1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
// SPDX-License-Identifier: GPL-2.0-or-later OR BSD-3-Clause
/*
* Copyright (C) 2025, STMicroelectronics - All Rights Reserved
*/
#define LOG_CATEGORY UCLASS_NOP
#include <clk.h>
#include <dm.h>
#include <regmap.h>
#include <reset.h>
#include <syscon.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/of_addr.h>
#include <dm/of_access.h>
#include <linux/bitfield.h>
#include <linux/ioport.h>
#include <mach/rif.h>
/* OCTOSPI control register */
#define OCTOSPIM_CR 0
#define CR_MUXEN BIT(0)
#define CR_MUXENMODE_MASK GENMASK(1, 0)
#define CR_CSSEL_OVR_EN BIT(4)
#define CR_CSSEL_OVR_MASK GENMASK(6, 5)
#define CR_REQ2ACK_MASK GENMASK(23, 16)
#define OMM_CHILD_NB 2
#define OMM_CLK_NB 3
#define OMM_RESET_NB 3
#define NSEC_PER_SEC 1000000000L
struct stm32_omm_plat {
phys_addr_t regs_base;
struct regmap *syscfg_regmap;
struct clk clk[OMM_CLK_NB];
struct reset_ctl reset_ctl[OMM_RESET_NB];
resource_size_t mm_ospi2_size;
u32 mux;
u32 cssel_ovr;
u32 req2ack;
u32 amcr_base;
u32 amcr_mask;
unsigned long clk_rate_max;
u8 nb_child;
};
static int stm32_omm_set_amcr(struct udevice *dev, bool set)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
unsigned int amcr, read_amcr;
amcr = plat->mm_ospi2_size / SZ_64M;
if (set)
regmap_update_bits(plat->syscfg_regmap, plat->amcr_base,
plat->amcr_mask, amcr);
/* read AMCR and check coherency with memory-map areas defined in DT */
regmap_read(plat->syscfg_regmap, plat->amcr_base, &read_amcr);
read_amcr = read_amcr >> (ffs(plat->amcr_mask) - 1);
if (amcr != read_amcr) {
dev_err(dev, "AMCR value not coherent with DT memory-map areas\n");
return -EINVAL;
}
return 0;
}
static int stm32_omm_toggle_child_clock(struct udevice *dev, bool enable)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
int i, ret;
for (i = 0; i < plat->nb_child; i++) {
if (enable) {
ret = clk_enable(&plat->clk[i + 1]);
if (ret) {
dev_err(dev, "Can not enable clock\n");
goto clk_error;
}
} else {
clk_disable(&plat->clk[i + 1]);
}
}
return 0;
clk_error:
while (i--)
clk_disable(&plat->clk[i + 1]);
return ret;
}
static int stm32_omm_disable_child(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
int ret;
u8 i;
ret = stm32_omm_toggle_child_clock(dev, true);
if (ret)
return ret;
for (i = 0; i < plat->nb_child; i++) {
/* reset OSPI to ensure CR_EN bit is set to 0 */
reset_assert(&plat->reset_ctl[i + 1]);
udelay(2);
reset_deassert(&plat->reset_ctl[i + 1]);
}
return stm32_omm_toggle_child_clock(dev, false);
}
static int stm32_omm_configure(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
int ret;
u32 mux = 0;
u32 cssel_ovr = 0;
u32 req2ack = 0;
/* Ensure both OSPI instance are disabled before configuring OMM */
ret = stm32_omm_disable_child(dev);
if (ret)
return ret;
ret = clk_enable(&plat->clk[0]);
if (ret) {
dev_err(dev, "Failed to enable OMM clock (%d)\n", ret);
return ret;
}
reset_assert(&plat->reset_ctl[0]);
udelay(2);
reset_deassert(&plat->reset_ctl[0]);
if (plat->mux & CR_MUXEN) {
if (plat->req2ack) {
req2ack = DIV_ROUND_UP(plat->req2ack,
NSEC_PER_SEC / plat->clk_rate_max) - 1;
if (req2ack > 256)
req2ack = 256;
}
req2ack = FIELD_PREP(CR_REQ2ACK_MASK, req2ack);
