 300 ctl_clk cycles;  ... IS it really needed?? */ +	/* Perform BIST Instruction Stop*/ +	/* Write BISTRR.BINST = 3?b010;*/ + +	/* poll on BISTGSR.BDONE. If 0, wait.  ++TODO Add timeout */ +	while (!(readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDDONE)) +		; + +	/*Check if received correct number of words*/ +	/* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */ +	if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT) == +	    readl(&phy->bistwcr)) { +		/*Determine if there is a data comparison error*/ +		/* if (Read BISTGSR.BDXERR = 1?b0) */ +		if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR) +			result = false; /* BIST_FAIL; */ +		else +			result = true; /* BIST_SUCCESS; */ +	} else { +		result = false; /* BIST_FAIL; */ +	} + +	/* loop while success */ +	cnt++; +	if (result && cnt != 1000) +		goto run; + +	if (!result) +		error++; + +	if (error < BIST_error_max) { +		if (cnt != 1000) +			goto run; +		bist->test_result = true; +	} else { +		bist->test_result = false; +	} +} + +/* After running the deskew algo, this function applies the new DQ delays + * by reading them from the array "deskew_delay"and writing in PHY registers. + * The bits that are not deskewed parfectly (too much skew on them, + * or data eye very wide) are marked in the array deskew_non_converge. + */ +static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte, +				 u8 deskew_delay[NUM_BYTES][8], +				 u8 deskew_non_converge[NUM_BYTES][8]) +{ +	u8  bit_i; +	u8  index; + +	for (bit_i = 0; bit_i < 8; bit_i++) { +		set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]); +		index = DQ_unit_index(phy, byte, bit_i); +		pr_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]", +			 byte, bit_i, deskew_delay[byte][bit_i], +			 index, index - 3); +		printf("Byte %d, bit %d, DQ delay = %d", +		       byte, bit_i, deskew_delay[byte][bit_i]); +		if (deskew_non_converge[byte][bit_i] == 1) +			pr_debug(" - not converged : still more skew"); +		printf("\n"); +	} +} + +/* DQ Bit de-skew algorithm. + * Deskews data lines as much as possible. + * 1. Add delay to DQS line until finding the failure + *    (normally a hold time violation) + * 2. Reduce DQS line by small steps until finding the very first time + *    we go back to "Pass" condition. + * 3. For each DQ line, Reduce DQ delay until finding the very first failure + *    (normally a hold time fail) + * 4. When all bits are at their first failure delay, we can consider them + *    aligned. + * Handle conrer situation (Can't find Pass-fail, or fail-pass transitions + * at any step) + * TODO Provide a return Status. Improve doc + */ +static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl, +				   struct stm32mp1_ddrphy *phy, char *string) +{ +	/* New DQ delay value (index), set during Deskew algo */ +	u8 deskew_delay[NUM_BYTES][8]; +	/*If there is still skew on a bit, mark this bit. */ +	u8 deskew_non_converge[NUM_BYTES][8]; +	struct BIST_result result; +	s8 dqs_unit_delay_index = 0; +	u8 datx8 = 0; +	u8 bit_i = 0; +	s8 phase_idx = 0; +	s8 bit_i_delay_index = 0; +	u8 success = 0; +	struct tuning_position last_right_ok; +	u8 force_stop = 0; +	u8 fail_found; +	u8 error = 0; +	u8 nb_bytes = get_nb_bytes(ctl); +	/* u8 last_pass_dqs_unit = 0; */ + +	memset(deskew_delay, 0, sizeof(deskew_delay)); +	memset(deskew_non_converge, 0, sizeof(deskew_non_converge)); + +	/*Disable DQS Drift Compensation*/ +	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); +	/*Disable all bytes*/ +	/* Disable automatic power down of DLL and IOs when disabling +	 * a byte (To avoid having to add programming and  delay +	 * for a DLL re-lock when later re-enabling a disabled Byte Lane) +	 */ +	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); + +	/* Disable all data bytes */ +	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); +	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); +	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); +	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); + +	/* Config the BIST block */ +	config_BIST(phy); +	pr_debug("BIST Config done.\n"); + +	/* Train each byte */ +	for (datx8 = 0; datx8 < nb_bytes; datx8++) { +		if (ctrlc()) { +			sprintf(string, "interrupted at byte %d/%d, error=%d", +				datx8 + 1, nb_bytes, error); +			return TEST_FAILED; +		} +		pr_debug("\n======================\n"); +		pr_debug("Start deskew byte %d .