summaryrefslogtreecommitdiff
path: root/library/bignum.c
diff options
context:
space:
mode:
Diffstat (limited to 'library/bignum.c')
-rw-r--r--library/bignum.c2464
1 files changed, 2464 insertions, 0 deletions
diff --git a/library/bignum.c b/library/bignum.c
new file mode 100644
index 00000000000..c45fd5bf248
--- /dev/null
+++ b/library/bignum.c
@@ -0,0 +1,2464 @@
+/*
+ * Multi-precision integer library
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * The following sources were referenced in the design of this Multi-precision
+ * Integer library:
+ *
+ * [1] Handbook of Applied Cryptography - 1997
+ * Menezes, van Oorschot and Vanstone
+ *
+ * [2] Multi-Precision Math
+ * Tom St Denis
+ * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
+ *
+ * [3] GNU Multi-Precision Arithmetic Library
+ * https://gmplib.org/manual/index.html
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+#include "mbedtls/bignum.h"
+#include "bignum_core.h"
+#include "bn_mul.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "constant_time_internal.h"
+
+#include <limits.h>
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+
+
+/*
+ * Conditionally select an MPI sign in constant time.
+ * (MPI sign is the field s in mbedtls_mpi. It is unsigned short and only 1 and -1 are valid
+ * values.)
+ */
+static inline signed short mbedtls_ct_mpi_sign_if(mbedtls_ct_condition_t cond,
+ signed short sign1, signed short sign2)
+{
+ return (signed short) mbedtls_ct_uint_if(cond, sign1 + 1, sign2 + 1) - 1;
+}
+
+/*
+ * Compare signed values in constant time
+ */
+int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
+ const mbedtls_mpi *Y,
+ unsigned *ret)
+{
+ mbedtls_ct_condition_t different_sign, X_is_negative, Y_is_negative, result;
+
+ if (X->n != Y->n) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Set N_is_negative to MBEDTLS_CT_FALSE if N >= 0, MBEDTLS_CT_TRUE if N < 0.
+ * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
+ */
+ X_is_negative = mbedtls_ct_bool((X->s & 2) >> 1);
+ Y_is_negative = mbedtls_ct_bool((Y->s & 2) >> 1);
+
+ /*
+ * If the signs are different, then the positive operand is the bigger.
+ * That is if X is negative (X_is_negative == 1), then X < Y is true and it
+ * is false if X is positive (X_is_negative == 0).
+ */
+ different_sign = mbedtls_ct_bool_ne(X_is_negative, Y_is_negative); // true if different sign
+ result = mbedtls_ct_bool_and(different_sign, X_is_negative);
+
+ /*
+ * Assuming signs are the same, compare X and Y. We switch the comparison
+ * order if they are negative so that we get the right result, regardles of
+ * sign.
+ */
+
+ /* This array is used to conditionally swap the pointers in const time */
+ void * const p[2] = { X->p, Y->p };
+ size_t i = mbedtls_ct_size_if_else_0(X_is_negative, 1);
+ mbedtls_ct_condition_t lt = mbedtls_mpi_core_lt_ct(p[i], p[i ^ 1], X->n);
+
+ /*
+ * Store in result iff the signs are the same (i.e., iff different_sign == false). If
+ * the signs differ, result has already been set, so we don't change it.
+ */
+ result = mbedtls_ct_bool_or(result,
+ mbedtls_ct_bool_and(mbedtls_ct_bool_not(different_sign), lt));
+
+ *ret = mbedtls_ct_uint_if_else_0(result, 1);
+
+ return 0;
+}
+
+/*
+ * Conditionally assign X = Y, without leaking information
+ * about whether the assignment was made or not.
+ * (Leaking information about the respective sizes of X and Y is ok however.)
+ */
+#if defined(_MSC_VER) && defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64) && \
+ (_MSC_FULL_VER < 193131103)
+/*
+ * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
+ * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
+ */
+__declspec(noinline)
+#endif
+int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
+ const mbedtls_mpi *Y,
+ unsigned char assign)
+{
+ int ret = 0;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
+
+ {
+ mbedtls_ct_condition_t do_assign = mbedtls_ct_bool(assign);
+
+ X->s = mbedtls_ct_mpi_sign_if(do_assign, Y->s, X->s);
+
+ mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, do_assign);
+
+ mbedtls_ct_condition_t do_not_assign = mbedtls_ct_bool_not(do_assign);
+ for (size_t i = Y->n; i < X->n; i++) {
+ X->p[i] = mbedtls_ct_mpi_uint_if_else_0(do_not_assign, X->p[i]);
+ }
+ }
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Conditionally swap X and Y, without leaking information
+ * about whether the swap was made or not.
+ * Here it is not ok to simply swap the pointers, which would lead to
+ * different memory access patterns when X and Y are used afterwards.
