summaryrefslogtreecommitdiff
path: root/board/phytec/common/k3/board.c
blob: 828973a8e28caa4dc1811d69881e0cf8dd3ce32a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2024 PHYTEC Messtechnik GmbH
 * Author: Wadim Egorov <w.egorov@phytec.de>
 */

#include <efi_loader.h>
#include <env_internal.h>
#include <fdt_support.h>
#include <dm/ofnode.h>
#include <mtd.h>
#include <spl.h>
#include <malloc.h>
#include <asm/arch/hardware.h>

#include "../am6_som_detection.h"

#if IS_ENABLED(CONFIG_EFI_HAVE_CAPSULE_SUPPORT)
struct efi_fw_image fw_images[] = {
	{
		.fw_name = PHYCORE_AM6XX_FW_NAME_TIBOOT3,
		.image_index = 1,
	},
	{
		.fw_name = PHYCORE_AM6XX_FW_NAME_SPL,
		.image_index = 2,
	},
	{
		.fw_name = PHYCORE_AM6XX_FW_NAME_UBOOT,
		.image_index = 3,
	}
};

struct efi_capsule_update_info update_info = {
	.dfu_string = NULL,
	.num_images = ARRAY_SIZE(fw_images),
	.images = fw_images,
};

/**
 * configure_capsule_updates() - Set up the DFU string for capsule updates
 *
 * Configures all three bootloader binaries for updates on the current
 * booted flash device, which may be eMMC, OSPI NOR, or a uSD card. If
 * booting from USB or Serial, capsule updates will be performed on the
 * eMMC device.
 *
 * Note: Currently, eMMC hardware partitions are not differentiated; Updates
 * are always applied to the first boot partition.
 */
static void configure_capsule_updates(void)
{
	static char dfu_string[128] = { 0 };
	const char *dfu_raw = "tiboot3.bin raw 0x0 0x400 mmcpart 1;"
			      "tispl.bin raw 0x400 0x1000 mmcpart 1;"
			      "u-boot.img.raw raw 0x1400 0x2000 mmcpart 1";
	const char *dfu_fat = "tiboot3.bin fat 1 1;"
			      "tispl.bin fat 1 1;"
			      "u-boot.img fat 1 1";
	const char *dfu_spi = "tiboot3.bin part 1;"
			     "tispl.bin part 2;"
			     "u-boot.img part 3";
	u32 boot_device = get_boot_device();

	switch (boot_device) {
	case BOOT_DEVICE_MMC1:
		snprintf(dfu_string, 128, "mmc 0=%s", dfu_raw);
		break;
	case BOOT_DEVICE_MMC2:
		snprintf(dfu_string, 128, "mmc 1=%s", dfu_fat);
		break;
	case BOOT_DEVICE_SPI:
		mtd_probe_devices();
		snprintf(dfu_string, 128, "mtd nor0=%s", dfu_spi);
		break;
	default:
		snprintf(dfu_string, 128, "mmc 0=%s", dfu_raw);
		break;
	};

	update_info.dfu_string = dfu_string;
}
#endif

#if IS_ENABLED(CONFIG_ENV_IS_IN_FAT) || IS_ENABLED(CONFIG_ENV_IS_IN_MMC)
int mmc_get_env_dev(void)
{
	u32 boot_device = get_boot_device();

	switch (boot_device) {
	case BOOT_DEVICE_MMC1:
		return 0;
	case BOOT_DEVICE_MMC2:
		return 1;
	};

	return CONFIG_SYS_MMC_ENV_DEV;
}
#endif

enum env_location env_get_location(enum env_operation op, int prio)
{
	u32 boot_device = get_boot_device();

	if (prio)
		return ENVL_UNKNOWN;

	switch (boot_device) {
	case BOOT_DEVICE_MMC1:
	case BOOT_DEVICE_MMC2:
		if (CONFIG_IS_ENABLED(ENV_IS_IN_FAT))
			return ENVL_FAT;
		if (CONFIG_IS_ENABLED(ENV_IS_IN_MMC))
			return ENVL_MMC;
	case BOOT_DEVICE_SPI:
		if (CONFIG_IS_ENABLED(ENV_IS_IN_SPI_FLASH))
			return ENVL_SPI_FLASH;
	default:
		return ENVL_NOWHERE;
	};
}