\n", datx8); +		pr_debug("======================\n"); +		/* Enable Byte (DXNGCR, bit DXEN) */ +		setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN); + +		/* Select the byte lane for comparison of read data */ +		BIST_datx8_sel(phy, datx8); + +		/* Set all DQDLYn to maximum value. All bits within the byte +		 * will be delayed with DQSTR = 2 instead of max = 3 +		 * to avoid inter bits fail influence +		 */ +		writel(0xAAAAAAAA, DXNDQTR(phy, datx8)); + +		/* Set the DQS phase delay to 90 DEG (default). +		 * What is defined here is the index of the desired config +		 * in the PHASE array. +		 */ +		phase_idx = _90deg; + +		/* Set DQS unit delay to the max value. */ +		dqs_unit_delay_index = MAX_DQS_UNIT_IDX; +		DQS_unit_delay(phy, datx8, dqs_unit_delay_index); +		DQS_phase_delay(phy, datx8, phase_idx); + +		/* Issue a DLL soft reset */ +		clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST); +		setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST); + +		/* Test this typical init condition */ +		BIST_test(phy, datx8, &result); +		success = result.test_result; + +		/* If the test pass in this typical condition, +		 * start the algo with it. +		 * Else, look for Pass init condition +		 */ +		if (!success) { +			pr_debug("Fail at init condtion. Let's look for a good init condition.\n"); +			success = 0; /* init */ +			/* Make sure we start with a PASS condition before +			 * looking for a fail condition. +			 * Find the first PASS PHASE condition +			 */ + +			/* escape if we find a PASS */ +			pr_debug("increase Phase idx\n"); +			while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) { +				DQS_phase_delay(phy, datx8, phase_idx); +				BIST_test(phy, datx8, &result); +				success = result.test_result; +				phase_idx++; +			} +			/* if ended with success +			 * ==>> Restore the fist success condition +			 */ +			if (success) +				phase_idx--; /* because it ended with ++ */ +		} +		if (ctrlc()) { +			sprintf(string, "interrupted at byte %d/%d, error=%d", +				datx8 + 1, nb_bytes, error); +			return TEST_FAILED; +		} +		/* We couldn't find a successful condition, its seems +		 * we have hold violation, lets try reduce DQS_unit Delay +		 */ +		if (!success) { +			/* We couldn't find a successful condition, its seems +			 * we have hold violation, lets try reduce DQS_unit +			 * Delay +			 */ +			pr_debug("Still fail. Try decrease DQS Unit delay\n"); + +			phase_idx = 0; +			dqs_unit_delay_index = 0; +			DQS_phase_delay(phy, datx8, phase_idx); + +			/* escape if we find a PASS */ +			while (!success && +			       (dqs_unit_delay_index <= +				MAX_DQS_UNIT_IDX)) { +				DQS_unit_delay(phy, datx8, +					       dqs_unit_delay_index); +				BIST_test(phy, datx8, &result); +				success = result.test_result; +				dqs_unit_delay_index++; +			} +			if (success) { +				/* Restore the first success condition*/ +				dqs_unit_delay_index--; +				/* last_pass_dqs_unit = dqs_unit_delay_index;*/ +				DQS_unit_delay(phy, datx8, +					       dqs_unit_delay_index); +			} else { +				/* No need to continue, +				 * there is no pass region. +				 */ +				force_stop = 1; +			} +		} + +		/* There is an initial PASS condition +		 * Look for the first failing condition by PHASE stepping. +		 * This part of the algo can finish without converging. +		 */ +		if (force_stop) { +			printf("Result: Failed "); +			printf("[Cannot Deskew lines, "); +			printf("there is no PASS region]\n"); +			error++; +			continue; +		} +		if (ctrlc()) { +			sprintf(string, "interrupted at byte %d/%d, error=%d", +				datx8 + 1, nb_bytes, error); +			return TEST_FAILED; +		} + +		pr_debug("there is a pass region for phase idx %d\n", +			 phase_idx); +		pr_debug("Step1: Find the first failing condition\n"); +		/* Look for the first failing condition by PHASE stepping. +		 * This part of the algo can finish without converging. +		 */ + +		/* escape if we find a fail (hold time violation) +		 * condition at any bit or if out of delay range. +		 */ +		while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) { +			DQS_phase_delay(phy, datx8, phase_idx); +			BIST_test(phy, datx8, &result); +			success = result.test_result; +			