+ */
+int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
+ mbedtls_mpi *Y,
+ unsigned char swap)
+{
+ int ret = 0;
+ int s;
+
+ if (X == Y) {
+ return 0;
+ }
+
+ mbedtls_ct_condition_t do_swap = mbedtls_ct_bool(swap);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
+
+ s = X->s;
+ X->s = mbedtls_ct_mpi_sign_if(do_swap, Y->s, X->s);
+ Y->s = mbedtls_ct_mpi_sign_if(do_swap, s, Y->s);
+
+ mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, do_swap);
+
+cleanup:
+ return ret;
+}
+
+/* Implementation that should never be optimized out by the compiler */
+#define mbedtls_mpi_zeroize_and_free(v, n) mbedtls_zeroize_and_free(v, ciL * (n))
+
+/*
+ * Initialize one MPI
+ */
+void mbedtls_mpi_init(mbedtls_mpi *X)
+{
+ X->s = 1;
+ X->n = 0;
+ X->p = NULL;
+}
+
+/*
+ * Unallocate one MPI
+ */
+void mbedtls_mpi_free(mbedtls_mpi *X)
+{
+ if (X == NULL) {
+ return;
+ }
+
+ if (X->p != NULL) {
+ mbedtls_mpi_zeroize_and_free(X->p, X->n);
+ }
+
+ X->s = 1;
+ X->n = 0;
+ X->p = NULL;
+}
+
+/*
+ * Enlarge to the specified number of limbs
+ */
+int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
+{
+ mbedtls_mpi_uint *p;
+
+ if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ if (X->n < nblimbs) {
+ if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ if (X->p != NULL) {
+ memcpy(p, X->p, X->n * ciL);
+ mbedtls_mpi_zeroize_and_free(X->p, X->n);
+ }
+
+ /* nblimbs fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
+ * fits, and we've checked that nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
+ X->n = (unsigned short) nblimbs;
+ X->p = p;
+ }
+
+ return 0;
+}
+
+/*
+ * Resize down as much as possible,
+ * while keeping at least the specified number of limbs
+ */
+int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
+{
+ mbedtls_mpi_uint *p;
+ size_t i;
+
+ if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ /* Actually resize up if there are currently fewer than nblimbs limbs. */
+ if (X->n <= nblimbs) {
+ return mbedtls_mpi_grow(X, nblimbs);
+ }
+ /* After this point, then X->n > nblimbs and in particular X->n > 0. */
+
+ for (i = X->n - 1; i > 0; i--) {
+ if (X->p[i] != 0) {
+ break;
+ }
+ }
+ i++;
+
+ if (i < nblimbs) {
+ i = nblimbs;
+ }
+
+ if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ if (X->p != NULL) {
+ memcpy(p, X->p, i * ciL);
+ mbedtls_mpi_zeroize_and_free(X->p, X->n);
+ }
+
+ /* i fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
+ * fits, and we've checked that i <= nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
+ X->n = (unsigned short) i;
+ X->p = p;
+
+ return 0;
+}
+
+/* Resize X to have exactly n limbs and set it to 0. */
+static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
+{
+ if (limbs == 0) {
+ mbedtls_mpi_free(X);
+ return 0;
+ } else if (X->n == limbs) {
+ memset(X->p, 0, limbs * ciL);
+ X->s = 1;
+ return 0;
+ } else {
+ mbedtls_mpi_free(X);
+ return mbedtls_mpi_grow(X, limbs);
+ }
+}
+
+/*
+ * Copy the contents of Y into X.
+ *
+ * This function is not constant-time. Leading zeros in Y may be removed.
+ *
+ * Ensure that X does not shrink. This is not guaranteed by the public API,
+ * but some code in the bignum module might still rely on this property.
+ */
+int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
+{
+ int ret = 0;
+ size_t i;
+
+ if (X == Y) {
+ return 0;
+ }
+
+ if (Y->n == 0) {
+ if (X->n != 0) {
+ X->s = 1;
+ memset(X->p, 0, X->n * ciL);
+ }
+ return 0;
+ }
+
+ for (i = Y->n - 1; i > 0; i--) {
+ if (Y->p[i] != 0) {
+ break;
+ }
+ }
+ i++;
+
+ X->s = Y->s;
+
+ if (X->n < i) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
+ } else {
+ memset(X->p + i, 0, (X->n - i) * ciL);
+ }
+
+ memcpy(X->p, Y->p, i * ciL);
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Swap the contents of X and Y
+ */
+void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
+{
+ mbedtls_mpi T;
+
+ memcpy(&T, X, sizeof(mbedtls_mpi));
+ memcpy(X, Y, sizeof(mbedtls_mpi));
+ memcpy(Y, &T, sizeof(mbedtls_mpi));
+}
+
+static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
+{
+ if (z >= 0) {
+ return z;
+ }
+ /* Take care to handle the most negative value (-2^(biL-1)) correctly.
+ * A naive -z would have undefined behavior.
+ * Write this in a way that makes popular compilers happy (GCC, Clang,
+ * MSVC). */
+ return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
+}
+
+/* Convert x to a sign, i.e. to 1, if x is positive, or -1, if x is negative.
+ * This looks awkward but generates smaller code than (x < 0 ? -1 : 1) */
+#define TO_SIGN(x) ((mbedtls_mpi_sint) (((mbedtls_mpi_uint) x) >> (biL - 1)) * -2 + 1)
+
+/*
+ * Set value from integer
+ */
+int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
+ memset(X->p, 0, X->n * ciL);
+
+ X->p[0] = mpi_sint_abs(z);
+ X->s = TO_SIGN(z);
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Get a specific bit
+ */
+int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
+{
+ if (X->n * biL <= pos) {
+ return 0;
+ }
+
+ return (X->p[pos / biL] >> (pos % biL)) & 0x01;
+}
+
+/*
+ * Set a bit to a specific value of 0 or 1
+ */
+int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
+{
+ int ret = 0;
+ size_t off = pos / biL;
+ size_t idx = pos % biL;
+
+ if (val != 0 && val != 1) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (X->n * biL <= pos) {
+ if (val == 0) {
+ return 0;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
+ }
+
+ X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
+ X->p[off] |= (mbedtls_mpi_uint) val << idx;
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Return the number of less significant zero-bits
+ */
+size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
+{
+ size_t i;
+
+#if defined(__has_builtin)
+#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_ctz)
+ #define mbedtls_mpi_uint_ctz __builtin_ctz
+#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_ctzl)
+ #define mbedtls_mpi_uint_ctz __builtin_ctzl
+#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_ctzll)
+ #define mbedtls_mpi_uint_ctz __builtin_ctzll
+#endif
+#endif
+
+#if defined(mbedtls_mpi_uint_ctz)
+ for (i = 0; i < X->n; i++) {
+ if (X->p[i] != 0) {
+ return i * biL + mbedtls_mpi_uint_ctz(X->p[i]);
+ }
+ }
+#else
+ size_t count = 0;
+ for (i = 0; i < X->n; i++) {
+ for (size_t j = 0; j < biL; j++, count++) {
+ if (((X->p[i] >> j) & 1) != 0) {
+ return count;
+ }
+ }
+ }
+#endif
+
+ return 0;
+}
+
+/*
+ * Return the number of bits
+ */
+size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
+{
+ return mbedtls_mpi_core_bitlen(X->p, X->n);
+}
+
+/*
+ * Return the total size in bytes
+ */
+size_t mbedtls_mpi_size(const mbedtls_mpi *X)
+{
+ return (mbedtls_mpi_bitlen(X) + 7) >> 3;
+}
+
+/*
+ * Convert an ASCII character to digit value
+ */
+static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
+{
+ *d = 255;
+
+ if (c >= 0x30 && c <= 0x39) {
+ *d = c - 0x30;
+ }
+ if (c >= 0x41 && c <= 0x46) {
+ *d = c - 0x37;
+ }
+ if (c >= 0x61 && c <= 0x66) {
+ *d = c - 0x57;
+ }
+
+ if (*d >= (mbedtls_mpi_uint) radix) {
+ return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
+ }
+
+ return 0;
+}
+
+/*
+ * Import from an ASCII string
+ */
+int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, j, slen, n;
+ int sign = 1;
+ mbedtls_mpi_uint d;
+ mbedtls_mpi T;
+
+ if (radix < 2 || radix > 16) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&T);
+
+ if (s[0] == 0) {
+ mbedtls_mpi_free(X);
+ return 0;
+ }
+
+ if (s[0] == '-') {
+ ++s;
+ sign = -1;
+ }
+
+ slen = strlen(s);
+
+ if (radix == 16) {
+ if (slen > SIZE_MAX >> 2) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ n = BITS_TO_LIMBS(slen << 2);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
+
+ for (i = slen, j = 0; i > 0; i--, j++) {
+ MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
+ X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
+ }
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
+
+ for (i = 0; i < slen; i++) {
+ MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
+ }
+ }
+
+ if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
+ X->s = -1;
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&T);
+
+ return ret;
+}
+
+/*
+ * Helper to write the digits high-order first.
