summaryrefslogtreecommitdiff
path: root/drivers/ram/renesas/dbsc5/dram.c
blob: ca8a7fb4783f51493907f7a574faad0d1b3313ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2024 Renesas Electronics Corp.
 */

#include <asm/io.h>
#include <dbsc5.h>
#include <dm.h>
#include <errno.h>
#include <hang.h>
#include <ram.h>
#include <linux/iopoll.h>
#include <linux/sizes.h>
#include "dbsc5.h"

/* Number of array elements in Data Slice */
#define DDR_PHY_SLICE_REGSET_SIZE_V4H	0x100
/* Number of array elements in Data Slice */
#define DDR_PHY_SLICE_REGSET_NUM_V4H	153
/* Number of array elements in Address Slice */
#define DDR_PHY_ADR_V_REGSET_NUM_V4H	61
/* Number of array elements in Address Control Slice */
#define DDR_PHY_ADR_G_REGSET_NUM_V4H	97
/* Number of array elements in PI Register */
#define DDR_PI_REGSET_NUM_V4H		1381

/* Minimum value table for JS1 configuration table that can be taken */
#define JS1_USABLEC_SPEC_LO		5
/* Maximum value table for JS1 configuration table that can be taken */
#define JS1_USABLEC_SPEC_HI		11
/* The number of JS1 setting table */
#define JS1_FREQ_TBL_NUM		12
/* Macro to set the value of MR1 */
#define JS1_MR1(f)			(((f) << 4) | 0x00) /* CK mode = 0B */
/* Macro to set the value of MR2 */
#define JS1_MR2(f)			(((f) << 4) | (f))

#define JS2_tSR		0	/* Element for self refresh */
#define JS2_tXP		1	/* Exit power-down mode to first valid command */
#define JS2_tRCD	2	/* Active to read or write delay */
#define JS2_tRPpb	3	/* Minimum Row Precharge Delay Time */
#define JS2_tRPab	4	/* Minimum Row Precharge Delay Time */
#define JS2_tRAS	5	/* ACTIVE-to-PRECHARGE command */
#define JS2_tWTR_S	6	/* Internal WRITE-to-READ command delay */
#define JS2_tWTR_L	7	/* Internal WRITE-to-READ command delay */
#define JS2_tRRD	8	/* Active bank a to active bank b command */
#define JS2_tPPD	9	/* Precharge Power Down */
#define JS2_tFAW	10	/* Four bank ACT window */
#define JS2_tMRR	11	/* Mode Register Read */
#define JS2_tMRW	12	/* Mode Register Write */
#define JS2_tMRD	13	/* LOAD MODE REGISTER command cycle time */
#define JS2_tZQCALns	14	/* ZQ Calibration */
#define JS2_tZQLAT	15	/* ZQ Latency */
#define JS2_tODTon_min	16	/* Minimum time on die termination */
#define JS2_tPDN_DSM	17	/* Recommended minimum time for Deep Sleep Mode duration */
#define JS2_tXSR_DSM	18	/* Required time to be fully re-powered up from Deep Sleep Mode */
#define JS2_tXDSM_XP	19	/* Delay from Deep Sleep Mode Exit to Power-Down Exit */
#define JS2_tWCK2DQI_HF	20	/* Setting value of DQ to WCK input offset */
#define JS2_tWCK2DQO_HF	21	/* Setting value of WCK to DQ output offset */
#define JS2_tWCK2DQI_LF	22	/* Setting value of DQ to WCK input offset */
#define JS2_tWCK2DQO_LF	23	/* Setting value of WCK to DQ output offset */
#define JS2_tOSCODQI	24	/* Delay time from Stop WCK2DQI Interval Oscillator command to Mode Register Readout */
#define JS2_tDQ72DQns	25	/* Reception time to change the value fof REF(CA) for Command Bus Training Mode2 */
#define JS2_tCAENTns	26	/* Reception time to change the value fof REF(CA) for Command Bus Training Mode1 */
#define JS2_tCSCAL	27	/* Minimum CA Low Duration time */
#define JS2_TBLCNT	28	/* The number of table */

#define JS2_tRCpb	JS2_TBLCNT		/* ACTIVATE-to-ACTIVATE command period with per bank precharge */
#define JS2_tRCab	(JS2_TBLCNT + 1)	/* ACTIVATE-to-ACTIVATE command period with all bank precharge */
#define JS2_tRFCab	(JS2_TBLCNT + 2)	/* Refresh Cycle Time with All Banks */
#define JS2_tRBTP	(JS2_TBLCNT + 3)	/* READ Burst end to PRECHARGE command delay */
#define JS2_tXSR	(JS2_TBLCNT + 4)	/* Exit Self Refresh to Valid commands */
#define JS2_tPDN	(JS2_TBLCNT + 5)
#define JS2_tWLWCKOFF	(JS2_TBLCNT + 6)
#define JS2_CNT		(JS2_TBLCNT + 7)

struct jedec_spec1 {
	u32 fx3;	/* Frequency */
	u8 RLset1;	/* setting value of Read Latency */
	u8 RLset2;	/* setting value of Read Latency */
	u8 WLsetA;	/* setting value of Write Latency */
	u8 WLsetB;	/* setting value of Write Latency */
	u32 nWR;	/* Write-Recovery for Auto-Precharge commands */
	u32 nRBTP;	/* the minimum interval from a READ command to a PRE command */
	u32 ODTLon;	/* On Die Termination */
	u8 MR1;		/* Mode Register 1 */
	u8 MR2;		/* Mode Register 2 */
	u32 WCKENLR;	/* The setting time from CAS command to the Start-up of WCK in READ operation */
	u32 WCKENLW;	/* The setting time from CAS command to the Start-up of WCK in WRITE operation */
	u32 WCKENLF;	/* The setting time from CAS command to the Start-up of WCK in FAST-sync operation */
	u32 WCKPRESTA;	/* The setting time from the Start-up of WCK to WCK Clocling Start */
	u32 WCKPRETGLR;	/* The setting time from WCK Clocling Start to Reflecting frequency of WCK */
};

static const struct jedec_spec1 js1[JS1_FREQ_TBL_NUM] = {
	/* fx3, RL1, RL2, WLA.WLB.nWR.nRBTP, ODTLon    */
	{  800,  3,  3,  2,  2,  3, 0, 1, JS1_MR1(0),  JS1_MR2(0),  0, 0, 0, 1, 3 }, /*  533.333Mbps*/
	{ 1600,  4,  4,  2,  3,  5, 0, 1, JS1_MR1(1),  JS1_MR2(1),  0, 0, 0, 1, 4 }, /* 1066.666Mbps*/
	{ 2400,  5,  6,  3,  4,  7, 0, 2, JS1_MR1(2),  JS1_MR2(2),  1, 1, 1, 1, 4 }, /* 1600.000Mbps*/
	{ 3200,  7,  7,  4,  5, 10, 0, 2, JS1_MR1(3),  JS1_MR2(3),  2, 1, 1, 2, 4 }, /* 2133.333Mbps*/
	{ 4000,  8,  9,  4,  7, 12, 1, 2, JS1_MR1(4),  JS1_MR2(4),  2, 1, 1, 2, 5 }, /* 2666.666Mbps*/
	{ 4800, 10, 10,  5,  8, 14, 1, 3, JS1_MR1(5),  JS1_MR2(5),  4, 2, 1, 2, 5 }, /* 3200.000Mbps*/
	{ 5600, 11, 12,  6,  9, 16, 2, 4, JS1_MR1(6),  JS1_MR2(6),  4, 2, 1, 3, 5 }, /* 3733.333Mbps*/
	{ 6400, 13, 14,  6, 11, 19, 2, 3, JS1_MR1(7),  JS1_MR2(7),  5, 2, 1, 3, 6 }, /* 4266.666Mbps*/
	{ 7200, 14, 15,  7, 12, 21, 3, 4, JS1_MR1(8),  JS1_MR2(8),  6, 3, 2, 3, 6 }, /* 4800.000Mbps*/
	{ 8250, 16, 17,  8, 14, 24, 4, 5, JS1_MR1(9),  JS1_MR2(9),  7, 3, 2, 4, 6 }, /* 5500.000Mbps*/
	{ 9000, 17, 19,  9, 15, 26, 4, 6, JS1_MR1(10), JS1_MR2(10), 7, 4, 2, 4, 7 }, /* 6000.000Mbps*/
	{ 9600, 18, 20,  9, 16, 28, 4, 6, JS1_MR1(11), JS1_MR2(11), 8, 4, 2, 4, 7 }  /* 6400.000Mbps*/
};

struct jedec_spec2 {
	u16 ps;		/* Value in pico seconds */
	u16 cyc;	/* Value in cycle count */
};