phase_idx++; +		} +		if (ctrlc()) { +			sprintf(string, "interrupted at byte %d/%d, error=%d", +				datx8 + 1, nb_bytes, error); +			return TEST_FAILED; +		} + +		/* if the loop ended with a failing condition at any bit, +		 * lets look for the first previous success condition by unit +		 * stepping (minimal delay) +		 */ +		if (!success) { +			pr_debug("Fail region (PHASE) found phase idx %d\n", +				 phase_idx); +			pr_debug("Let's look for first success by DQS Unit steps\n"); +			/* This part, the algo always converge */ +			phase_idx--; + +			/* escape if we find a success condition +			 * or if out of delay range. +			 */ +			while (!success && dqs_unit_delay_index >= 0) { +				DQS_unit_delay(phy, datx8, +					       dqs_unit_delay_index); +				BIST_test(phy, datx8, &result); +				success = result.test_result; +				dqs_unit_delay_index--; +			} +			/* if the loop ended with a success condition, +			 * the last delay Right OK (before hold violation) +			 *  condition is then defined as following: +			 */ +			if (success) { +				/* Hold the dely parameters of the the last +				 * delay Right OK condition. +				 * -1 to get back to current condition +				 */ +				last_right_ok.phase = phase_idx; +				/*+1 to get back to current condition */ +				last_right_ok.unit = dqs_unit_delay_index + 1; +				last_right_ok.bits_delay = 0xFFFFFFFF; +				pr_debug("Found %d\n", dqs_unit_delay_index); +			} else { +				/* the last OK condition is then with the +				 * previous phase_idx. +				 * -2 instead of -1 because at the last +				 * iteration of the while(), +				 * we incremented phase_idx +				 */ +				last_right_ok.phase = phase_idx - 1; +				/* Nominal+1. Because we want the previous +				 * delay after reducing the phase delay. +				 */ +				last_right_ok.unit = 1; +				last_right_ok.bits_delay = 0xFFFFFFFF; +				pr_debug("Not Found : try previous phase %d\n", +					 phase_idx - 1); + +				DQS_phase_delay(phy, datx8, phase_idx - 1); +				dqs_unit_delay_index = 0; +				success = true; +				while (success && +				       (dqs_unit_delay_index < +					MAX_DQS_UNIT_IDX)) { +					DQS_unit_delay(phy, datx8, +						       dqs_unit_delay_index); +					BIST_test(phy, datx8, &result); +					success = result.test_result; +					dqs_unit_delay_index++; +					pr_debug("dqs_unit_delay_index = %d, result = %d\n", +						 dqs_unit_delay_index, success); +				} + +				if (!success) { +					last_right_ok.unit = +						 dqs_unit_delay_index - 1; +				} else { +					last_right_ok.unit = 0; +					pr_debug("ERROR: failed region not FOUND"); +				} +			} +		} else { +			/* we can't find a failing  condition at all bits +			 * ==> Just hold the last test condition +			 * (the max DQS delay) +			 * which is the most likely, +			 * the closest to a hold violation +			 * If we can't find a Fail condition after +			 * the Pass region, stick at this position +			 * In order to have max chances to find a fail +			 * when reducing DQ delays. +			 */ +			last_right_ok.phase = MAX_DQS_PHASE_IDX; +			last_right_ok.unit = MAX_DQS_UNIT_IDX; +			last_right_ok.bits_delay = 0xFFFFFFFF; +			pr_debug("Can't find the a fail condition\n"); +		} + +		/* step 2: +		 * if we arrive at this stage, it means that we found the last +		 * Right OK condition (by tweeking the DQS delay). Or we simply +		 * pushed DQS delay to the max +		 * This means that by reducing the delay on some DQ bits, +		 * we should find a failing condition. +		 */ +		printf("Byte %d, DQS unit = %d, phase = %d\n", +		       datx8, last_right_ok.unit, last_right_ok.phase); +		pr_debug("Step2, unit = %d, phase = %d, bits delay=%x\n", +			 last_right_ok.unit, last_right_ok.phase, +			 last_right_ok.bits_delay); + +		/* Restore the last_right_ok condtion. */ +		DQS_unit_delay(phy, datx8, last_right_ok.unit); +		DQS_phase_delay(phy, datx8, last_right_ok.phase); +		writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8)); + +		/* train each bit +		 * reduce delay on each bit, and perform a write/read test +		 * and stop at the very first time it fails. +		 * the goal is the find the first failing condition +		 * for each bit. +		 * When we achieve this condition<  for all the bits, +		 * we are sure they are aligned (+/- step resolution) +		 */ +		fail_found = 0; +		