+ */
+static int mpi_write_hlp(mbedtls_mpi *X, int radix,
+ char **p, const size_t buflen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi_uint r;
+ size_t length = 0;
+ char *p_end = *p + buflen;
+
+ do {
+ if (length >= buflen) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
+ /*
+ * Write the residue in the current position, as an ASCII character.
+ */
+ if (r < 0xA) {
+ *(--p_end) = (char) ('0' + r);
+ } else {
+ *(--p_end) = (char) ('A' + (r - 0xA));
+ }
+
+ length++;
+ } while (mbedtls_mpi_cmp_int(X, 0) != 0);
+
+ memmove(*p, p_end, length);
+ *p += length;
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Export into an ASCII string
+ */
+int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
+ char *buf, size_t buflen, size_t *olen)
+{
+ int ret = 0;
+ size_t n;
+ char *p;
+ mbedtls_mpi T;
+
+ if (radix < 2 || radix > 16) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
+ if (radix >= 4) {
+ n >>= 1; /* Number of 4-adic digits necessary to present
+ * `n`. If radix > 4, this might be a strict
+ * overapproximation of the number of
+ * radix-adic digits needed to present `n`. */
+ }
+ if (radix >= 16) {
+ n >>= 1; /* Number of hexadecimal digits necessary to
+ * present `n`. */
+
+ }
+ n += 1; /* Terminating null byte */
+ n += 1; /* Compensate for the divisions above, which round down `n`
+ * in case it's not even. */
+ n += 1; /* Potential '-'-sign. */
+ n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
+ * which always uses an even number of hex-digits. */
+
+ if (buflen < n) {
+ *olen = n;
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+
+ p = buf;
+ mbedtls_mpi_init(&T);
+
+ if (X->s == -1) {
+ *p++ = '-';
+ buflen--;
+ }
+
+ if (radix == 16) {
+ int c;
+ size_t i, j, k;
+
+ for (i = X->n, k = 0; i > 0; i--) {
+ for (j = ciL; j > 0; j--) {
+ c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
+
+ if (c == 0 && k == 0 && (i + j) != 2) {
+ continue;
+ }
+
+ *(p++) = "0123456789ABCDEF" [c / 16];
+ *(p++) = "0123456789ABCDEF" [c % 16];
+ k = 1;
+ }
+ }
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
+
+ if (T.s == -1) {
+ T.s = 1;
+ }
+
+ MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
+ }
+
+ *p++ = '\0';
+ *olen = (size_t) (p - buf);
+
+cleanup:
+
+ mbedtls_mpi_free(&T);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_FS_IO)
+/*
+ * Read X from an opened file
+ */
+int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
+{
+ mbedtls_mpi_uint d;
+ size_t slen;
+ char *p;
+ /*
+ * Buffer should have space for (short) label and decimal formatted MPI,
+ * newline characters and '\0'
+ */
+ char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
+
+ if (radix < 2 || radix > 16) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ memset(s, 0, sizeof(s));
+ if (fgets(s, sizeof(s) - 1, fin) == NULL) {
+ return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
+ }
+
+ slen = strlen(s);
+ if (slen == sizeof(s) - 2) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+
+ if (slen > 0 && s[slen - 1] == '\n') {
+ slen--; s[slen] = '\0';
+ }
+ if (slen > 0 && s[slen - 1] == '\r') {
+ slen--; s[slen] = '\0';
+ }
+
+ p = s + slen;
+ while (p-- > s) {
+ if (mpi_get_digit(&d, radix, *p) != 0) {
+ break;
+ }
+ }
+
+ return mbedtls_mpi_read_string(X, radix, p + 1);
+}
+
+/*
+ * Write X into an opened file (or stdout if fout == NULL)
+ */
+int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t n, slen, plen;
+ /*
+ * Buffer should have space for (short) label and decimal formatted MPI,
+ * newline characters and '\0'
+ */
+ char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
+
+ if (radix < 2 || radix > 16) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ memset(s, 0, sizeof(s));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
+
+ if (p == NULL) {
+ p = "";
+ }
+
+ plen = strlen(p);
+ slen = strlen(s);
+ s[slen++] = '\r';
+ s[slen++] = '\n';
+
+ if (fout != NULL) {
+ if (fwrite(p, 1, plen, fout) != plen ||
+ fwrite(s, 1, slen, fout) != slen) {
+ return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
+ }
+ } else {
+ mbedtls_printf("%s%s", p, s);
+ }
+
+cleanup:
+
+ return ret;
+}
+#endif /* MBEDTLS_FS_IO */
+
+/*
+ * Import X from unsigned binary data, little endian
+ *
+ * This function is guaranteed to return an MPI with exactly the necessary
+ * number of limbs (in particular, it does not skip 0s in the input).
+ */
+int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
+ const unsigned char *buf, size_t buflen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const size_t limbs = CHARS_TO_LIMBS(buflen);
+
+ /* Ensure that target MPI has exactly the necessary number of limbs */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
+
+cleanup:
+
+ /*
+ * This function is also used to import keys. However, wiping the buffers
+ * upon failure is not necessary because failure only can happen before any
+ * input is copied.
+ */
+ return ret;
+}
+
+/*
+ * Import X from unsigned binary data, big endian
+ *
+ * This function is guaranteed to return an MPI with exactly the necessary
+ * number of limbs (in particular, it does not skip 0s in the input).
+ */
+int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const size_t limbs = CHARS_TO_LIMBS(buflen);
+
+ /* Ensure that target MPI has exactly the necessary number of limbs */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
+
+cleanup:
+
+ /*
+ * This function is also used to import keys. However, wiping the buffers
+ * upon failure is not necessary because failure only can happen before any
+ * input is copied.