static const struct jedec_spec2 jedec_spec2[2][JS2_TBLCNT] = {
	{
		{ 15000, 2 },	/* tSR */
		{ 7000, 3 },	/* tXP */
		{ 18000, 2 },	/* tRCD */
		{ 18000, 2 },	/* tRPpb */
		{ 21000, 2 },	/* tRPab */
		{ 42000, 3 },	/* tRAS */
		{ 6250, 4 },	/* tWTR_S */
		{ 12000, 4 },	/* tWTR_L */
		{ 5000, 2 },	/* tRRD */
		{ 0, 2 },	/* tPPD */
		{ 20000, 0 },	/* tFAW */
		{ 0, 4 },	/* tMRR */
		{ 10000, 5 },	/* tMRW */
		{ 14000, 5 },	/* tMRD */
		{ 1500, 0 },	/* tZQCALns */
		{ 30000, 4 },	/* tZQLAT */
		{ 1500, 0 },	/* tODTon_min */
		{ 4000, 0 },	/* tPDN_DSMus */
		{ 200, 0 },	/* tXSR_DSMus */
		{ 190, 0 },	/* tXDSM_XPus */
		{ 700, 0 },	/* tWCK2DQI_HF */
		{ 1600, 0 },	/* tWCK2DQO_HF */
		{ 900, 0 },	/* tWCK2DQI_LF */
		{ 1900, 0 },	/* tWCK2DQO_LF */
		{ 40000, 8 },	/* tOSCODQI */
		{ 125, 0 },	/* tDQ72DQns */
		{ 250, 0 },	/* tCAENTns */
		{ 1750, 0 }	/* tCSCAL */
	}, {
		{ 15000, 2 },	/* tSR */
		{ 7000, 3 },	/* tXP */
		{ 19875, 2 },	/* tRCD */
		{ 19875, 2 },	/* tRPpb */
		{ 22875, 2 },	/* tRPab */
		{ 43875, 3 },	/* tRAS */
		{ 6250, 4 },	/* tWTR_S */
		{ 12000, 4 },	/* tWTR_L */
		{ 5000, 2 },	/* tRRD */
		{ 0, 2 },	/* tPPD */
		{ 20000, 0 },	/* tFAW */
		{ 0, 4 },	/* tMRR */
		{ 10000, 5 },	/* tMRW */
		{ 14000, 5 },	/* tMRD */
		{ 1500, 0 },	/* tZQCALns */
		{ 30000, 4 },	/* tZQLAT */
		{ 1500, 0 },	/* tODTon_min */
		{ 4000, 0 },	/* tPDN_DSMus */
		{ 200, 0 },	/* tXSR_DSMus */
		{ 190, 0 },	/* tXDSM_XPus */
		{ 715, 0 },	/* tWCK2DQI_HF */
		{ 1635, 0 },	/* tWCK2DQO_HF */
		{ 920, 0 },	/* tWCK2DQI_LF */
		{ 1940, 0 },	/* tWCK2DQO_LF */
		{ 40000, 8 },	/* tOSCODQI */
		{ 125, 0 },	/* tDQ72DQns */
		{ 250, 0 },	/* tCAENTns */
		{ 1750, 0 }	/* tCSCAL */
	}
};

static const u16 jedec_spec2_tRFC_ab[] = {
	/* 2Gb, 3Gb, 4Gb, 6Gb, 8Gb, 12Gb, 16Gb, 24Gb, 32Gb */
	130, 180, 180, 210, 210, 280, 280, 380, 380
};

/* The address offsets of PI Register */
#define DDR_PI_REGSET_OFS_V4H			0x0800
/* The address offsets of Data Slice */
#define DDR_PHY_SLICE_REGSET_OFS_V4H		0x1000
/* The address offsets of Address Slice */
#define DDR_PHY_ADR_V_REGSET_OFS_V4H		0x1200
/* The address offsets of Address Control Slice */
#define DDR_PHY_ADR_G_REGSET_OFS_V4H		0x1300

#define DDR_REGDEF_ADR(regdef)			((regdef) & 0xFFFF)
#define DDR_REGDEF_LEN(regdef)			(((regdef) >> 16) & 0xFF)
#define DDR_REGDEF_LSB(regdef)			(((regdef) >> 24) & 0xFF)

#define DDR_REGDEF(lsb, len, adr)					\
	(((lsb) << 24) | ((len) << 16) | (adr))

#define PHY_LP4_BOOT_RX_PCLK_CLK_SEL		DDR_REGDEF(0x10, 0x03, 0x1000)
#define PHY_PER_CS_TRAINING_MULTICAST_EN	DDR_REGDEF(0x10, 0x01, 0x1006)
#define PHY_PER_CS_TRAINING_INDEX		DDR_REGDEF(0x18, 0x01, 0x1006)
#define PHY_VREF_INITIAL_STEPSIZE		DDR_REGDEF(0x18, 0x08, 0x100D)
#define PHY_RDLVL_BEST_THRSHLD			DDR_REGDEF(0x00, 0x04, 0x100E)
#define PHY_RDLVL_VREF_OUTLIER			DDR_REGDEF(0x10, 0x03, 0x100E)
#define SC_PHY_WCK_CALC				DDR_REGDEF(0x18, 0x01, 0x101A)
#define PHY_RDLVL_RDDQS_DQ_OBS_SELECT		DDR_REGDEF(0x10, 0x05, 0x102C)
#define PHY_CALVL_VREF_DRIVING_SLICE		DDR_REGDEF(0x18, 0x01, 0x1030)
#define PHY_WRLVL_HARD0_DELAY_OBS		DDR_REGDEF(0x00, 0x0A, 0x1038)
#define PHY_WRLVL_HARD1_DELAY_OBS		DDR_REGDEF(0x10, 0x0A, 0x1038)
#define PHY_WRLVL_STATUS_OBS			DDR_REGDEF(0x00, 0x1C, 0x1039)
#define PHY_WRLVL_ERROR_OBS			DDR_REGDEF(0x00, 0x10, 0x103B)
#define PHY_GTLVL_STATUS_OBS			DDR_REGDEF(0x00, 0x12, 0x103D)
#define PHY_RDLVL_RDDQS_DQ_LE_DLY_OBS		DDR_REGDEF(0x10, 0x09, 0x103E)
#define PHY_RDLVL_RDDQS_DQ_TE_DLY_OBS		DDR_REGDEF(0x00, 0x09, 0x103F)
#define PHY_WDQLVL_STATUS_OBS			DDR_REGDEF(0x00, 0x20, 0x1043)
#define PHY_DATA_DC_CAL_START			DDR_REGDEF(0x18, 0x01, 0x104D)
#define PHY_SLV_DLY_CTRL_GATE_DISABLE		DDR_REGDEF(0x10, 0x01, 0x104E)
#define PHY_REGULATOR_EN_CNT			DDR_REGDEF(0x18, 0x06, 0x1050)
#define PHY_VREF_INITIAL_START_POINT		DDR_REGDEF(0x00, 0x09, 0x1055)
#define PHY_VREF_INITIAL_STOP_POINT		DDR_REGDEF(0x10, 0x09, 0x1055)
#define PHY_VREF_TRAINING_CTRL			DDR_REGDEF(0x00, 0x02, 0x1056)
#define PHY_RDDQ0_SLAVE_DELAY			DDR_REGDEF(0x00, 0x09, 0x105D)
#define PHY_RDDQ1_SLAVE_DELAY			DDR_REGDEF(0x10, 0x09, 0x105D)
#define PHY_RDDQ2_SLAVE_DELAY			DDR_REGDEF(0x00, 0x09, 0x105E)
#define PHY_RDDQ3_SLAVE_DELAY			DDR_REGDEF(0x10, 0x09, 0x105E)
#define PHY_RDDQ4_SLAVE_DELAY			DDR_REGDEF(0x00, 0x09, 0x105F)
#define PHY_RDDQ5_SLAVE_DELAY			DDR_REGDEF(0x10, 0x09, 0x105F)
#define PHY_RDDQ6_SLAVE_DELAY			DDR_REGDEF(0x00, 0x09, 0x1060)
#define PHY_RDDQ7_SLAVE_DELAY			DDR_REGDEF(0x10, 0x09, 0x1060)
#define PHY_RDDM_SLAVE_DELAY			DDR_REGDEF(0x00, 0x09, 0x1061)
#define PHY_RX_CAL_ALL_DLY			DDR_REGDEF(0x18, 0x06, 0x1061)
#define PHY_RX_PCLK_CLK_SEL			DDR_REGDEF(0x00, 0x03, 0x1062)
#define PHY_DATA_DC_CAL_CLK_SEL			DDR_REGDEF(0x18, 0x03, 0x1063)
#define PHY_PAD_VREF_CTRL_DQ			DDR_REGDEF(0x00, 0x0E, 0x1067)
#define PHY_PER_CS_TRAINING_EN			DDR_REGDEF(0x00, 0x01, 0x1068)
#define PHY_RDDATA_EN_TSEL_DLY			DDR_REGDEF(0x18, 0x05, 0x1069)
#define PHY_RDDATA_EN_OE_DLY			DDR_REGDEF(0x00, 0x05, 0x106A)
#define PHY_RPTR_UPDATE				DDR_REGDEF(0x10, 0x04, 0x106C)
#define PHY_WRLVL_RESP_WAIT_CNT			DDR_REGDEF(0x08, 0x06, 0x106D)
#define PHY_RDLVL_DLY_STEP			DDR_REGDEF(0x08, 0x04, 0x1070)
#define PHY_RDLVL_MAX_EDGE			DDR_REGDEF(0x00, 0x09, 0x1071)
#define PHY_DATA_DC_WDQLVL_ENABLE		DDR_REGDEF(0x08, 0x02, 0x1075)
#define PHY_RDDATA_EN_DLY			DDR_REGDEF(0x10, 0x05, 0x1076)
#define PHY_MEAS_DLY_STEP_ENABLE		DDR_REGDEF(0x08, 0x06, 0x1076)
#define PHY_DQ_DM_SWIZZLE0			DDR_REGDEF(0x00, 0x20, 0x1077)
#define PHY_DQ_DM_SWIZZLE1			DDR_REGDEF(0x00, 0x04, 0x1078)
#define PHY_CLK_WRDQS_SLAVE_DELAY		DDR_REGDEF(0x00, 0x09, 0x107E)
#define PHY_WRITE_PATH_LAT_DEC			DDR_REGDEF(0x10, 0x01, 0x107E)
#define PHY_RDDQS_GATE_SLAVE_DELAY		DDR_REGDEF(0x00, 0x09, 0x1088)
#define PHY_RDDQS_LATENCY_ADJUST		DDR_REGDEF(0x10, 0x05, 0x1088)
#define PHY_WRITE_PATH_LAT_ADD			DDR_REGDEF(0x18, 0x03, 0x1088)
#define PHY_WRITE_PATH_LAT_FRAC			DDR_REGDEF(0x00, 0x08, 0x1089)
#define PHY_GTLVL_LAT_ADJ_START			DDR_REGDEF(0x00, 0x05, 0x108A)
#define PHY_DATA_DC_DQS_CLK_ADJUST		DDR_REGDEF(0x00, 0x08, 0x108C)
#define PHY_ADR_CALVL_SWIZZLE0			DDR_REGDEF(0x00, 0x20, 0x1202)
#define PHY_ADR_MEAS_DLY_STEP_ENABLE		DDR_REGDEF(0x10, 0x01, 0x1203)
#define PHY_ADR_CALVL_RANK_CTRL			DDR_REGDEF(0x18, 0x02, 0x1205)
#define PHY_ADR_CALVL_OBS1			DDR_REGDEF(0x00, 0x20, 0x120A)
#define PHY_ADR_CALVL_OBS2			DDR_REGDEF(0x00, 0x20, 0x120B)
#define PHY_ADR_CALVL_DLY_STEP			DDR_REGDEF(0x00, 0x04, 0x1210)
#define PHY_CS_ACS_ALLOCATION_BIT2_2		DDR_REGDEF(0x08, 0x02, 0x1215)
#define PHY_CS_ACS_ALLOCATION_BIT3_2		DDR_REGDEF(0x10, 0x02, 0x1215)
#define PHY_CSLVL_OBS1				DDR_REGDEF(0x00, 0x20, 0x1221)
#define PHY_CLK_DC_CAL_CLK_SEL			DDR_REGDEF(0x08, 0x03, 0x123A)
#define PHY_FREQ_SEL_MULTICAST_EN		DDR_REGDEF(0x08, 0x01, 0x1301)
#define PHY_FREQ_SEL_INDEX			DDR_REGDEF(0x10, 0x02, 0x1301)
#define SC_PHY_MANUAL_UPDATE			DDR_REGDEF(0x18, 0x01, 0x1304)
#define PHY_SET_DFI_INPUT_RST_PAD		DDR_REGDEF(0x18, 0x01, 0x1311)
#define PHY_CAL_MODE_0				DDR_REGDEF(0x00, 0x0D, 0x132C)
#define PHY_CAL_INTERVAL_COUNT_0		DDR_REGDEF(0x00, 0x20, 0x132D)
#define PHY_DATA_BYTE_ORDER_SEL			DDR_REGDEF(0x00, 0x20, 0x133E)
#define PHY_PAD_ACS_RX_PCLK_CLK_SEL		DDR_REGDEF(0x10, 0x03, 0x1348)
#define PHY_PLL_CTRL				DDR_REGDEF(0x00, 0x0E, 0x134B)
#define PHY_PLL_CTRL_8X				DDR_REGDEF(0x10, 0x0E, 0x134B)
#define PHY_CAL_CLK_SELECT_0			DDR_REGDEF(0x00, 0x03, 0x1360)