clrsetbits_le32(plat->regs_base + OCTOSPIM_CR, CR_REQ2ACK_MASK,
req2ack);
/*
* If the mux is enabled, the 2 OSPI clocks have to be
* always enabled
*/
ret = stm32_omm_toggle_child_clock(dev, true);
if (ret)
return ret;
}
if (plat->cssel_ovr != 0xff) {
cssel_ovr = FIELD_PREP(CR_CSSEL_OVR_MASK, cssel_ovr);
cssel_ovr |= CR_CSSEL_OVR_EN;
clrsetbits_le32(plat->regs_base + OCTOSPIM_CR, CR_CSSEL_OVR_MASK,
cssel_ovr);
}
mux = FIELD_PREP(CR_MUXENMODE_MASK, plat->mux);
clrsetbits_le32(plat->regs_base + OCTOSPIM_CR, CR_MUXENMODE_MASK, mux);
clk_disable(&plat->clk[0]);
return stm32_omm_set_amcr(dev, true);
}
static void stm32_omm_release_childs(ofnode *child_list, u8 nb_child)
{
u8 i;
for (i = 0; i < nb_child; i++)
stm32_rifsc_release_access(child_list[i]);
}
static int stm32_omm_probe(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
ofnode child_list[OMM_CHILD_NB];
ofnode child;
int ret;
u8 child_access_granted = 0;
bool child_access[OMM_CHILD_NB];
/* check child's access */
for (child = ofnode_first_subnode(dev_ofnode(dev));
ofnode_valid(child);
child = ofnode_next_subnode(child)) {
if (plat->nb_child > OMM_CHILD_NB) {
dev_err(dev, "Bad DT, found too much children\n");
return -E2BIG;
}
if (!ofnode_device_is_compatible(child, "st,stm32mp25-ospi"))
return -EINVAL;
ret = stm32_rifsc_grant_access(child);
if (ret < 0 && ret != -EACCES)
return ret;
child_access[plat->nb_child] = false;
if (!ret) {
child_access_granted++;
child_access[plat->nb_child] = true;
}
child_list[plat->nb_child] = child;
plat->nb_child++;
}
if (plat->nb_child != OMM_CHILD_NB)
return -EINVAL;
/* check if OMM's resource access is granted */
ret = stm32_rifsc_grant_access(dev_ofnode(dev));
if (ret < 0 && ret != -EACCES)
goto end;
/* All child's access are granted ? */
if (!ret && child_access_granted == plat->nb_child) {
ret = stm32_omm_configure(dev);
if (ret)
goto end;
} else {
dev_dbg(dev, "Octo Memory Manager resource's access not granted\n");
/*
* AMCR can't be set, so check if current value is coherent
* with memory-map areas defined in DT
*/
ret = stm32_omm_set_amcr(dev, false);
}
end:
stm32_omm_release_childs(child_list, plat->nb_child);
stm32_rifsc_release_access(dev_ofnode(dev));
return ret;
}
static int stm32_omm_of_to_plat(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
static const char * const clocks_name[] = {"omm", "ospi1", "ospi2"};
static const char * const mm_name[] = { "ospi1", "ospi2" };
static const char * const resets_name[] = {"omm", "ospi1", "ospi2"};
struct resource res, res1, mm_res;
struct ofnode_phandle_args args;
struct udevice *child;
unsigned long clk_rate;
struct clk child_clk;
int ret, idx;
u8 i;
plat->regs_base = dev_read_addr(dev);
if (plat->regs_base == FDT_ADDR_T_NONE)
return -EINVAL;
ret = dev_read_resource_byname(dev, "memory_map", &mm_res);
if (ret) {
dev_err(dev, "can't get omm_mm mmap resource(ret = %d)!\n", ret);
return ret;
}
for (i = 0; i < OMM_CLK_NB; i++) {
ret = clk_get_by_name(dev, clocks_name[i], &plat->clk[i]);
if (ret < 0) {
dev_err(dev, "Can't find I/O manager clock %s\n", clocks_name[i]);
return ret;
}
ret = reset_get_by_name(dev, resets_name[i], &plat->reset_ctl[i]);
if (ret < 0) {
dev_err(dev, "Can't find I/O manager reset %s\n", resets_name[i]);