+ */
+ return ret;
+}
+
+/*
+ * Export X into unsigned binary data, little endian
+ */
+int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
+ unsigned char *buf, size_t buflen)
+{
+ return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
+}
+
+/*
+ * Export X into unsigned binary data, big endian
+ */
+int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
+ unsigned char *buf, size_t buflen)
+{
+ return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
+}
+
+/*
+ * Left-shift: X <<= count
+ */
+int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i;
+
+ i = mbedtls_mpi_bitlen(X) + count;
+
+ if (X->n * biL < i) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
+ }
+
+ ret = 0;
+
+ mbedtls_mpi_core_shift_l(X->p, X->n, count);
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Right-shift: X >>= count
+ */
+int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
+{
+ if (X->n != 0) {
+ mbedtls_mpi_core_shift_r(X->p, X->n, count);
+ }
+ return 0;
+}
+
+/*
+ * Compare unsigned values
+ */
+int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
+{
+ size_t i, j;
+
+ for (i = X->n; i > 0; i--) {
+ if (X->p[i - 1] != 0) {
+ break;
+ }
+ }
+
+ for (j = Y->n; j > 0; j--) {
+ if (Y->p[j - 1] != 0) {
+ break;
+ }
+ }
+
+ /* If i == j == 0, i.e. abs(X) == abs(Y),
+ * we end up returning 0 at the end of the function. */
+
+ if (i > j) {
+ return 1;
+ }
+ if (j > i) {
+ return -1;
+ }
+
+ for (; i > 0; i--) {
+ if (X->p[i - 1] > Y->p[i - 1]) {
+ return 1;
+ }
+ if (X->p[i - 1] < Y->p[i - 1]) {
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Compare signed values
+ */
+int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
+{
+ size_t i, j;
+
+ for (i = X->n; i > 0; i--) {
+ if (X->p[i - 1] != 0) {
+ break;
+ }
+ }
+
+ for (j = Y->n; j > 0; j--) {
+ if (Y->p[j - 1] != 0) {
+ break;
+ }
+ }
+
+ if (i == 0 && j == 0) {
+ return 0;
+ }
+
+ if (i > j) {
+ return X->s;
+ }
+ if (j > i) {
+ return -Y->s;
+ }
+
+ if (X->s > 0 && Y->s < 0) {
+ return 1;
+ }
+ if (Y->s > 0 && X->s < 0) {
+ return -1;
+ }
+
+ for (; i > 0; i--) {
+ if (X->p[i - 1] > Y->p[i - 1]) {
+ return X->s;
+ }
+ if (X->p[i - 1] < Y->p[i - 1]) {
+ return -X->s;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Compare signed values
+ */
+int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
+{
+ mbedtls_mpi Y;
+ mbedtls_mpi_uint p[1];
+
+ *p = mpi_sint_abs(z);
+ Y.s = TO_SIGN(z);
+ Y.n = 1;
+ Y.p = p;
+
+ return mbedtls_mpi_cmp_mpi(X, &Y);
+}
+
+/*
+ * Unsigned addition: X = |A| + |B| (HAC 14.7)
+ */
+int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t j;
+ mbedtls_mpi_uint *p;
+ mbedtls_mpi_uint c;
+
+ if (X == B) {
+ const mbedtls_mpi *T = A; A = X; B = T;
+ }
+
+ if (X != A) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
+ }
+
+ /*
+ * X must always be positive as a result of unsigned additions.
+ */
+ X->s = 1;
+
+ for (j = B->n; j > 0; j--) {
+ if (B->p[j - 1] != 0) {
+ break;
+ }
+ }
+
+ /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
+ * and B is 0 (of any size). */
+ if (j == 0) {
+ return 0;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
+
+ /* j is the number of non-zero limbs of B. Add those to X. */
+
+ p = X->p;
+
+ c = mbedtls_mpi_core_add(p, p, B->p, j);
+
+ p += j;
+
+ /* Now propagate any carry */
+
+ while (c != 0) {
+ if (j >= X->n) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
+ p = X->p + j;
+ }
+
+ *p += c; c = (*p < c); j++; p++;
+ }
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
+ */
+int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t n;
+ mbedtls_mpi_uint carry;
+
+ for (n = B->n; n > 0; n--) {
+ if (B->p[n - 1] != 0) {
+ break;
+ }
+ }
+ if (n > A->n) {
+ /* B >= (2^ciL)^n > A */
+ ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
+
+ /* Set the high limbs of X to match A. Don't touch the lower limbs
+ * because X might be aliased to B, and we must not overwrite the
+ * significant digits of B. */
+ if (A->n > n && A != X) {
+ memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
+ }
+ if (X->n > A->n) {
+ memset(X->p + A->n, 0, (X->n - A->n) * ciL);
+ }
+
+ carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
+ if (carry != 0) {
+ /* Propagate the carry through the rest of X. */
+ carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
+
+ /* If we have further carry/borrow, the result is negative. */
+ if (carry != 0) {
+ ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+ goto cleanup;
+ }
+ }
+
+ /* X should always be positive as a result of unsigned subtractions. */
+ X->s = 1;
+
+cleanup:
+ return ret;
+}
+
+/* Common function for signed addition and subtraction.
+ * Calculate A + B * flip_B where flip_B is 1 or -1.