#define PI_START				DDR_REGDEF(0x00, 0x01, 0x0800)
#define PI_TRAIN_ALL_FREQ_REQ			DDR_REGDEF(0x18, 0x01, 0x0802)
#define PI_CS_MAP				DDR_REGDEF(0x08, 0x02, 0x0813)
#define PI_WRLVL_REQ				DDR_REGDEF(0x10, 0x01, 0x081C)
#define PI_WRLVL_CS_SW				DDR_REGDEF(0x18, 0x02, 0x081C)
#define PI_RDLVL_REQ				DDR_REGDEF(0x18, 0x01, 0x0824)
#define PI_RDLVL_GATE_REQ			DDR_REGDEF(0x00, 0x01, 0x0825)
#define PI_RDLVL_CS_SW				DDR_REGDEF(0x08, 0x02, 0x0825)
#define PI_RDLVL_PERIODIC			DDR_REGDEF(0x08, 0x01, 0x082E)
#define PI_RDLVL_INTERVAL			DDR_REGDEF(0x08, 0x10, 0x0835)
#define PI_DRAMDCA_FLIP_MASK			DDR_REGDEF(0x08, 0x02, 0x083B)
#define PI_DRAMDCA_LVL_REQ			DDR_REGDEF(0x10, 0x01, 0x083D)
#define PI_DCMLVL_CS_SW				DDR_REGDEF(0x18, 0x02, 0x083D)
#define PI_WRDCM_LVL_EN_F1			DDR_REGDEF(0x00, 0x02, 0x083F)
#define PI_DRAMDCA_LVL_EN_F1			DDR_REGDEF(0x08, 0x02, 0x083F)
#define PI_WRDCM_LVL_EN_F2			DDR_REGDEF(0x18, 0x02, 0x083F)
#define PI_DRAMDCA_LVL_EN_F2			DDR_REGDEF(0x00, 0x02, 0x0840)
#define PI_DRAMDCA_LVL_ACTIVE_SEQ_2		DDR_REGDEF(0x00, 0x1B, 0x0868)
#define PI_DRAMDCA_LVL_ACTIVE_SEQ_3		DDR_REGDEF(0x00, 0x1B, 0x0869)
#define PI_DRAMDCA_LVL_ACTIVE_SEQ_4		DDR_REGDEF(0x00, 0x1B, 0x086A)
#define PI_TCKCKEL_F2				DDR_REGDEF(0x18, 0x04, 0x089D)
#define PI_WDQLVL_VREF_EN			DDR_REGDEF(0x08, 0x04, 0x089E)
#define PI_WDQLVL_PERIODIC			DDR_REGDEF(0x00, 0x01, 0x08A0)
#define PI_WDQLVL_INTERVAL			DDR_REGDEF(0x00, 0x10, 0x08A4)
#define PI_INT_STATUS				DDR_REGDEF(0x00, 0x20, 0x0900)
#define PI_INT_ACK_0				DDR_REGDEF(0x00, 0x20, 0x0902)
#define PI_INT_ACK_1				DDR_REGDEF(0x00, 0x03, 0x0903)
#define PI_LONG_COUNT_MASK			DDR_REGDEF(0x10, 0x05, 0x090F)
#define PI_ADDR_MUX_0				DDR_REGDEF(0x00, 0x03, 0x0910)
#define PI_ADDR_MUX_1				DDR_REGDEF(0x08, 0x03, 0x0910)
#define PI_ADDR_MUX_2				DDR_REGDEF(0x10, 0x03, 0x0910)
#define PI_ADDR_MUX_3				DDR_REGDEF(0x18, 0x03, 0x0910)
#define PI_ADDR_MUX_4				DDR_REGDEF(0x00, 0x03, 0x0911)
#define PI_ADDR_MUX_5				DDR_REGDEF(0x08, 0x03, 0x0911)
#define PI_ADDR_MUX_6				DDR_REGDEF(0x10, 0x03, 0x0911)
#define PI_DATA_BYTE_SWAP_EN			DDR_REGDEF(0x18, 0x01, 0x0911)
#define PI_DATA_BYTE_SWAP_SLICE0		DDR_REGDEF(0x00, 0x01, 0x0912)
#define PI_DATA_BYTE_SWAP_SLICE1		DDR_REGDEF(0x08, 0x01, 0x0912)
#define PI_PWRUP_SREFRESH_EXIT			DDR_REGDEF(0x18, 0x01, 0x093D)
#define PI_PWRUP_SREFRESH_EXIT			DDR_REGDEF(0x18, 0x01, 0x093D)
#define PI_DLL_RST				DDR_REGDEF(0x00, 0x01, 0x0941)
#define PI_TDELAY_RDWR_2_BUS_IDLE_F2		DDR_REGDEF(0x00, 0x08, 0x0964)
#define PI_WRLAT_F2				DDR_REGDEF(0x10, 0x07, 0x096A)
#define PI_TWCKENL_WR_ADJ_F2			DDR_REGDEF(0x18, 0x06, 0x096A)
#define PI_TWCKENL_RD_ADJ_F2			DDR_REGDEF(0x00, 0x06, 0x096B)
#define PI_TWCKPRE_STATIC_F2			DDR_REGDEF(0x08, 0x06, 0x096B)
#define PI_TWCKPRE_TOGGLE_RD_F2			DDR_REGDEF(0x18, 0x06, 0x096B)
#define PI_TWCKENL_FS_ADJ_F2			DDR_REGDEF(0x00, 0x06, 0x096C)
#define PI_CASLAT_F2				DDR_REGDEF(0x08, 0x07, 0x096C)
#define PI_TRFC_F2				DDR_REGDEF(0x00, 0x0A, 0x0971)
#define PI_TREF_F2				DDR_REGDEF(0x00, 0x14, 0x0972)
#define PI_TDFI_WRLVL_WW_F0			DDR_REGDEF(0x00, 0x0A, 0x0974)
#define PI_TDFI_WRLVL_WW_F1			DDR_REGDEF(0x00, 0x0A, 0x0975)
#define PI_WRLVL_EN_F2				DDR_REGDEF(0x18, 0x02, 0x0975)
#define PI_TDFI_WRLVL_WW_F2			DDR_REGDEF(0x00, 0x0A, 0x0976)
#define PI_WRLVL_WCKOFF_F2			DDR_REGDEF(0x10, 0x08, 0x0976)
#define PI_RDLVL_EN_F2				DDR_REGDEF(0x18, 0x02, 0x097A)
#define PI_RDLVL_GATE_EN_F2			DDR_REGDEF(0x00, 0x02, 0x097B)
#define PI_RDLVL_VREF_EN_F0			DDR_REGDEF(0x10, 0x04, 0x097B)
#define PI_RDLVL_VREF_EN_F1			DDR_REGDEF(0x00, 0x04, 0x097D)
#define PI_RDLVL_VREF_EN_F2			DDR_REGDEF(0x10, 0x04, 0x097E)
#define PI_RDLAT_ADJ_F2				DDR_REGDEF(0x00, 0x09, 0x0981)
#define PI_WRLAT_ADJ_F2				DDR_REGDEF(0x00, 0x07, 0x0982)
#define PI_TDFI_CALVL_CC_F2			DDR_REGDEF(0x00, 0x0A, 0x0985)
#define PI_TDFI_CALVL_CAPTURE_F2		DDR_REGDEF(0x10, 0x0A, 0x0985)
#define PI_CALVL_EN_F2				DDR_REGDEF(0x10, 0x02, 0x0986)
#define PI_TCAENT_F2				DDR_REGDEF(0x00, 0x0E, 0x0989)
#define PI_TVREF_SHORT_F2			DDR_REGDEF(0x00, 0x0A, 0x098F)
#define PI_TVREF_LONG_F2			DDR_REGDEF(0x10, 0x0A, 0x098F)
#define PI_TVRCG_ENABLE_F2			DDR_REGDEF(0x00, 0x0A, 0x0990)
#define PI_TVRCG_DISABLE_F2			DDR_REGDEF(0x10, 0x0A, 0x0990)
#define PI_CALVL_VREF_INITIAL_START_POINT_F0	DDR_REGDEF(0x00, 0x07, 0x0991)
#define PI_CALVL_VREF_INITIAL_STOP_POINT_F0	DDR_REGDEF(0x08, 0x07, 0x0991)
#define PI_CALVL_VREF_INITIAL_START_POINT_F1	DDR_REGDEF(0x18, 0x07, 0x0991)
#define PI_CALVL_VREF_INITIAL_STOP_POINT_F1	DDR_REGDEF(0x00, 0x07, 0x0992)
#define PI_CALVL_VREF_INITIAL_START_POINT_F2	DDR_REGDEF(0x10, 0x07, 0x0992)
#define PI_CALVL_VREF_INITIAL_STOP_POINT_F2	DDR_REGDEF(0x18, 0x07, 0x0992)
#define PI_TDFI_CALVL_STROBE_F2			DDR_REGDEF(0x08, 0x04, 0x0995)
#define PI_TXP_F2				DDR_REGDEF(0x10, 0x05, 0x0995)
#define PI_TMRWCKEL_F2				DDR_REGDEF(0x18, 0x08, 0x0995)