return ret;
}
}
/* parse children's clock */
plat->clk_rate_max = 0;
device_foreach_child(child, dev) {
ret = clk_get_by_index(child, 0, &child_clk);
if (ret) {
dev_err(dev, "Failed to get clock for %s\n",
dev_read_name(child));
return ret;
}
clk_rate = clk_get_rate(&child_clk);
if (!clk_rate) {
dev_err(dev, "Invalid clock rate\n");
return -EINVAL;
}
if (clk_rate > plat->clk_rate_max)
plat->clk_rate_max = clk_rate;
}
plat->mux = dev_read_u32_default(dev, "st,omm-mux", 0);
plat->req2ack = dev_read_u32_default(dev, "st,omm-req2ack-ns", 0);
plat->cssel_ovr = dev_read_u32_default(dev, "st,omm-cssel-ovr", 0xff);
plat->mm_ospi2_size = 0;
for (i = 0; i < 2; i++) {
idx = dev_read_stringlist_search(dev, "memory-region-names",
mm_name[i]);
if (idx < 0)
continue;
/* res1 only used on second loop iteration */
res1.start = res.start;
res1.end = res.end;
dev_read_phandle_with_args(dev, "memory-region", NULL, 0, idx,
&args);
ret = ofnode_read_resource(args.node, 0, &res);
if (ret) {
dev_err(dev, "unable to resolve memory region\n");
return ret;
}
/* check that memory region fits inside OMM memory map area */
if (!resource_contains(&mm_res, &res)) {
dev_err(dev, "%s doesn't fit inside OMM memory map area\n",
mm_name[i]);
dev_err(dev, "[0x%llx-0x%llx] doesn't fit inside [0x%llx-0x%llx]\n",
res.start, res.end,
mm_res.start, mm_res.end);
return -EFAULT;
}
if (i == 1) {
plat->mm_ospi2_size = resource_size(&res);
/* check that OMM memory region 1 doesn't overlap memory region 2 */
if (resource_overlaps(&res, &res1)) {
dev_err(dev, "OMM memory-region %s overlaps memory region %s\n",
mm_name[0], mm_name[1]);
dev_err(dev, "[0x%llx-0x%llx] overlaps [0x%llx-0x%llx]\n",
res1.start, res1.end, res.start, res.end);
return -EFAULT;
}
}
}
plat->syscfg_regmap = syscon_regmap_lookup_by_phandle(dev, "st,syscfg-amcr");
if (IS_ERR(plat->syscfg_regmap)) {
dev_err(dev, "Failed to get st,syscfg-amcr property\n");
ret = PTR_ERR(plat->syscfg_regmap);
return ret;
}
ret = dev_read_u32_index(dev, "st,syscfg-amcr", 1, &plat->amcr_base);
if (ret) {
dev_err(dev, "Failed to get st,syscfg-amcr base\n");
return ret;
}
ret = dev_read_u32_index(dev, "st,syscfg-amcr", 2, &plat->amcr_mask);
if (ret) {
dev_err(dev, "Failed to get st,syscfg-amcr mask\n");
return ret;
}
return 0;
};
static int stm32_omm_bind(struct udevice *dev)
{
int ret = 0, err = 0;
ofnode node;
for (node = ofnode_first_subnode(dev_ofnode(dev));
ofnode_valid(node);
node = ofnode_next_subnode(node)) {
const char *node_name = ofnode_get_name(node);
if (!ofnode_is_enabled(node) || stm32_rifsc_grant_access(node)) {
dev_dbg(dev, "%s failed to bind\n", node_name);
continue;
}
err = lists_bind_fdt(dev, node, NULL, NULL,
gd->flags & GD_FLG_RELOC ? false : true);
if (err && !ret) {
ret = err;
dev_dbg(dev, "%s: ret=%d\n", node_name, ret);
}
}
if (ret)
dev_dbg(dev, "Some drivers failed to bind\n");
return ret;
}
static const struct udevice_id stm32_omm_ids[] = {
{ .compatible = "st,stm32mp25-omm", },
{},
};
U_BOOT_DRIVER(stm32_omm) = {
.name = "stm32_omm",
.id = UCLASS_NOP,
.probe = stm32_omm_probe,
.of_match = stm32_omm_ids,
.of_to_plat = stm32_omm_of_to_plat,
.plat_auto = sizeof(struct stm32_omm_plat),
.bind = stm32_omm_bind,
};
|