+ */
+static int add_sub_mpi(mbedtls_mpi *X,
+ const mbedtls_mpi *A, const mbedtls_mpi *B,
+ int flip_B)
+{
+ int ret, s;
+
+ s = A->s;
+ if (A->s * B->s * flip_B < 0) {
+ int cmp = mbedtls_mpi_cmp_abs(A, B);
+ if (cmp >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
+ /* If |A| = |B|, the result is 0 and we must set the sign bit
+ * to +1 regardless of which of A or B was negative. Otherwise,
+ * since |A| > |B|, the sign is the sign of A. */
+ X->s = cmp == 0 ? 1 : s;
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
+ /* Since |A| < |B|, the sign is the opposite of A. */
+ X->s = -s;
+ }
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
+ X->s = s;
+ }
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Signed addition: X = A + B
+ */
+int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ return add_sub_mpi(X, A, B, 1);
+}
+
+/*
+ * Signed subtraction: X = A - B
+ */
+int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ return add_sub_mpi(X, A, B, -1);
+}
+
+/*
+ * Signed addition: X = A + b
+ */
+int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
+{
+ mbedtls_mpi B;
+ mbedtls_mpi_uint p[1];
+
+ p[0] = mpi_sint_abs(b);
+ B.s = TO_SIGN(b);
+ B.n = 1;
+ B.p = p;
+
+ return mbedtls_mpi_add_mpi(X, A, &B);
+}
+
+/*
+ * Signed subtraction: X = A - b
+ */
+int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
+{
+ mbedtls_mpi B;
+ mbedtls_mpi_uint p[1];
+
+ p[0] = mpi_sint_abs(b);
+ B.s = TO_SIGN(b);
+ B.n = 1;
+ B.p = p;
+
+ return mbedtls_mpi_sub_mpi(X, A, &B);
+}
+
+/*
+ * Baseline multiplication: X = A * B (HAC 14.12)
+ */
+int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, j;
+ mbedtls_mpi TA, TB;
+ int result_is_zero = 0;
+
+ mbedtls_mpi_init(&TA);
+ mbedtls_mpi_init(&TB);
+
+ if (X == A) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
+ }
+ if (X == B) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
+ }
+
+ for (i = A->n; i > 0; i--) {
+ if (A->p[i - 1] != 0) {
+ break;
+ }
+ }
+ if (i == 0) {
+ result_is_zero = 1;
+ }
+
+ for (j = B->n; j > 0; j--) {
+ if (B->p[j - 1] != 0) {
+ break;
+ }
+ }
+ if (j == 0) {
+ result_is_zero = 1;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
+
+ mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
+
+ /* If the result is 0, we don't shortcut the operation, which reduces
+ * but does not eliminate side channels leaking the zero-ness. We do
+ * need to take care to set the sign bit properly since the library does
+ * not fully support an MPI object with a value of 0 and s == -1. */
+ if (result_is_zero) {
+ X->s = 1;
+ } else {
+ X->s = A->s * B->s;
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
+
+ return ret;
+}
+
+/*
+ * Baseline multiplication: X = A * b
+ */
+int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
+{
+ size_t n = A->n;
+ while (n > 0 && A->p[n - 1] == 0) {
+ --n;
+ }
+
+ /* The general method below doesn't work if b==0. */
+ if (b == 0 || n == 0) {
+ return mbedtls_mpi_lset(X, 0);
+ }
+
+ /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ /* In general, A * b requires 1 limb more than b. If
+ * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
+ * number of limbs as A and the call to grow() is not required since
+ * copy() will take care of the growth if needed. However, experimentally,
+ * making the call to grow() unconditional causes slightly fewer
+ * calls to calloc() in ECP code, presumably because it reuses the
+ * same mpi for a while and this way the mpi is more likely to directly
+ * grow to its final size.
+ *
+ * Note that calculating A*b as 0 + A*b doesn't work as-is because
+ * A,X can be the same. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
+ mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
+ * mbedtls_mpi_uint divisor, d
+ */
+static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
+ mbedtls_mpi_uint u0,
+ mbedtls_mpi_uint d,
+ mbedtls_mpi_uint *r)
+{
+#if defined(MBEDTLS_HAVE_UDBL)
+ mbedtls_t_udbl dividend, quotient;
+#else
+ const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
+ const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
+ mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
+ mbedtls_mpi_uint u0_msw, u0_lsw;
+ size_t s;
+#endif
+
+ /*
+ * Check for overflow
+ */
+ if (0 == d || u1 >= d) {
+ if (r != NULL) {
+ *r = ~(mbedtls_mpi_uint) 0u;
+ }
+
+ return ~(mbedtls_mpi_uint) 0u;
+ }
+
+#if defined(MBEDTLS_HAVE_UDBL)
+ dividend = (mbedtls_t_udbl) u1 << biL;
+ dividend |= (mbedtls_t_udbl) u0;
+ quotient = dividend / d;
+ if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
+ quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
+ }
+
+ if (r != NULL) {
+ *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
+ }
+
+ return (mbedtls_mpi_uint) quotient;
+#else
+
+ /*
+ * Algorithm D, Section 4.3.1 - The Art of Computer Programming
+ * Vol. 2 - Seminumerical Algorithms, Knuth
+ */
+
+ /*
+ * Normalize the divisor, d, and dividend, u0, u1
+ */
+ s = mbedtls_mpi_core_clz(d);
+ d = d << s;
+
+ u1 = u1 << s;
+ u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
+ u0 = u0 << s;
+
+ d1 = d >> biH;
+ d0 = d & uint_halfword_mask;
+
+ u0_msw = u0 >> biH;
+ u0_lsw = u0 & uint_halfword_mask;
+
+ /*
+ * Find the first quotient and remainder
+ */
+ q1 = u1 / d1;
+ r0 = u1 - d1 * q1;
+
+ while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
+ q1 -= 1;
+ r0 += d1;
+
+ if (r0 >= radix) {
+ break;
+ }
+ }
+
+ rAX = (u1 * radix) + (u0_msw - q1 * d);
+ q0 = rAX / d1;
+ r0 = rAX - q0 * d1;
+
+ while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
+ q0 -= 1;
+ r0 += d1;
+
+ if (r0 >= radix) {
+ break;
+ }
+ }
+
+ if (r != NULL) {
+ *r = (rAX * radix + u0_lsw - q0 * d) >> s;
+ }
+
+ quotient = q1 * radix + q0;
+
+ return quotient;
+#endif
+}
+
+/*
+ * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
+ */
+int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
+ const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, n, t, k;
+ mbedtls_mpi X, Y, Z, T1, T2;
+ mbedtls_mpi_uint TP2[3];
+
+ if (mbedtls_mpi_cmp_int(B, 0) == 0) {
+ return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
+ }
+
+ mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
+ mbedtls_mpi_init(&T1);
+ /*
+ * Avoid dynamic memory allocations for constant-size T2.
+ *
+ * T2 is used for comparison only and the 3 limbs are assigned explicitly,
+ * so nobody increase the size of the MPI and we're safe to use an on-stack
+ * buffer.