#define PI_TCKEHDQS_F2				DDR_REGDEF(0x10, 0x06, 0x099D)
#define PI_TFC_F2				DDR_REGDEF(0x00, 0x0A, 0x099E)
#define PI_WDQLVL_VREF_INITIAL_START_POINT_F0	DDR_REGDEF(0x10, 0x07, 0x09A0)
#define PI_WDQLVL_VREF_INITIAL_STOP_POINT_F0	DDR_REGDEF(0x18, 0x07, 0x09A0)
#define PI_WDQLVL_VREF_INITIAL_START_POINT_F1	DDR_REGDEF(0x00, 0x07, 0x09A4)
#define PI_WDQLVL_VREF_INITIAL_STOP_POINT_F1	DDR_REGDEF(0x08, 0x07, 0x09A4)
#define PI_TDFI_WDQLVL_WR_F2			DDR_REGDEF(0x00, 0x0A, 0x09A6)
#define PI_TDFI_WDQLVL_RW_F2			DDR_REGDEF(0x10, 0x0A, 0x09A6)
#define PI_WDQLVL_VREF_INITIAL_START_POINT_F2	DDR_REGDEF(0x00, 0x07, 0x09A7)
#define PI_WDQLVL_VREF_INITIAL_STOP_POINT_F2	DDR_REGDEF(0x08, 0x07, 0x09A7)
#define PI_WDQLVL_EN_F2				DDR_REGDEF(0x18, 0x02, 0x09A7)
#define PI_MBIST_RDLAT_ADJ_F2			DDR_REGDEF(0x08, 0x09, 0x09A8)
#define PI_MBIST_TWCKENL_RD_ADJ_F2		DDR_REGDEF(0x18, 0x06, 0x09A8)
#define PI_TRTP_F2				DDR_REGDEF(0x18, 0x08, 0x09B3)
#define PI_TRP_F2				DDR_REGDEF(0x00, 0x08, 0x09B4)
#define PI_TRCD_F2				DDR_REGDEF(0x08, 0x08, 0x09B4)
#define PI_TWTR_S_F2				DDR_REGDEF(0x18, 0x06, 0x09B4)
#define PI_TWTR_L_F2				DDR_REGDEF(0x00, 0x06, 0x09B5)
#define PI_TWTR_F2				DDR_REGDEF(0x10, 0x06, 0x09B5)
#define PI_TWR_F2				DDR_REGDEF(0x18, 0x08, 0x09B5)
#define PI_TRAS_MIN_F2				DDR_REGDEF(0x10, 0x09, 0x09B6)
#define PI_TDQSCK_MAX_F2			DDR_REGDEF(0x00, 0x04, 0x09B7)
#define PI_TSR_F2				DDR_REGDEF(0x10, 0x08, 0x09B7)
#define PI_TMRD_F2				DDR_REGDEF(0x18, 0x08, 0x09B7)
#define PI_TDFI_CTRLUPD_MAX_F2			DDR_REGDEF(0x00, 0x15, 0x09BC)
#define PI_TDFI_CTRLUPD_INTERVAL_F2		DDR_REGDEF(0x00, 0x20, 0x09BD)
#define PI_TINIT_F2				DDR_REGDEF(0x00, 0x18, 0x09CC)
#define PI_TINIT1_F2				DDR_REGDEF(0x00, 0x18, 0x09CD)
#define PI_TINIT3_F2				DDR_REGDEF(0x00, 0x18, 0x09CE)
#define PI_TINIT4_F2				DDR_REGDEF(0x00, 0x18, 0x09CF)
#define PI_TINIT5_F2				DDR_REGDEF(0x00, 0x18, 0x09D0)
#define PI_TXSNR_F2				DDR_REGDEF(0x00, 0x10, 0x09D1)
#define PI_TZQCAL_F2				DDR_REGDEF(0x10, 0x0C, 0x09D6)
#define PI_TZQLAT_F2				DDR_REGDEF(0x00, 0x07, 0x09D7)
#define PI_ZQRESET_F2				DDR_REGDEF(0x10, 0x0C, 0x09D8)
#define PI_TDQ72DQ_F2				DDR_REGDEF(0x10, 0x0A, 0x09DD)
#define PI_TCBTRTW_F2				DDR_REGDEF(0x00, 0x06, 0x09DE)
#define PI_MC_TRFC_F2				DDR_REGDEF(0x00, 0x0A, 0x09E1)
#define PI_CKE_MUX_0				DDR_REGDEF(0x00, 0x03, 0x09E6)
#define PI_CKE_MUX_1				DDR_REGDEF(0x08, 0x03, 0x09E6)
#define PI_SEQ_DEC_SW_CS			DDR_REGDEF(0x00, 0x02, 0x0A4E)
#define PI_SW_SEQ_START				DDR_REGDEF(0x10, 0x01, 0x0A4E)
#define PI_SW_SEQ_0				DDR_REGDEF(0x00, 0x1B, 0x0BF1)
#define PI_SW_SEQ_1				DDR_REGDEF(0x00, 0x1B, 0x0BF2)
#define PI_DFS_ENTRY_SEQ_0			DDR_REGDEF(0x00, 0x1D, 0x0BFB)
#define PI_DFS_INITIALIZATION_SEQ_1		DDR_REGDEF(0x00, 0x1D, 0x0C24)
#define PI_DFS_INITIALIZATION_SEQ_9		DDR_REGDEF(0x00, 0x1D, 0x0C2C)
#define PI_DFS_INITIALIZATION_SEQ_10		DDR_REGDEF(0x00, 0x1D, 0x0C2D)
#define PI_RDLVL_TRAIN_SEQ_1			DDR_REGDEF(0x00, 0x1B, 0x0C42)
#define PI_RDLVL_TRAIN_SEQ_2			DDR_REGDEF(0x00, 0x1B, 0x0C43)
#define PI_RDLVL_TRAIN_SEQ_3			DDR_REGDEF(0x00, 0x1B, 0x0C44)
#define PI_RDLVL_TRAIN_SEQ_4			DDR_REGDEF(0x00, 0x1B, 0x0C45)
#define PI_RDLVL_TRAIN_SEQ_5			DDR_REGDEF(0x00, 0x1B, 0x0C46)
#define PI_SEQ_WAIT_16_F2			DDR_REGDEF(0x00, 0x18, 0x0C77)
#define PI_SEQ_WAIT_17_F2			DDR_REGDEF(0x00, 0x18, 0x0C7A)
#define PI_SEQ_WAIT_18_F2			DDR_REGDEF(0x00, 0x18, 0x0C7D)
#define PI_SEQ_WAIT_19_F2			DDR_REGDEF(0x00, 0x18, 0x0C80)
#define PI_SEQ_WAIT_20_F2			DDR_REGDEF(0x00, 0x18, 0x0C83)
#define PI_SEQ_WAIT_21_F2			DDR_REGDEF(0x00, 0x18, 0x0C86)
#define PI_SEQ_WAIT_22_F2			DDR_REGDEF(0x00, 0x18, 0x0C89)
#define PI_SEQ_WAIT_23_F2			DDR_REGDEF(0x00, 0x18, 0x0C8C)
#define PI_SEQ_WAIT_24_F2			DDR_REGDEF(0x00, 0x18, 0x0C8F)
#define PI_SEQ_WAIT_25_F2			DDR_REGDEF(0x00, 0x18, 0x0C92)
#define PI_SEQ_WAIT_26_F2			DDR_REGDEF(0x00, 0x18, 0x0C95)
#define PI_SEQ_WAIT_30_F2			DDR_REGDEF(0x00, 0x18, 0x0CA1)
#define PI_DARRAY3_0_CS0_F0			DDR_REGDEF(0x00, 0x08, 0x0D0B)
#define PI_DARRAY3_1_CS0_F0			DDR_REGDEF(0x08, 0x08, 0x0D0B)
#define PI_DARRAY3_0_CS0_F1			DDR_REGDEF(0x00, 0x08, 0x0D15)
#define PI_DARRAY3_1_CS0_F1			DDR_REGDEF(0x08, 0x08, 0x0D15)
#define PI_DARRAY3_0_CS0_F2			DDR_REGDEF(0x00, 0x08, 0x0D1F)
#define PI_DARRAY3_1_CS0_F2			DDR_REGDEF(0x08, 0x08, 0x0D1F)
#define PI_DARRAY3_4_CS0_F2			DDR_REGDEF(0x00, 0x08, 0x0D20)
#define PI_DARRAY3_20_CS0_F2			DDR_REGDEF(0x00, 0x08, 0x0D24)
#define PI_DARRAY3_0_CS1_F0			DDR_REGDEF(0x00, 0x08, 0x0D29)
#define PI_DARRAY3_1_CS1_F0			DDR_REGDEF(0x08, 0x08, 0x0D29)
#define PI_DARRAY3_0_CS1_F1			DDR_REGDEF(0x00, 0x08, 0x0D33)
#define PI_DARRAY3_1_CS1_F1			DDR_REGDEF(0x08, 0x08, 0x0D33)
#define PI_DARRAY3_0_CS1_F2			DDR_REGDEF(0x00, 0x08, 0x0D3D)
#define PI_DARRAY3_1_CS1_F2			DDR_REGDEF(0x08, 0x08, 0x0D3D)
#define PI_DARRAY3_4_CS1_F2			DDR_REGDEF(0x00, 0x08, 0x0D3E)
#define PI_DARRAY3_20_CS1_F2			DDR_REGDEF(0x00, 0x08, 0x0D42)