for (bit_i = 0; bit_i < 8; bit_i++) { +			if (ctrlc()) { +				sprintf(string, +					"interrupted at byte %d/%d, error=%d", +					datx8 + 1, nb_bytes, error); +				return error; +			} +			pr_debug("deskewing bit %d:\n", bit_i); +			success = 1; /* init */ +			/* Set all DQDLYn to maximum value. +			 * Only bit_i will be down-delayed +			 * ==> if we have a fail, it will be definitely +			 *     from bit_i +			 */ +			writel(0xFFFFFFFF, DXNDQTR(phy, datx8)); +			/* Arriving at this stage, +			 * we have a success condition with delay = 3; +			 */ +			bit_i_delay_index = 3; + +			/* escape if bit delay is out of range or +			 * if a fatil occurs +			 */ +			while ((bit_i_delay_index >= 0) && success) { +				set_DQ_unit_delay(phy, datx8, +						  bit_i, +						  bit_i_delay_index); +				BIST_test(phy, datx8, &result); +				success = result.test_result; +				bit_i_delay_index--; +			} + +			/* if escape with a fail condition +			 * ==> save this position for bit_i +			 */ +			if (!success) { +				/* save the delay position. +				 * Add 1 because the while loop ended with a --, +				 * and that we need to hold the last success +				 *  delay +				 */ +				deskew_delay[datx8][bit_i] = +					bit_i_delay_index + 2; +				if (deskew_delay[datx8][bit_i] > 3) +					deskew_delay[datx8][bit_i] = 3; + +				/* A flag that states we found at least a fail +				 * at one bit. +				 */ +				fail_found = 1; +				pr_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n", +					 bit_i, bit_i_delay_index + 1, +					 datx8, bit_i, +					 deskew_delay[datx8][bit_i]); +			} else { +				/* if we can find a success condition by +				 * back-delaying this bit, just set the delay +				 * to 0 (the best deskew +				 * possible) and mark the bit. +				 */ +				deskew_delay[datx8][bit_i] = 0; +				/* set a flag that will be used later +				 * in the report. +				 */ +				deskew_non_converge[datx8][bit_i] = 1; +				pr_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n", +					 bit_i, datx8, bit_i, +					 deskew_delay[datx8][bit_i]); +			} +		} +		pr_debug("**********byte %d tuning complete************\n", +			 datx8); +		/* If we can't find any failure by back delaying DQ lines, +		 * hold the default values +		 */ +		if (!fail_found) { +			for (bit_i = 0; bit_i < 8; bit_i++) +				deskew_delay[datx8][bit_i] = 0; +			pr_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n"); +		} + +		apply_deskew_results(phy, datx8, deskew_delay, +				     deskew_non_converge); +		/* Restore nominal value for DQS delay */ +		DQS_phase_delay(phy, datx8, 3); +		DQS_unit_delay(phy, datx8, 3); +		/* disable byte after byte bits deskew */ +		clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN); +	}  /* end of byte deskew */ + +	/* re-enable all data bytes */ +	setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); +	setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); +	setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); +	setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); + +	if (error) { +		sprintf(string, "error = %d", error); +		return TEST_FAILED; +	} + +	return TEST_PASSED; +} /* end function */ + +/* Trim DQS timings and set it in the centre of data eye. + * Look for a PPPPF region, then look for a FPPP region and finally select + * the mid of the FPPPPPF region + */ +static enum test_result eye_training(struct stm32mp1_ddrctl *ctl, +				     struct stm32mp1_ddrphy *phy, char *string) +{ +	/*Stores the DQS trim values (PHASE index, unit index) */ +	u8 eye_training_val[NUM_BYTES][2]; +	u8 byte = 0; +	struct BIST_result result; +	s8 dqs_unit_delay_index = 0; +	s8 phase_idx = 0; +	s8 dqs_unit_delay_index_pass = 0; +	s8 phase_idx_pass = 0; +	u8 success = 0; +	u8 left_phase_bound_found, right_phase_bound_found; +	u8 left_unit_bound_found, right_unit_bound_found; +	u8 left_bound_found, right_bound_found; +	struct tuning_position left_bound, right_bound; +	u8 error = 0; +	u8 nb_bytes = get_nb_bytes(ctl); + +	/*Disable DQS Drift Compensation*/ +	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); +	/*Disable all bytes*/ +	/* Disable automatic power down of DLL and IOs when disabling a byte +	 * (To avoid having to add programming and  delay +	 * for a DLL re-lock when later re-enabling a disabled Byte