+ */
+ T2.s = 1;
+ T2.n = sizeof(TP2) / sizeof(*TP2);
+ T2.p = TP2;
+
+ if (mbedtls_mpi_cmp_abs(A, B) < 0) {
+ if (Q != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
+ }
+ if (R != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
+ }
+ return 0;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
+ X.s = Y.s = 1;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
+
+ k = mbedtls_mpi_bitlen(&Y) % biL;
+ if (k < biL - 1) {
+ k = biL - 1 - k;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
+ } else {
+ k = 0;
+ }
+
+ n = X.n - 1;
+ t = Y.n - 1;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
+
+ while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
+ Z.p[n - t]++;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
+ }
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
+
+ for (i = n; i > t; i--) {
+ if (X.p[i] >= Y.p[t]) {
+ Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
+ } else {
+ Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
+ Y.p[t], NULL);
+ }
+
+ T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
+ T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
+ T2.p[2] = X.p[i];
+
+ Z.p[i - t - 1]++;
+ do {
+ Z.p[i - t - 1]--;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
+ T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
+ T1.p[1] = Y.p[t];
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
+ } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
+
+ if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
+ Z.p[i - t - 1]--;
+ }
+ }
+
+ if (Q != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
+ Q->s = A->s * B->s;
+ }
+
+ if (R != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
+ X.s = A->s;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
+
+ if (mbedtls_mpi_cmp_int(R, 0) == 0) {
+ R->s = 1;
+ }
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
+ mbedtls_mpi_free(&T1);
+ mbedtls_platform_zeroize(TP2, sizeof(TP2));
+
+ return ret;
+}
+
+/*
+ * Division by int: A = Q * b + R
+ */
+int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
+ const mbedtls_mpi *A,
+ mbedtls_mpi_sint b)
+{
+ mbedtls_mpi B;
+ mbedtls_mpi_uint p[1];
+
+ p[0] = mpi_sint_abs(b);
+ B.s = TO_SIGN(b);
+ B.n = 1;
+ B.p = p;
+
+ return mbedtls_mpi_div_mpi(Q, R, A, &B);
+}
+
+/*
+ * Modulo: R = A mod B
+ */
+int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (mbedtls_mpi_cmp_int(B, 0) < 0) {
+ return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
+
+ while (mbedtls_mpi_cmp_int(R, 0) < 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
+ }
+
+ while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
+ }
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Modulo: r = A mod b
+ */
+int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
+{
+ size_t i;
+ mbedtls_mpi_uint x, y, z;
+
+ if (b == 0) {
+ return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
+ }
+
+ if (b < 0) {
+ return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+ }
+
+ /*
+ * handle trivial cases
+ */
+ if (b == 1 || A->n == 0) {
+ *r = 0;
+ return 0;
+ }
+
+ if (b == 2) {
+ *r = A->p[0] & 1;
+ return 0;
+ }
+
+ /*
+ * general case
+ */
+ for (i = A->n, y = 0; i > 0; i--) {
+ x = A->p[i - 1];
+ y = (y << biH) | (x >> biH);
+ z = y / b;
+ y -= z * b;
+
+ x <<= biH;
+ y = (y << biH) | (x >> biH);
+ z = y / b;
+ y -= z * b;
+ }
+
+ /*
+ * If A is negative, then the current y represents a negative value.
+ * Flipping it to the positive side.
+ */
+ if (A->s < 0 && y != 0) {
+ y = b - y;
+ }
+
+ *r = y;
+
+ return 0;
+}
+
+int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
+ const mbedtls_mpi *E, const mbedtls_mpi *N,
+ mbedtls_mpi *prec_RR)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_mpi_cmp_int(E, 0) < 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
+ mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Ensure that the exponent that we are passing to the core is not NULL.
+ */
+ if (E->n == 0) {
+ ret = mbedtls_mpi_lset(X, 1);
+ return ret;
+ }
+
+ /*
+ * Allocate working memory for mbedtls_mpi_core_exp_mod()
+ */
+ size_t T_limbs = mbedtls_mpi_core_exp_mod_working_limbs(N->n, E->n);
+ mbedtls_mpi_uint *T = (mbedtls_mpi_uint *) mbedtls_calloc(T_limbs, sizeof(mbedtls_mpi_uint));
+ if (T == NULL) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ mbedtls_mpi RR;
+ mbedtls_mpi_init(&RR);
+
+ /*
+ * If 1st call, pre-compute R^2 mod N
+ */
+ if (prec_RR == NULL || prec_RR->p == NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_core_get_mont_r2_unsafe(&RR, N));
+
+ if (prec_RR != NULL) {
+ *prec_RR = RR;
+ }
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(prec_RR, N->n));
+ RR = *prec_RR;
+ }
+
+ /*
+ * To preserve constness we need to make a copy of A. Using X for this to
+ * save memory.
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
+
+ /*
+ * Compensate for negative A (and correct at the end).
+ */
+ X->s = 1;
+
+ /*
+ * Make sure that X is in a form that is safe for consumption by
+ * the core functions.
+ *
+ * - The core functions will not touch the limbs of X above N->n. The
+ * result will be correct if those limbs are 0, which the mod call
+ * ensures.
+ * - Also, X must have at least as many limbs as N for the calls to the
+ * core functions.
+ */
+ if (mbedtls_mpi_cmp_mpi(X, N) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
+ }
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, N->n));
+
+ /*
+ * Convert to and from Montgomery around mbedtls_mpi_core_exp_mod().
+ */
+ {
+ mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N->p);
+ mbedtls_mpi_core_to_mont_rep(X->p, X->p, N->p, N->n, mm, RR.p, T);
+ mbedtls_mpi_core_exp_mod(X->p, X->p, N->p, N->n, E->p, E->n, RR.p, T);
+ mbedtls_mpi_core_from_mont_rep(X->p, X->p, N->p, N->n, mm, T);
+ }
+
+ /*
+ * Correct for negative A.
+ */
+ if (A->s == -1 && (E->p[0] & 1) != 0) {
+ mbedtls_ct_condition_t is_x_non_zero = mbedtls_mpi_core_check_zero_ct(X->p, X->n);
+ X->s = mbedtls_ct_mpi_sign_if(is_x_non_zero, -1, 1);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, N, X));
+ }
+
+cleanup:
+
+ mbedtls_mpi_zeroize_and_free(T, T_limbs);
+
+ if (prec_RR == NULL || prec_RR->p == NULL) {
+ mbedtls_mpi_free(&RR);
+ }
+
+ return ret;
+}
+
+/*
+ * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
+ */
+int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t lz, lzt;
+ mbedtls_mpi TA, TB;
+
+ mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
+
+ lz = mbedtls_mpi_lsb(&TA);
+ lzt = mbedtls_mpi_lsb(&TB);
+
+ /* The loop below gives the correct result when A==0 but not when B==0.