/* The setting table of Data Slice for V4H */
static const u32 DDR_PHY_SLICE_REGSET_V4H[DDR_PHY_SLICE_REGSET_NUM_V4H] = {
	0x30020370, 0x00000000, 0x01000002, 0x00000000,
	0x00000000, 0x00000000, 0x00010300, 0x04000100,
	0x00010000, 0x01000000, 0x00000000, 0x00000000,
	0x00010000, 0x08010000, 0x00022003, 0x00000000,
	0x040F0100, 0x1404034F, 0x04040102, 0x04040404,
	0x00000100, 0x00000000, 0x00000000, 0x000800C0,
	0x000F18FF, 0x00000000, 0x00000001, 0x00070000,
	0x0000AAAA, 0x00005555, 0x0000B5B5, 0x00004A4A,
	0x00005656, 0x0000A9A9, 0x0000A9A9, 0x0000B5B5,
	0x00000000, 0xBFBF0000, 0xCCCCF7F7, 0x00000000,
	0x00000000, 0x00000000, 0x00080815, 0x08040000,
	0x00000004, 0x00103000, 0x000C0040, 0x00200200,
	0x01010000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000020, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000004, 0x001F07FF, 0x08000303,
	0x10200080, 0x00000006, 0x00000401, 0x00000000,
	0x20CEC201, 0x00000001, 0x00017706, 0x01007706,
	0x00000000, 0x008D006D, 0x00100001, 0x03FF0100,
	0x00006E01, 0x00000301, 0x00000000, 0x00000000,
	0x00000000, 0x00500050, 0x00500050, 0x00500050,
	0x00500050, 0x0D000050, 0x10100004, 0x06102010,
	0x61619041, 0x07097000, 0x00644180, 0x00803280,
	0x00808001, 0x13010101, 0x02000016, 0x10001003,
	0x06093E42, 0x0F063D01, 0x011700C8, 0x04100140,
	0x00000100, 0x000001D1, 0x05000068, 0x00030402,
	0x01400000, 0x80800300, 0x00160010, 0x76543210,
	0x00000008, 0x03010301, 0x03010301, 0x03010301,
	0x03010301, 0x03010301, 0x00000000, 0x00500050,
	0x00500050, 0x00500050, 0x00500050, 0x00500050,
	0x00500050, 0x00500050, 0x00500050, 0x00500050,
	0x00070087, 0x00000000, 0x08010007, 0x00000000,
	0x20202020, 0x20202020, 0x20202020, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000
};