Lane) +	 */ +	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); + +	/*Disable all data bytes */ +	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); +	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); +	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); +	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); + +	/* Config the BIST block */ +	config_BIST(phy); + +	for (byte = 0; byte < nb_bytes; byte++) { +		if (ctrlc()) { +			sprintf(string, "interrupted at byte %d/%d, error=%d", +				byte + 1, nb_bytes, error); +			return TEST_FAILED; +		} +		right_bound.phase = 0; +		right_bound.unit = 0; + +		left_bound.phase = 0; +		left_bound.unit = 0; + +		left_phase_bound_found = 0; +		right_phase_bound_found = 0; + +		left_unit_bound_found = 0; +		right_unit_bound_found = 0; + +		left_bound_found = 0; +		right_bound_found = 0; + +		/* Enable Byte (DXNGCR, bit DXEN) */ +		setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN); + +		/* Select the byte lane for comparison of read data */ +		BIST_datx8_sel(phy, byte); + +		/* Set DQS phase delay to the nominal value. */ +		phase_idx = _90deg; +		phase_idx_pass = phase_idx; + +		/* Set DQS unit delay to the nominal value. */ +		dqs_unit_delay_index = 3; +		dqs_unit_delay_index_pass = dqs_unit_delay_index; +		success = 0; + +		pr_debug("STEP0: Find Init delay\n"); +		/* STEP0: Find Init delay: a delay that put the system +		 * in a "Pass" condition then (TODO) update +		 * dqs_unit_delay_index_pass & phase_idx_pass +		 */ +		DQS_unit_delay(phy, byte, dqs_unit_delay_index); +		DQS_phase_delay(phy, byte, phase_idx); +		BIST_test(phy, byte, &result); +		success = result.test_result; +		/* If we have a fail in the nominal condition */ +		if (!success) { +			/* Look at the left */ +			while (phase_idx >= 0 && !success) { +				phase_idx--; +				DQS_phase_delay(phy, byte, phase_idx); +				BIST_test(phy, byte, &result); +				success = result.test_result; +			} +		} +		if (!success) { +			/* if we can't find pass condition, +			 * then look at the right +			 */ +			phase_idx = _90deg; +			while (phase_idx <= MAX_DQS_PHASE_IDX && +			       !success) { +				phase_idx++; +				DQS_phase_delay(phy, byte, +						phase_idx); +				BIST_test(phy, byte, &result); +				success = result.test_result; +			} +		} +		/* save the pass condition */ +		if (success) { +			phase_idx_pass = phase_idx; +		} else { +			printf("Result: Failed "); +			printf("[Cannot DQS timings, "); +			printf("there is no PASS region]\n"); +			error++; +			continue; +		} + +		if (ctrlc()) { +			sprintf(string, "interrupted at byte %d/%d, error=%d", +				byte + 1, nb_bytes, error); +			return TEST_FAILED; +		} +		pr_debug("STEP1: Find LEFT PHASE DQS Bound\n"); +		/* STEP1: Find LEFT PHASE DQS Bound */ +		while ((phase_idx >= 0) && +		       (phase_idx <= MAX_DQS_PHASE_IDX) && +		       !left_phase_bound_found) { +			DQS_unit_delay(phy, byte, +				       dqs_unit_delay_index); +			DQS_phase_delay(phy, byte, +					phase_idx); +			BIST_test(phy, byte, &result); +			success = result.test_result; + +			/*TODO: Manage the case were at the beginning +			 * there is already a fail +			 */ +			if (!success) { +				/* the last pass condition */ +				left_bound.phase = ++phase_idx; +				left_phase_bound_found = 1; +			} else if (success) { +				phase_idx--; +			} +		} +		if (!left_phase_bound_found) { +			left_bound.phase = 0; +			phase_idx = 0; +		} +		/* If not found, lets take 0 */ + +		if (ctrlc()) { +			sprintf(string, "interrupted at byte %d/%d, error=%d", +				byte + 1, nb_bytes, error); +			return TEST_FAILED; +		} +		pr_debug("STEP2: Find UNIT left bound\n"); +		/* STEP2: Find UNIT left bound */ +		while ((dqs_unit_delay_index >= 0) && +		       !left_unit_bound_found) { +			DQS_unit_delay(phy, byte, +				       dqs_unit_delay_index); +			DQS_phase_delay(phy, byte, phase_idx); +			BIST_test(phy, byte, &result); +			success = result.test_result; +			if (!success) { +				left_bound.unit = +					++dqs_unit_delay_index; +				left_unit_bound_found = 1; +				left_bound_found = 1; +			} else if (success) { +				dqs_unit_delay_index--; +			} +		} + +		/* If not found, lets take 0 */ +		if (!left_unit_bound_found) +			left_bound.unit = 0; + +		if (ctrlc()) { +			sprintf(string, "interrupted