#if IS_ENABLED(CONFIG_BOARD_LATE_INIT)
int board_late_init(void)
{
	u32 boot_device = get_boot_device();

	switch (boot_device) {
	case BOOT_DEVICE_MMC1:
		env_set_ulong("mmcdev", 0);
		env_set("boot", "mmc");
		break;
	case BOOT_DEVICE_MMC2:
		env_set_ulong("mmcdev", 1);
		env_set("boot", "mmc");
		break;
	case BOOT_DEVICE_SPI:
		env_set("boot", "spi");
		break;
	case BOOT_DEVICE_ETHERNET:
		env_set("boot", "net");
		break;
	case BOOT_DEVICE_UART:
		env_set("boot", "uart");
		break;
	case BOOT_DEVICE_DFU:
		env_set("boot", "usbdfu");
		break;
	};

	if (IS_ENABLED(CONFIG_PHYTEC_SOM_DETECTION_BLOCKS)) {
		struct phytec_api3_element *block_element;
		struct phytec_eeprom_data data;
		int ret;

		ret = phytec_eeprom_data_setup(&data, 0, EEPROM_ADDR);
		if (ret || !data.valid)
			return 0;

		PHYTEC_API3_FOREACH_BLOCK(block_element, &data) {
			switch (block_element->block_type) {
			case PHYTEC_API3_BLOCK_MAC:
				phytec_blocks_add_mac_to_env(block_element);
				break;
			default:
				debug("%s: Unknown block type %i\n", __func__,
				      block_element->block_type);
			}
		}
	}

#if IS_ENABLED(CONFIG_EFI_HAVE_CAPSULE_SUPPORT)
	configure_capsule_updates();
#endif

	return 0;
}
#endif

#if IS_ENABLED(CONFIG_OF_LIBFDT) && IS_ENABLED(CONFIG_OF_BOARD_SETUP)
static int fdt_apply_overlay_from_fit(const char *overlay_path, void *fdt)
{
	u64 loadaddr;
	ofnode node;
	int ret;

	node = ofnode_path(overlay_path);
	if (!ofnode_valid(node))
		return -FDT_ERR_NOTFOUND;

	ret = ofnode_read_u64(node, "load", &loadaddr);
	if (ret)
		return ret;

	return fdt_overlay_apply_verbose(fdt, (void *)loadaddr);
}

static void fdt_apply_som_overlays(void *blob)
{
	void *fdt_copy;
	u32 fdt_size;
	struct phytec_eeprom_data data;
	int err;

	fdt_size = fdt_totalsize(blob);
	fdt_copy = malloc(fdt_size);
	if (!fdt_copy)
		goto fixup_error;

	memcpy(fdt_copy, blob, fdt_size);

	err = phytec_eeprom_data_setup(&data, 0, EEPROM_ADDR);
	if (err)
		goto fixup_error;

	if (phytec_get_am6_rtc(&data) == 0) {
		err = fdt_apply_overlay_from_fit("/fit-images/som-no-rtc", fdt_copy);
		if (err)
			goto fixup_error;
	}

	if (phytec_get_am6_spi(&data) == PHYTEC_EEPROM_VALUE_X) {
		err = fdt_apply_overlay_from_fit("/fit-images/som-no-spi", fdt_copy);
		if (err)
			goto fixup_error;
	}

	if (phytec_get_am6_eth(&data) == 0) {
		err = fdt_apply_overlay_from_fit("/fit-images/som-no-eth", fdt_copy);
		if (err)
			goto fixup_error;
	}

	if (phytec_am6_is_qspi(&data)) {
		err = fdt_apply_overlay_from_fit("/fit-images/som-qspi-nor", fdt_copy);
		if (err)
			goto fixup_error;
	}

	memcpy(blob, fdt_copy, fdt_size);

cleanup:
	free(fdt_copy);
	return;

fixup_error:
	pr_err("Failed to apply SoM overlays\n");
	goto cleanup;
}

int ft_board_setup(void *blob, struct bd_info *bd)
{
	struct phytec_eeprom_data data;
	int ret;

	fdt_apply_som_overlays(blob);
	fdt_copy_fixed_partitions(blob);

	ret = phytec_eeprom_data_setup(&data, 0, EEPROM_ADDR);
	if (ret || !data.valid)
		return 0;

	ret = phytec_ft_board_fixup(&data, blob);
	if (ret)
		pr_err("%s: Failed to add PHYTEC information to fdt.\n",
		       __func__);

	return 0;
}
#endif