/* The setting table of Address Slice for V4H */
static const u32 DDR_PHY_ADR_V_REGSET_V4H[DDR_PHY_ADR_V_REGSET_NUM_V4H] = {
	0x00200030, 0x00200002, 0x76543210, 0x00010001,
	0x06543210, 0x03070000, 0x00001000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x0000807F,
	0x00000001, 0x00000003, 0x00000000, 0x000F0000,
	0x030C000F, 0x00020103, 0x0000000F, 0x00000100,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x02000400, 0x0000002A, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00200101,
	0x10002C03, 0x00000003, 0x00030240, 0x00008008,
	0x00081020, 0x01200000, 0x00010001, 0x00000000,
	0x00100302, 0x003E4208, 0x01400140, 0x01400140,
	0x01400140, 0x01400140, 0x00000100, 0x00000100,
	0x00000100, 0x00000100, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00020580, 0x03000040,
	0x00000000
};

/* The setting table of Address Control Slice for V4H */
static const u32 DDR_PHY_ADR_G_REGSET_V4H[DDR_PHY_ADR_G_REGSET_NUM_V4H] = {
	0x00000000, 0x00000100, 0x00000001, 0x23800000,
	0x00000000, 0x01000101, 0x00000000, 0x00000001,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00040101, 0x00000000, 0x00000000, 0x00000064,
	0x00000000, 0x00000000, 0x39421B42, 0x00010124,
	0x00520052, 0x00000052, 0x00000000, 0x00000000,
	0x00010001, 0x00000000, 0x00000000, 0x00010001,
	0x00000000, 0x00000000, 0x00010001, 0x07030102,
	0x01030307, 0x00000054, 0x00004096, 0x08200820,
	0x08200820, 0x08200820, 0x08200820, 0x00000820,
	0x004103B8, 0x0000003F, 0x000C0006, 0x00000000,
	0x000004C0, 0x00007A12, 0x00000208, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x03000000, 0x00000000, 0x00000000, 0x04102002,
	0x00041020, 0x01C98C98, 0x3F400000, 0x003F3F3F,
	0x00000000, 0x00000000, 0x76543210, 0x00010198,
	0x00000007, 0x00000000, 0x00000000, 0x00000000,
	0x00000002, 0x00000000, 0x00000000, 0x00000000,
	0x01032380, 0x00000100, 0x00000000, 0x31421342,
	0x00308000, 0x00000080, 0x00063F77, 0x00000006,
	0x0000033F, 0x00000000, 0x0000033F, 0x00000000,
	0x0000033F, 0x00000000, 0x00033F00, 0x00CC0000,
	0x00033F77, 0x00000000, 0x00033F00, 0x00EE0000,
	0x00033F00, 0x00EE0000, 0x00033F00, 0x00EE0000,
	0x00200106
};