at byte %d/%d, error=%d", +				byte + 1, nb_bytes, error); +			return TEST_FAILED; +		} +		pr_debug("STEP3: Find PHase right bound\n"); +		/* STEP3: Find PHase right bound, start with "pass" +		 * condition +		 */ + +		/* Set DQS phase delay to the pass value. */ +		phase_idx = phase_idx_pass; + +		/* Set DQS unit delay to the pass value. */ +		dqs_unit_delay_index = dqs_unit_delay_index_pass; + +		while ((phase_idx <= MAX_DQS_PHASE_IDX) && +		       !right_phase_bound_found) { +			DQS_unit_delay(phy, byte, +				       dqs_unit_delay_index); +			DQS_phase_delay(phy, byte, phase_idx); +			BIST_test(phy, byte, &result); +			success = result.test_result; +			if (!success) { +				/* the last pass condition */ +				right_bound.phase = --phase_idx; +				right_phase_bound_found = 1; +			} else if (success) { +				phase_idx++; +			} +		} + +		/* If not found, lets take the max value */ +		if (!right_phase_bound_found) { +			right_bound.phase = MAX_DQS_PHASE_IDX; +			phase_idx = MAX_DQS_PHASE_IDX; +		} + +		if (ctrlc()) { +			sprintf(string, "interrupted at byte %d/%d, error=%d", +				byte + 1, nb_bytes, error); +			return TEST_FAILED; +		} +		pr_debug("STEP4: Find UNIT right bound\n"); +		/* STEP4: Find UNIT right bound */ +		while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) && +		       !right_unit_bound_found) { +			DQS_unit_delay(phy, byte, +				       dqs_unit_delay_index); +			DQS_phase_delay(phy, byte, phase_idx); +			BIST_test(phy, byte, &result); +			success = result.test_result; +			if (!success) { +				right_bound.unit = +					--dqs_unit_delay_index; +				right_unit_bound_found = 1; +				right_bound_found = 1; +			} else if (success) { +				dqs_unit_delay_index++; +			} +		} +		/* If not found, lets take the max value */ +		if (!right_unit_bound_found) +			right_bound.unit = MAX_DQS_UNIT_IDX; + +		/* If we found a regular FAil Pass FAil pattern +		 * FFPPPPPPFF +		 * OR PPPPPFF  Or FFPPPPP +		 */ + +		if (left_bound_found || right_bound_found) { +			eye_training_val[byte][0] = (right_bound.phase + +						 left_bound.phase) / 2; +			eye_training_val[byte][1] = (right_bound.unit + +						 left_bound.unit) / 2; + +			/* If we already lost 1/2PHASE Tuning, +			 * let's try to recover by ++ on unit +			 */ +			if (((right_bound.phase + left_bound.phase) % 2 == 1) && +			    eye_training_val[byte][1] != MAX_DQS_UNIT_IDX) +				eye_training_val[byte][1]++; +			pr_debug("** found phase : %d -  %d & unit %d - %d\n", +				 right_bound.phase, left_bound.phase, +				 right_bound.unit, left_bound.unit); +			pr_debug("** calculating mid region: phase: %d  unit: %d (nominal is 3)\n", +				 eye_training_val[byte][0], +				 eye_training_val[byte][1]); +		} else { +			/* PPPPPPPPPP, we're already good. +			 * Set nominal values. +			 */ +			eye_training_val[byte][0] = 3; +			eye_training_val[byte][1] = 3; +		} +		DQS_phase_delay(phy, byte, eye_training_val[byte][0]); +		DQS_unit_delay(phy, byte, eye_training_val[byte][1]); + +		printf("Byte %d, DQS unit = %d, phase = %d\n", +		       byte, +		       eye_training_val[byte][1], +		       eye_training_val[byte][0]); +	} + +	if (error) { +		sprintf(string, "error = %d", error); +		return TEST_FAILED; +	} + +	return TEST_PASSED; +} + +static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte) +{ +	u8 i = 0; + +	printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n  ", +	       byte); + +	for (i = 0; i < 8; i++) +		printf("%d ", DQ_unit_index(phy, byte, i)); +	printf("\n"); + +	printf("dxndllcr: [%08x] val:%08x\n", +	       DXNDLLCR(phy, byte), +	       readl(DXNDLLCR(phy, byte))); +	printf("dxnqdstr: [%08x] val:%08x\n", +	       DXNDQSTR(phy, byte), +	       readl(DXNDQSTR(phy, byte))); +	printf("dxndqtr: [%08x] val:%08x\n", +	       DXNDQTR(phy, byte), +	       readl(DXNDQTR(phy, byte))); +} + +/* analyse the dgs gating log table, and determine the midpoint.