+ * So have a special case for B==0. Leverage the fact that we just
+ * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
+ * slightly more efficient than cmp_int(). */
+ if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
+ ret = mbedtls_mpi_copy(G, A);
+ goto cleanup;
+ }
+
+ if (lzt < lz) {
+ lz = lzt;
+ }
+
+ TA.s = TB.s = 1;
+
+ /* We mostly follow the procedure described in HAC 14.54, but with some
+ * minor differences:
+ * - Sequences of multiplications or divisions by 2 are grouped into a
+ * single shift operation.
+ * - The procedure in HAC assumes that 0 < TB <= TA.
+ * - The condition TB <= TA is not actually necessary for correctness.
+ * TA and TB have symmetric roles except for the loop termination
+ * condition, and the shifts at the beginning of the loop body
+ * remove any significance from the ordering of TA vs TB before
+ * the shifts.
+ * - If TA = 0, the loop goes through 0 iterations and the result is
+ * correctly TB.
+ * - The case TB = 0 was short-circuited above.
+ *
+ * For the correctness proof below, decompose the original values of
+ * A and B as
+ * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
+ * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
+ * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
+ * and gcd(A',B') is odd or 0.
+ *
+ * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
+ * The code maintains the following invariant:
+ * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
+ */
+
+ /* Proof that the loop terminates:
+ * At each iteration, either the right-shift by 1 is made on a nonzero
+ * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
+ * by at least 1, or the right-shift by 1 is made on zero and then
+ * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
+ * since in that case TB is calculated from TB-TA with the condition TB>TA).
+ */
+ while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
+ /* Divisions by 2 preserve the invariant (I). */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
+
+ /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
+ * TA-TB is even so the division by 2 has an integer result.
+ * Invariant (I) is preserved since any odd divisor of both TA and TB
+ * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
+ * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
+ * divides TA.
+ */
+ if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
+ }
+ /* Note that one of TA or TB is still odd. */
+ }
+
+ /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
+ * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
+ * - If there was at least one loop iteration, then one of TA or TB is odd,
+ * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
+ * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
+ * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
+ * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
+ */
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
+
+cleanup:
+
+ mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
+
+ return ret;
+}
+
+/*
+ * Fill X with size bytes of random.
+ * The bytes returned from the RNG are used in a specific order which
+ * is suitable for deterministic ECDSA (see the specification of
+ * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
+ */
+int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const size_t limbs = CHARS_TO_LIMBS(size);
+
+ /* Ensure that target MPI has exactly the necessary number of limbs */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
+ if (size == 0) {
+ return 0;
+ }
+
+ ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
+
+cleanup:
+ return ret;
+}
+
+int mbedtls_mpi_random(mbedtls_mpi *X,
+ mbedtls_mpi_sint min,
+ const mbedtls_mpi *N,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ if (min < 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+ if (mbedtls_mpi_cmp_int(N, min) <= 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ /* Ensure that target MPI has exactly the same number of limbs
+ * as the upper bound, even if the upper bound has leading zeros.
+ * This is necessary for mbedtls_mpi_core_random. */
+ int ret = mbedtls_mpi_resize_clear(X, N->n);
+ if (ret != 0) {
+ return ret;
+ }
+
+ return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
+}
+
+/*
+ * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
+ */
+int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
+
+ if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
+ mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
+ mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
+
+ if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
+
+ do {
+ while ((TU.p[0] & 1) == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
+
+ if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
+ }
+
+ while ((TV.p[0] & 1) == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
+
+ if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
+ }
+ } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
+
+ while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
+ }
+
+ while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
+
+cleanup:
+
+ mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
+ mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
+ mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_GENPRIME)
+
+/* Gaps between primes, starting at 3. https://oeis.org/A001223 */
+static const unsigned char small_prime_gaps[] = {
+ 2, 2, 4, 2, 4, 2, 4, 6,
+ 2, 6, 4, 2, 4, 6, 6, 2,
+ 6, 4, 2, 6, 4, 6, 8, 4,
+ 2, 4, 2, 4, 14, 4, 6, 2,
+ 10, 2, 6, 6, 4, 6, 6, 2,
+ 10, 2, 4, 2, 12, 12, 4, 2,
+ 4, 6, 2, 10, 6, 6, 6, 2,
+ 6, 4, 2, 10, 14, 4, 2, 4,
+ 14, 6, 10, 2, 4, 6, 8, 6,
+ 6, 4, 6, 8, 4, 8, 10, 2,
+ 10, 2, 6, 4, 6, 8, 4, 2,
+ 4, 12, 8, 4, 8, 4, 6, 12,
+ 2, 18, 6, 10, 6, 6, 2, 6,
+ 10, 6, 6, 2, 6, 6, 4, 2,
+ 12, 10, 2, 4, 6, 6, 2, 12,
+ 4, 6, 8, 10, 8, 10, 8, 6,
+ 6, 4, 8, 6, 4, 8, 4, 14,
+ 10, 12, 2, 10, 2, 4, 2, 10,
+ 14, 4, 2, 4, 14, 4, 2, 4,
+ 20, 4, 8, 10, 8, 4, 6, 6,
+ 14, 4, 6, 6, 8, 6, /*reaches 997*/
+ 0 /* the last entry is effectively unused */
+};
+
+/*
+ * Small divisors test (X must be positive)
+ *
+ * Return values:
+ * 0: no small factor (possible prime, more tests needed)
+ * 1: certain prime
+ * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
+ * other negative: error
+ */
+static int mpi_check_small_factors(const mbedtls_mpi *X)
+{
+ int ret = 0;
+ size_t i;
+ mbedtls_mpi_uint r;
+ unsigned p = 3; /* The first odd prime */
+
+ if ((X->p[0] & 1) == 0) {
+ return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ }
+
+ for (i = 0; i < sizeof(small_prime_gaps); p += small_prime_gaps[i], i++) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, p));
+ if (r == 0) {
+ if (mbedtls_mpi_cmp_int(X, p) == 0) {
+ return 1;
+ } else {
+ return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ }
+ }
+ }
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Miller-Rabin pseudo-primality test (HAC 4.24)
+ */
+static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret, count;
+ size_t i, j, k, s;
+ mbedtls_mpi W, R, T, A, RR;
+
+ mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
+ mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
+ mbedtls_mpi_init(&RR);
+
+ /*
+ * W = |X| - 1
+ * R = W >> lsb( W )
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
+ s = mbedtls_mpi_lsb(&W);
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
+
+ for (i = 0; i < rounds; i++) {
+ /*
+ * pick a random A, 1 < A < |X| - 1
+ */
+ count = 0;
+ do {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
+
+ j = mbedtls_mpi_bitlen(&A);