/* The setting table of PI Register for V4H */
static const u32 DDR_PI_REGSET_V4H[DDR_PI_REGSET_NUM_V4H] = {
	0x00000D00, 0x00010100, 0x00640004, 0x00000001,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0xFFFFFFFF, 0x02010000, 0x00000003, 0x00000005,
	0x00000002, 0x00000000, 0x00000101, 0x0012080E,
	0x00000000, 0x001E2C0E, 0x00000000, 0x00030300,
	0x01010700, 0x00000001, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x01000000, 0x00002807, 0x00000000, 0x32000300,
	0x00000000, 0x00000000, 0x04022004, 0x01040100,
	0x00010000, 0x00000100, 0x000000AA, 0x00000055,
	0x000000B5, 0x0000004A, 0x00000056, 0x000000A9,
	0x000000A9, 0x000000B5, 0x00000000, 0x01000000,
	0x00030300, 0x0000001A, 0x000007D0, 0x00000300,
	0x00000000, 0x00000000, 0x01000000, 0x00000101,
	0x00000000, 0x00000000, 0x00000000, 0x00000200,
	0x03030300, 0x01000000, 0x00000000, 0x00000100,
	0x00000003, 0x001100EF, 0x01A1120B, 0x00051400,
	0x001A0700, 0x001101FC, 0x00011A00, 0x00000000,
	0x001F0000, 0x00000000, 0x00000000, 0x00051500,
	0x001103FC, 0x00011A00, 0x00051500, 0x001102FC,
	0x00011A00, 0x00001A00, 0x00000000, 0x001F0000,
	0x001100FC, 0x00011A00, 0x01A1120B, 0x001A0701,
	0x00000000, 0x001F0000, 0x00000000, 0x00000000,
	0x001100EF, 0x01A1120B, 0x00051400, 0x01910480,
	0x01821009, 0x001F0000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x001A0700, 0x01A11E14,
	0x001101FC, 0x00211A00, 0x00051500, 0x001103FC,
	0x00011A00, 0x00051500, 0x001102FC, 0x00011A00,
	0x00031A00, 0x001A0701, 0x00000000, 0x001F0000,
	0x00000000, 0x00000000, 0x01A11E14, 0x01A1120B,
	0x00000000, 0x001F0000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x001100FD, 0x00012E00,
	0x00051700, 0x01A1120B, 0x001A0701, 0x001F0000,
	0x00000000, 0x00000000, 0x001100EF, 0x01A1120B,
	0x00051400, 0x001A0700, 0x001102FD, 0x00012E00,
	0x00000000, 0x001F0000, 0x00000000, 0x00000000,
	0x00070700, 0x00000000, 0x01000000, 0x00000300,
	0x17030000, 0x00000000, 0x00000000, 0x00000000,
	0x0A0A140A, 0x10020201, 0x332A0002, 0x01010000,
	0x0B000404, 0x04030308, 0x00010100, 0x02020301,
	0x01001000, 0x00000034, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x55AA55AA, 0x33CC33CC,
	0x0FF00FF0, 0x0F0FF0F0, 0x00008E38, 0x00000001,
	0x00000002, 0x00020001, 0x00020001, 0x02010201,
	0x0000000F, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0xAAAAA593,
	0xA5939999, 0x00000000, 0x00005555, 0x00003333,
	0x0000CCCC, 0x00000000, 0x0003FFFF, 0x00003333,
	0x0000CCCC, 0x00000000, 0x036DB6DB, 0x00249249,
	0x05B6DB6D, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x036DB6DB, 0x00249249,
	0x05B6DB6D, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x01000000, 0x00000100,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00010000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00010000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00080000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x01180400,
	0x03020100, 0x00060504, 0x00010100, 0x00000008,
	0x00080000, 0x00000001, 0x00000000, 0x0001AA00,
	0x00000100, 0x00000000, 0x00010000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00020000, 0x00000100, 0x00010000, 0x0000000B,
	0x0000001C, 0x00000100, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x03010000, 0x01000100,
	0x01020001, 0x00010300, 0x05000104, 0x01060001,
	0x00010700, 0x00000000, 0x00000000, 0x00010000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000301, 0x00000000, 0x00000000, 0x01010000,
	0x00000000, 0x00000200, 0x00000000, 0xB8000000,
	0x010000FF, 0x0000FFE8, 0x00FFA801, 0xFFD80100,
	0x00007F10, 0x00000000, 0x00000034, 0x0000003D,
	0x00020079, 0x02000200, 0x02000204, 0x06000C06,
	0x04040200, 0x04100804, 0x14090004, 0x1C081024,
	0x0000120C, 0x00000015, 0x000000CF, 0x00000026,
	0x0000017F, 0x00000130, 0x04000C2E, 0x00000404,
	0x01080032, 0x01080032, 0x000F0032, 0x00000000,
	0x00000000, 0x00000000, 0x00010300, 0x00010301,
	0x03030000, 0x00000001, 0x00010303, 0x00030000,
	0x0013000C, 0x0A060037, 0x03030526, 0x000C0032,
	0x0017003D, 0x0025004B, 0x00010101, 0x0000000E,
	0x00000019, 0x010000C8, 0x000F000F, 0x0007000C,
	0x001A0100, 0x0015001A, 0x0100000B, 0x00C900C9,
	0x005100A1, 0x29003329, 0x33290033, 0x0A070600,
	0x0A07060D, 0x0D09070D, 0x000C000D, 0x00001000,
	0x00000C00, 0x00001000, 0x00000C00, 0x02001000,
	0x0002000E, 0x00160019, 0x1E1A00C8, 0x00100004,
	0x361C0008, 0x00000000, 0x0000000C, 0x0006000C,
	0x0300361C, 0x04001300, 0x000D0019, 0x0000361C,
	0x20003300, 0x00000000, 0x02000000, 0x04040802,
	0x00060404, 0x0003C34F, 0x05022001, 0x0203000A,
	0x04040408, 0xC34F0604, 0x10010005, 0x040A0502,
	0x0A080F11, 0x1C0A040A, 0x0022C34F, 0x0C0C1002,
	0x00019E0A, 0x0000102C, 0x000002FE, 0x00001DEC,
	0x0000185C, 0x0000F398, 0x04000400, 0x03030400,
	0x002AF803, 0x00002AF8, 0x0000D6D7, 0x00000003,
	0x0000006E, 0x00000016, 0x00004E20, 0x00004E20,
	0x00030D40, 0x00000005, 0x000000C8, 0x00000027,
	0x00027100, 0x00027100, 0x00186A00, 0x00000028,
	0x00000640, 0x01000136, 0x00530040, 0x00010004,
	0x00960040, 0x00010004, 0x04B00040, 0x00000318,
	0x00280005, 0x05040404, 0x00070603, 0x06030503,
	0x0503000D, 0x00640603, 0x06040608, 0x00040604,
	0x00260015, 0x01050130, 0x01000100, 0x00020201,
	0x04040000, 0x01010104, 0x03020302, 0x00000100,
	0x02020101, 0x00000000, 0x09910260, 0x11911600,
	0x19A21009, 0x19A10100, 0x19A10201, 0x19A10302,
	0x19A10A03, 0x19A10B04, 0x19A10C05, 0x19A10E07,
	0x19A10F08, 0x19A1110A, 0x19A1120B, 0x19A1130C,
	0x19A1140D, 0x19A00C00, 0x199F0000, 0x199F0000,
	0x199F0000, 0x199F0000, 0x01910300, 0x01A21009,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x001140BF, 0x01811009, 0x01850400, 0x01A10C05,
	0x01850300, 0x01A10C11, 0x01850300, 0x001100BF,
	0x01811009, 0x01850500, 0x019F0000, 0x019F0000,
	0x01510001, 0x01D102A0, 0x01E21009, 0x00051900,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x01510001,
	0x01D10290, 0x01E21009, 0x01510001, 0x01D10000,
	0x01E21009, 0x00051800, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x0011008F, 0x00910000,
	0x01811009, 0x01910040, 0x01A21009, 0x019F0000,
	0x01911000, 0x01A21009, 0x01A10100, 0x01A10201,
	0x01A10302, 0x01A10A03, 0x01A10B04, 0x01A10C05,
	0x01A10E07, 0x01A10F08, 0x01A1110A, 0x01A1120B,
	0x01A1130C, 0x01A1140D, 0x01A00C00, 0x01910800,
	0x01A21009, 0x019F0000, 0x019F0000, 0x019F0000,
	0x0101017F, 0x00010101, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x01000000, 0x01000101,
	0x00000000, 0x00000000, 0x00050000, 0x00070100,
	0x000F0200, 0x00000000, 0x01A10100, 0x01A10201,
	0x01A10302, 0x01A00B04, 0x00210D06, 0x01A1110A,
	0x01A1140D, 0x00098000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
	0x019F0000, 0x019F0000, 0x01A10100, 0x01A10201,
	0x01A10302, 0x01A10A03, 0x01A10B04, 0x00210D06,
	0x01A1110A, 0x00000000, 0x01A1140D, 0x00000000,
	0x00000000, 0x00000000, 0x01A1120B, 0x000A0000,
	0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
	0x001F0000, 0x001F0000, 0x000A0000, 0x01061300,
	0x00000000, 0x00000000, 0x00061180, 0x000612C0,
	0x00000000, 0x00000000, 0x001F0000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x01811009, 0x0011EFAF,
	0x01A1120B, 0x001F0000, 0x001F0000, 0x001F0000,
	0x001F0000, 0x001F0000, 0x001F0000, 0x001100BF,
	0x01A1120B, 0x080D0000, 0x001F0000, 0x001F0000,
	0x001F0000, 0x080C0000, 0x001F0000, 0x001F0000,
	0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
	0x001F0000, 0x001F0000, 0x001F0200, 0x001F0200,
	0x001F0200, 0x001F0200, 0x001F0200, 0x001F0200,
	0x001F0200, 0x001F0200, 0x001F0200, 0x001F0200,
	0x001F0200, 0x001F0200, 0x001100EF, 0x01A1120B,
	0x001F0000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x01A1120B, 0x001F0000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x001100EF, 0x01A1120B,
	0x001F0000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00211F14, 0x00212014,
	0x00212116, 0x00212217, 0x001F0000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x001A85FF, 0x00051E00, 0x001F0000, 0x00000000,
	0x00211F14, 0x00212015, 0x00212116, 0x00212217,
	0x01A1120B, 0x001F0000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x0031FFBF, 0x01A11009,
	0x01A10E07, 0x01A10F08, 0x003100BF, 0x01A11009,
	0x00051800, 0x003F0000, 0x003F0000, 0x003F0000,
	0x003F0000, 0x003F0000, 0x003F0000, 0x003F0000,
	0x003F0000, 0x003F0000, 0x0031FFBF, 0x01A11009,
	0x01A10E07, 0x01A10F08, 0x003100BF, 0x01A11009,
	0x00051800, 0x003F0000, 0x003F0000, 0x003F0000,
	0x003F0000, 0x003F0000, 0x003F0000, 0x003F0000,
	0x003F0000, 0x003F0000, 0x08084340, 0x0011FFFF,
	0x2011FFFB, 0x00012E00, 0x001100EF, 0x01A1120B,
	0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
	0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
	0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
	0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
	0x001F0000, 0x001F0000, 0x083E4340, 0x00212E00,
	0x01A1120B, 0x003F0000, 0x003F0000, 0x003F0000,
	0x003F0000, 0x003F0000, 0x003F0000, 0x08201020,
	0x28100020, 0x08083020, 0x08400020, 0x08402020,
	0x08483020, 0x10083020, 0x20180020, 0x30480020,
	0x78880020, 0x488010E0, 0x494B0000, 0x49089080,
	0x49080000, 0x490011C0, 0x0A000020, 0x08000020,
	0x08000020, 0x08000020, 0x08000020, 0x08000020,
	0x08000020, 0x08000020, 0x08000020, 0x08000020,
	0x08000020, 0x08000020, 0x08000020, 0x08000020,
	0x08000020, 0x08000020, 0x08000020, 0x08000020,
	0x08000020, 0x08000020, 0x08000020, 0x08000020,
	0x08000020, 0x08000020, 0x08000020, 0x08000020,
	0x08000020, 0x08000020, 0x08000020, 0x08000020,
	0x001100FF, 0x01810302, 0x001100DF, 0x00010D06,
	0x001100EF, 0x01A1120B, 0x001F0000, 0x001F0000,
	0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
	0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
	0x00010D06, 0x01810302, 0x0181160E, 0x001F0000,
	0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
	0x081A52FD, 0x001A12FF, 0x00051A00, 0x001A13FF,
	0x00051B00, 0x001F13FF, 0x081A52FD, 0x001A12FF,
	0x00051A00, 0x001A13FF, 0x00051B00, 0x001F13FF,
	0x081A52FD, 0x001A12FF, 0x00051A00, 0x001A13FF,
	0x00051B00, 0x001F13FF, 0x00032300, 0x00032400,
	0x001F0000, 0x001F0000, 0x00800000, 0x0031FFBF,
	0x01A11009, 0x01A10E07, 0x01A10F08, 0x003100BF,
	0x01A11009, 0x00051800, 0x003F0000, 0x003F0000,
	0x003F0000, 0x003F0000, 0x003F0000, 0x003F0000,
	0x003F0000, 0x003F0000, 0x00800000, 0x0031FFBF,
	0x01A11009, 0x01A10E07, 0x01A10F08, 0x003100BF,
	0x01A11009, 0x00051800, 0x003F0000, 0x003F0000,
	0x003F0000, 0x003F0000, 0x003F0000, 0x003F0000,
	0x003F0000, 0x003F0000, 0x081100DF, 0x08010D06,
	0x0011000F, 0x0181160E, 0x001100EF, 0x01A1120B,
	0x001F0000, 0x001F0000, 0x001F0000, 0x009C0000,
	0x08010D06, 0x0181160E, 0x01A1120B, 0x001F0000,
	0x001F0000, 0x001F0000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x11910048,
	0x09910060, 0x19A21009, 0x19A10100, 0x19A10201,
	0x19A10302, 0x19A10A03, 0x19A10B04, 0x18051C00,
	0x19A1110A, 0x19A1120B, 0x19A1130C, 0x19A1140D,
	0x19A1160E, 0x181140BF, 0x19A11009, 0x19A10C05,
	0x19A00C00, 0x19A10E07, 0x19A10F08, 0x19910280,
	0x19A21009, 0x18051000, 0x18861101, 0x181F0000,
	0x18000000, 0x18000000, 0x18000000, 0x18000000,
	0x18000000, 0x18000000, 0x18000000, 0x18000000,
	0x18000000, 0x18000000, 0x18000000, 0x18000000,
	0x18000000, 0x18000000, 0x18000000, 0x18861100,
	0x19A11009, 0x101B0001, 0x181B0100, 0x18000500,
	0x181B0200, 0x00000000, 0x181B0600, 0x181B0C00,
	0x181B0100, 0x181B0200, 0x181B0300, 0x181B0400,
	0x181F0000, 0x18000000, 0x18000000, 0x18000000,
	0x18000000, 0x18000000, 0x18000000, 0x18000000,
	0x18000000, 0x18000000, 0x18000000, 0x18000000,
	0x18000000, 0x18000000, 0x18000000, 0x18000000,
	0x18000000, 0x004B1040, 0x001011C0, 0x00089080,
	0x000811C0, 0x040811C0, 0x02000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x5F407FAA,
	0x007B776F, 0x4AB555AA, 0xB5A9A956, 0x9F80BFAA,
	0x00BBB7AF, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00002AF8, 0x0000D6D7, 0x0000006E,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x0000000E, 0x00000019, 0x000000C8,
	0x00000001, 0x00000001, 0x00000003, 0x00000007,
	0x00000007, 0x00000009, 0x00000001, 0x00000001,
	0x00000003, 0x00000001, 0x00000001, 0x00000003,
	0x0000006E, 0x000000C8, 0x00000640, 0x00000001,
	0x00000001, 0x00000003, 0x00000002, 0x00000004,
	0x0000001C, 0x00000007, 0x0000000B, 0x00000051,
	0x0000000C, 0x00000015, 0x000000A1, 0x00000003,
	0x00000000, 0x0000000C, 0x00000000, 0x00000000,
	0x00000000, 0x0000000F, 0x0000000F, 0x0000000F,
	0x00002AF9, 0x00002AF9, 0x00002AF9, 0x00000034,
	0x0000001E, 0x0000003C, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x000000C0, 0x00000000, 0x00000000, 0x55550000,
	0x00003C5A, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00000000,
	0x00000000, 0x00000000, 0x00000000, 0x00D60000,
	0x50005000, 0x803E0050, 0x00000200, 0x00000000,
	0x00000000, 0x00007800, 0x00000000, 0x00000000,
	0x00000000, 0x00C61110, 0x2C002834, 0x0C06002C,
	0x00000200, 0x00000000, 0x00000000, 0x00007800,
	0x00000000, 0x00000000, 0x00000000, 0x00C6BBB0,
	0x2C002834, 0x0C06002C, 0x00000200, 0x00000000,
	0x00000000, 0x00007800, 0x00000000, 0x00000000,
	0x00000000, 0x00D60000, 0x50005000, 0x803E0050,
	0x00000200, 0x00000000, 0x00000000, 0x00007800,
	0x00000000, 0x00000000, 0x00000000, 0x00C61110,
	0x2C002834, 0x082E002C, 0x00000200, 0x00000000,
	0x00000000, 0x00007800, 0x00000000, 0x00000000,
	0x00000000, 0x00C6BBB0, 0x2C002834, 0x082E002C,
	0x00000200, 0x00000000, 0x00000000, 0x00007800,
	0x00000000, 0x00000000, 0x00000000, 0x80808080,
	0x800D8080, 0x80808080, 0x17808080, 0x80808025,
	0x2221201F, 0x80808080, 0x80808080, 0x80808080,
	0x80808080, 0x80808080, 0x80808080, 0x80808080,
	0x80808080, 0x80808080, 0x80808080, 0x80808080,
	0x80808080, 0x80808080, 0x80808080, 0x0A030201,
	0x0E800C0B, 0x1211100F, 0x80161413, 0x08004C80,
	0x8080801E, 0x80804E80, 0x80808080, 0x80808080,
	0x80808080
};