*/ +static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte, +				       u8 dqs_gating[NUM_BYTES] +						    [MAX_GSL_IDX + 1] +						    [MAX_GPS_IDX + 1]) +{ +	/* stores the dqs gate values (gsl index, gps index) */ +	u8 dqs_gate_values[NUM_BYTES][2]; +	u8 gsl_idx, gps_idx = 0; +	u8 left_bound_idx[2] = {0, 0}; +	u8 right_bound_idx[2] = {0, 0}; +	u8 left_bound_found = 0; +	u8 right_bound_found = 0; +	u8 intermittent = 0; +	u8 value; + +	for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) { +		for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) { +			value = dqs_gating[byte][gsl_idx][gps_idx]; +			if (value == 1 && left_bound_found == 0) { +				left_bound_idx[0] = gsl_idx; +				left_bound_idx[1] = gps_idx; +				left_bound_found = 1; +			} else if (value == 0 && +				   left_bound_found == 1 && +				   !right_bound_found) { +				if (gps_idx == 0) { +					right_bound_idx[0] = gsl_idx - 1; +					right_bound_idx[1] = MAX_GPS_IDX; +				} else { +					right_bound_idx[0] = gsl_idx; +					right_bound_idx[1] = gps_idx - 1; +				} +				right_bound_found = 1; +			} else if (value == 1 && +				   right_bound_found == 1) { +				intermittent = 1; +			} +		} +	} + +	/* if only ppppppp is found, there is no mid region. */ +	if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 && +	    right_bound_idx[0] == 0 && right_bound_idx[1] == 0) +		intermittent = 1; + +	/*if we found a regular fail pass fail pattern ffppppppff +	 * or pppppff  or ffppppp +	 */ +	if (!intermittent) { +		/*if we found a regular fail pass fail pattern ffppppppff +		 * or pppppff  or ffppppp +		 */ +		if (left_bound_found || right_bound_found) { +			pr_debug("idx0(%d): %d %d      idx1(%d) : %d %d\n", +				 left_bound_found, +				 right_bound_idx[0], left_bound_idx[0], +				 right_bound_found, +				 right_bound_idx[1], left_bound_idx[1]); +			dqs_gate_values[byte][0] = +				(right_bound_idx[0] + left_bound_idx[0]) / 2; +			dqs_gate_values[byte][1] = +				(right_bound_idx[1] + left_bound_idx[1]) / 2; +			/* if we already lost 1/2gsl tuning, +			 * let's try to recover by ++ on gps +			 */ +			if (((right_bound_idx[0] + +			      left_bound_idx[0]) % 2 == 1) && +			    dqs_gate_values[byte][1] != MAX_GPS_IDX) +				dqs_gate_values[byte][1]++; +			/* if we already lost 1/2gsl tuning and gps is on max*/ +			else if (((right_bound_idx[0] + +				   left_bound_idx[0]) % 2 == 1) && +				 dqs_gate_values[byte][1] == MAX_GPS_IDX) { +				dqs_gate_values[byte][1] = 0; +				dqs_gate_values[byte][0]++; +			} +			/* if we have gsl left and write limit too close +			 * (difference=1) +			 */ +			if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) { +				dqs_gate_values[byte][1] = (left_bound_idx[1] + +							    right_bound_idx[1] + +							    4) / 2; +				if (dqs_gate_values[byte][1] >= 4) { +					dqs_gate_values[byte][0] = +						right_bound_idx[0]; +					dqs_gate_values[byte][1] -= 4; +				} else { +					dqs_gate_values[byte][0] = +						left_bound_idx[0]; +				} +			} +			pr_debug("*******calculating mid region: system latency: %d  phase: %d********\n", +				 dqs_gate_values[byte][0], +				 dqs_gate_values[byte][1]); +			pr_debug("*******the nominal values were system latency: 0  phase: 2*******\n"); +			set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]); +			set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]); +		} +	} else { +		/* if intermitant, restore defaut values */ +		pr_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n"); +		set_r0dgsl_delay(phy, byte, 0); +		set_r0dgps_delay(phy, byte, 2); +	} + +	/* return 0 if intermittent or if both left_bound +	 * and right_bound are not found +	 */ +	return !(intermittent || (left_bound_found && right_bound_found)); +} + +static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl, +					struct stm32mp1_ddrphy *phy, +					char *string) +{ +	/* stores the log of pass/fail */ +	u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1]; +	u8 byte, gsl_idx, gps_idx = 0; +	struct BIST_result result; +	u8 success = 0; +	u8 nb_bytes = get_nb_bytes(ctl); + +	memset(dqs_gating, 0x0, sizeof(dqs_gating)); + +	/*disable dqs drift compensation*/ +	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); +	/*disable all bytes*/ +	/* disable automatic power down of dll and ios when disabling a byte +	 * (to avoid having to add programming and  delay +	 * for a dll re-lock when later re-enabling a disabled byte lane) +	 */ +	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); + +	/* disable all data bytes */ +	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); +	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); +	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); +	