+ k = mbedtls_mpi_bitlen(&W);
+ if (j > k) {
+ A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
+ }
+
+ if (count++ > 30) {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ goto cleanup;
+ }
+
+ } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
+ mbedtls_mpi_cmp_int(&A, 1) <= 0);
+
+ /*
+ * A = A^R mod |X|
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
+
+ if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
+ mbedtls_mpi_cmp_int(&A, 1) == 0) {
+ continue;
+ }
+
+ j = 1;
+ while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
+ /*
+ * A = A * A mod |X|
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
+
+ if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
+ break;
+ }
+
+ j++;
+ }
+
+ /*
+ * not prime if A != |X| - 1 or A == 1
+ */
+ if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
+ mbedtls_mpi_cmp_int(&A, 1) == 0) {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ break;
+ }
+ }
+
+cleanup:
+ mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
+ mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
+ mbedtls_mpi_free(&RR);
+
+ return ret;
+}
+
+/*
+ * Pseudo-primality test: small factors, then Miller-Rabin
+ */
+int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi XX;
+
+ XX.s = 1;
+ XX.n = X->n;
+ XX.p = X->p;
+
+ if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
+ mbedtls_mpi_cmp_int(&XX, 1) == 0) {
+ return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ }
+
+ if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
+ return 0;
+ }
+
+ if ((ret = mpi_check_small_factors(&XX)) != 0) {
+ if (ret == 1) {
+ return 0;
+ }
+
+ return ret;
+ }
+
+ return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
+}
+
+/*
+ * Prime number generation
+ *
+ * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
+ * be either 1024 bits or 1536 bits long, and flags must contain
+ * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
+ */
+int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+#ifdef MBEDTLS_HAVE_INT64
+// ceil(2^63.5)
+#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
+#else
+// ceil(2^31.5)
+#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
+#endif
+ int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ size_t k, n;
+ int rounds;
+ mbedtls_mpi_uint r;
+ mbedtls_mpi Y;
+
+ if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&Y);
+
+ n = BITS_TO_LIMBS(nbits);
+
+ if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
+ /*
+ * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
+ */
+ rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
+ (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
+ (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
+ } else {
+ /*
+ * 2^-100 error probability, number of rounds computed based on HAC,
+ * fact 4.48
+ */
+ rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
+ (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
+ (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
+ (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
+ }
+
+ while (1) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
+ /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
+ if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
+ continue;
+ }
+
+ k = n * biL;
+ if (k > nbits) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
+ }
+ X->p[0] |= 1;
+
+ if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
+ ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
+
+ if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+ goto cleanup;
+ }
+ } else {
+ /*
+ * A necessary condition for Y and X = 2Y + 1 to be prime
+ * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
+ * Make sure it is satisfied, while keeping X = 3 mod 4
+ */
+
+ X->p[0] |= 2;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
+ if (r == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
+ } else if (r == 1) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
+ }
+
+ /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
+
+ while (1) {
+ /*
+ * First, check small factors for X and Y
+ * before doing Miller-Rabin on any of them
+ */
+ if ((ret = mpi_check_small_factors(X)) == 0 &&
+ (ret = mpi_check_small_factors(&Y)) == 0 &&
+ (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
+ == 0 &&
+ (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
+ == 0) {
+ goto cleanup;
+ }
+
+ if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+ goto cleanup;
+ }
+
+ /*
+ * Next candidates. We want to preserve Y = (X-1) / 2 and
+ * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
+ * so up Y by 6 and X by 12.
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
+ }
+ }
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&Y);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_GENPRIME */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#define GCD_PAIR_COUNT 3
+
+static const int gcd_pairs[GCD_PAIR_COUNT][3] =
+{
+ { 693, 609, 21 },
+ { 1764, 868, 28 },
+ { 768454923, 542167814, 1 }
+};
+
+/*
+ * Checkup routine
+ */
+int mbedtls_mpi_self_test(int verbose)
+{
+ int ret, i;
+ mbedtls_mpi A, E, N, X, Y, U, V;
+
+ mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
+ mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
+ "EFE021C2645FD1DC586E69184AF4A31E" \
+ "D5F53E93B5F123FA41680867BA110131" \
+ "944FE7952E2517337780CB0DB80E61AA" \
+ "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
+ "B2E7EFD37075B9F03FF989C7C5051C20" \
+ "34D2A323810251127E7BF8625A4F49A5" \
+ "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
+ "5B5C25763222FEFCCFC38B832366C29E"));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
+ "0066A198186C18C10B2F5ED9B522752A" \
+ "9830B69916E535C8F047518A889A43A5" \
+ "94B6BED27A168D31D4A52F88925AA8F5"));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+ "602AB7ECA597A3D6B56FF9829A5E8B85" \
+ "9E857EA95A03512E2BAE7391688D264A" \
+ "A5663B0341DB9CCFD2C4C5F421FEC814" \
+ "8001B72E848A38CAE1C65F78E56ABDEF" \
+ "E12D3C039B8A02D6BE593F0BBBDA56F1" \
+ "ECF677152EF804370C1A305CAF3B5BF1" \
+ "30879B56C61DE584A0F53A2447A51E"));
+
+ if (verbose != 0) {
+ mbedtls_printf(" MPI test #1 (mul_mpi): ");
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+ "256567336059E52CAE22925474705F39A94"));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
+ "6613F26162223DF488E9CD48CC132C7A" \
+ "0AC93C701B001B092E4E5B9F73BCD27B" \
+ "9EE50D0657C77F374E903CDFA4C642"));
+
+ if (verbose != 0) {
+ mbedtls_printf(" MPI test #2 (div_mpi): ");
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
+ mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+ "36E139AEA55215609D2816998ED020BB" \
+ "BD96C37890F65171D948E9BC7CBAA4D9" \
+ "325D24D6A3C12710F10A09FA08AB87"));
+
+ if (verbose != 0) {
+ mbedtls_printf(" MPI test #3 (exp_mod): ");
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+ "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
+ "C3DBA76456363A10869622EAC2DD84EC" \
+ "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
+
+ if (verbose != 0) {
+ mbedtls_printf(" MPI test #4 (inv_mod): ");
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf(" MPI test #5 (simple gcd): ");
+ }
+
+ for (i = 0; i < GCD_PAIR_COUNT; i++) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
+
+ if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed at %d\n", i);
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+cleanup:
+
+ if (ret != 0 && verbose != 0) {
+ mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
+ }
+
+ mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
+ mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_BIGNUM_C */