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); + +	/* config the bist block */ +	config_BIST(phy); + +	for (byte = 0; byte < nb_bytes; byte++) { +		if (ctrlc()) { +			sprintf(string, "interrupted at byte %d/%d", +				byte + 1, nb_bytes); +			return TEST_FAILED; +		} +		/* enable byte x (dxngcr, bit dxen) */ +		setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN); + +		/* select the byte lane for comparison of read data */ +		BIST_datx8_sel(phy, byte); +		for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) { +			for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) { +				if (ctrlc()) { +					sprintf(string, +						"interrupted at byte %d/%d", +						byte + 1, nb_bytes); +					return TEST_FAILED; +				} +				/* write cfg to dxndqstr */ +				set_r0dgsl_delay(phy, byte, gsl_idx); +				set_r0dgps_delay(phy, byte, gps_idx); + +				BIST_test(phy, byte, &result); +				success = result.test_result; +				if (success) +					dqs_gating[byte][gsl_idx][gps_idx] = 1; +				itm_soft_reset(phy); +			} +		} +		set_midpoint_read_dqs_gating(phy, byte, dqs_gating); +		/* dummy reads */ +		readl(0xc0000000); +		readl(0xc0000000); +	} + +	/* re-enable drift compensation */ +	/* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */ +	return TEST_PASSED; +} + +/**************************************************************** + * TEST + **************************************************************** + */ +static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl, +					   struct stm32mp1_ddrphy *phy, +					   char *string, int argc, +					   char *argv[]) +{ +	u32 rfshctl3 = readl(&ctl->rfshctl3); +	u32 pwrctl = readl(&ctl->pwrctl); +	enum test_result res; + +	stm32mp1_refresh_disable(ctl); +	res = read_dqs_gating(ctl, phy, string); +	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); + +	return res; +} + +static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl, +				      struct stm32mp1_ddrphy *phy, +				      char *string, int argc, char *argv[]) +{ +	u32 rfshctl3 = readl(&ctl->rfshctl3); +	u32 pwrctl = readl(&ctl->pwrctl); +	enum test_result res; + +	stm32mp1_refresh_disable(ctl); +	res = bit_deskew(ctl, phy, string); +	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); + +	return res; +} + +static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl, +					struct stm32mp1_ddrphy *phy, +					char *string, int argc, char *argv[]) +{ +	u32 rfshctl3 = readl(&ctl->rfshctl3); +	u32 pwrctl = readl(&ctl->pwrctl); +	enum test_result res; + +	stm32mp1_refresh_disable(ctl); +	res = eye_training(ctl, phy, string); +	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); + +	return res; +} + +static enum test_result do_display(struct stm32mp1_ddrctl *ctl, +				   struct stm32mp1_ddrphy *phy, +				   char *string, int argc, char *argv[]) +{ +	int byte; +	u8 nb_bytes = get_nb_bytes(ctl); + +	for (byte = 0; byte < nb_bytes; byte++) +		display_reg_results(phy, byte); + +	return TEST_PASSED; +} + +static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl, +				       struct stm32mp1_ddrphy *phy, +				       char *string, int argc, char *argv[]) +{ +	unsigned long value; + +	if (argc > 0) { +		if (strict_strtoul(argv[0], 0, &value) < 0) { +			sprintf(string, "invalid nbErr %s", argv[0]); +			return TEST_FAILED; +		} +		BIST_error_max = value; +	} +	if (argc > 1) { +		if (strict_strtoul(argv[1], 0, &value) < 0) { +			sprintf(string, "invalid Seed %s", argv[1]); +			return TEST_FAILED; +		} +		BIST_seed = value; +	} +	printf("Bist.nbErr = %d\n", BIST_error_max); +	if (BIST_seed) +		printf("Bist.Seed = 0x%x\n", BIST_seed); +	else +		printf("Bist.Seed = random\n"); + +	return TEST_PASSED; +} + +/**************************************************************** + * TEST Description + **************************************************************** + */ + +const struct test_desc tuning[] = { +	{do_read_dqs_gating, "Read DQS gating", +		"software read DQS Gating", "", 0 }, +	{do_bit_deskew, "Bit de-skew", "", "", 0 }, +	{do_eye_training, "Eye Training", "or DQS training", "", 0 }, +	{do_display, "Display registers", "", "", 0 }, +	{do_bist_config, "Bist config", "[nbErr] [seed]", +	 "configure Bist test", 2}, +}; + +const int tuning_nb = ARRAY_SIZE(tuning); | 