struct dbsc5_table_patch {
	const u32	reg;
	const u32	val;
};

static const struct dbsc5_table_patch dbsc5_table_patch_slice_3200[] = {
	{ PHY_REGULATOR_EN_CNT, 0x10 },
	{ PHY_RX_CAL_ALL_DLY, 0x07 },
	{ PHY_RDDATA_EN_TSEL_DLY, 0x08 },
	{ PHY_RDDATA_EN_OE_DLY, 0x0B },
	{ PHY_RPTR_UPDATE, 0x07 },
	{ PHY_WRLVL_RESP_WAIT_CNT, 0x25 },
	{ PHY_RDLVL_MAX_EDGE, 0x012D },
	{ PHY_RDDATA_EN_DLY, 0x0B },
	{ PHY_RDDQS_LATENCY_ADJUST, 0x04 },
	{ PHY_RDDQS_GATE_SLAVE_DELAY, 0x05 },
	{ PHY_GTLVL_LAT_ADJ_START, 0x03 },
	{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_3200[] = {
	{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
	{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_pi_3200[] = {
	{ PI_TCKCKEL_F2, 0x03 },
	{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x57 },
	{ PI_TREF_F2, 0x613 },
	{ PI_TDFI_WRLVL_WW_F0, 0x2B },
	{ PI_TDFI_WRLVL_WW_F1, 0x2B },
	{ PI_TDFI_WRLVL_WW_F2, 0x2B },
	{ PI_RDLAT_ADJ_F2, 0x22 },
	{ PI_TDFI_CALVL_CAPTURE_F2, 0x1D },
	{ PI_TDFI_CALVL_CC_F2, 0x43 },
	{ PI_TVRCG_ENABLE_F2, 0x51 },
	{ PI_TVRCG_DISABLE_F2, 0x29 },
	{ PI_TXP_F2, 0x07 },
	{ PI_TMRWCKEL_F2, 0x0A },
	{ PI_TDFI_CALVL_STROBE_F2, 0x06 },
	{ PI_TFC_F2, 0x64 },
	{ PI_TCKEHDQS_F2, 0x12 },
	{ PI_TDFI_WDQLVL_RW_F2, 0x09 },
	{ PI_TDFI_WDQLVL_WR_F2, 0x10 },
	{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x10 },
	{ PI_MBIST_RDLAT_ADJ_F2, 0x1E },
	{ PI_TWTR_S_F2, 0x05 },
	{ PI_TWTR_L_F2, 0x05 },
	{ PI_TWTR_F2, 0x05 },
	{ PI_TWR_F2, 0x0E },
	{ PI_TDQSCK_MAX_F2, 0x01 },
	{ PI_TDFI_CTRLUPD_MAX_F2, 0x0C26 },
	{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0x797C },
	{ PI_TXSNR_F2, 0x9B },
	{ PI_ZQRESET_F2, 0x0014 },
	{ PI_TCBTRTW_F2, 0x04 },
	{ PI_SEQ_WAIT_16_F2, 0x000064 },
	{ PI_SEQ_WAIT_17_F2, 0x000002 },
	{ PI_SEQ_WAIT_18_F2, 0x000007 },
	{ PI_SEQ_WAIT_19_F2, 0x000002 },
	{ PI_SEQ_WAIT_20_F2, 0x000002 },
	{ PI_SEQ_WAIT_21_F2, 0x000320 },
	{ PI_SEQ_WAIT_22_F2, 0x000002 },
	{ PI_SEQ_WAIT_23_F2, 0x00000E },
	{ PI_SEQ_WAIT_24_F2, 0x000029 },
	{ PI_SEQ_WAIT_25_F2, 0x000051 },
	{ PI_SEQ_WAIT_26_F2, 0x000003 },
	{ PI_SEQ_WAIT_30_F2, 0x00002B },
	{ PI_WRDCM_LVL_EN_F1, 0x00 },
	{ PI_WRDCM_LVL_EN_F2, 0x00 },
	{ PI_DRAMDCA_LVL_EN_F1, 0x00 },
	{ PI_DRAMDCA_LVL_EN_F2, 0x00 },
	{ PI_TINIT_F2, 0x013880 },
	{ PI_TINIT1_F2, 0x013880 },
	{ PI_TINIT3_F2, 0x0C3500 },
	{ PI_TINIT4_F2, 0x000014 },
	{ PI_TINIT5_F2, 0x000320 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_slice_3733[] = {
	{ PHY_REGULATOR_EN_CNT, 0x13 },
	{ PHY_RX_CAL_ALL_DLY, 0x08 },
	{ PHY_RDDATA_EN_TSEL_DLY, 0x0A },
	{ PHY_RDDATA_EN_OE_DLY, 0x0D },
	{ PHY_RPTR_UPDATE, 0x08 },
	{ PHY_WRLVL_RESP_WAIT_CNT, 0x2A },
	{ PHY_RDLVL_MAX_EDGE, 0x0149 },
	{ PHY_RDDATA_EN_DLY, 0x0D },
	{ PHY_RDDQS_LATENCY_ADJUST, 0x04 },
	{ PHY_RDDQS_GATE_SLAVE_DELAY, 0x9C },
	{ PHY_GTLVL_LAT_ADJ_START, 0x04 },
	{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_3733[] = {
	{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
	{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_pi_3733[] = {
	{ PI_TCKCKEL_F2, 0x03 },
	{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x5B },
	{ PI_TREF_F2, 0x717 },
	{ PI_TDFI_WRLVL_WW_F0, 0x2C },
	{ PI_TDFI_WRLVL_WW_F1, 0x2C },
	{ PI_TDFI_WRLVL_WW_F2, 0x2C },
	{ PI_RDLAT_ADJ_F2, 0x24 },
	{ PI_TDFI_CALVL_CAPTURE_F2, 0x1F },
	{ PI_TDFI_CALVL_CC_F2, 0x45 },
	{ PI_TVRCG_ENABLE_F2, 0x5F },
	{ PI_TVRCG_DISABLE_F2, 0x30 },
	{ PI_TXP_F2, 0x07 },
	{ PI_TMRWCKEL_F2, 0x0A },
	{ PI_TDFI_CALVL_STROBE_F2, 0x06 },
	{ PI_TFC_F2, 0x75 },
	{ PI_TCKEHDQS_F2, 0x13 },
	{ PI_TDFI_WDQLVL_RW_F2, 0x09 },
	{ PI_TDFI_WDQLVL_WR_F2, 0x12 },
	{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x10 },
	{ PI_MBIST_RDLAT_ADJ_F2, 0x20 },
	{ PI_TWTR_S_F2, 0x06 },
	{ PI_TWTR_L_F2, 0x06 },
	{ PI_TWTR_F2, 0x06 },
	{ PI_TWR_F2, 0x10 },
	{ PI_TDFI_CTRLUPD_MAX_F2, 0x0E2E },
	{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0x8DCC },
	{ PI_TXSNR_F2, 0xB5 },
	{ PI_ZQRESET_F2, 0x0018 },
	{ PI_TCBTRTW_F2, 0x05 },
	{ PI_SEQ_WAIT_16_F2, 0x000075 },
	{ PI_SEQ_WAIT_17_F2, 0x000002 },
	{ PI_SEQ_WAIT_18_F2, 0x000007 },
	{ PI_SEQ_WAIT_19_F2, 0x000002 },
	{ PI_SEQ_WAIT_20_F2, 0x000002 },
	{ PI_SEQ_WAIT_21_F2, 0x0003A6 },
	{ PI_SEQ_WAIT_22_F2, 0x000002 },
	{ PI_SEQ_WAIT_23_F2, 0x000011 },
	{ PI_SEQ_WAIT_24_F2, 0x000030 },
	{ PI_SEQ_WAIT_25_F2, 0x00005F },
	{ PI_SEQ_WAIT_26_F2, 0x000005 },
	{ PI_SEQ_WAIT_30_F2, 0x00002D },
	{ PI_TINIT_F2, 0x016C90 },
	{ PI_TINIT1_F2, 0x016C90 },
	{ PI_TINIT3_F2, 0x0E3D98 },
	{ PI_TINIT4_F2, 0x000018 },
	{ PI_TINIT5_F2, 0x0003A6 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_slice_4266[] = {
	{ PHY_REGULATOR_EN_CNT, 0x16 },
	{ PHY_RX_CAL_ALL_DLY, 0x09 },
	{ PHY_RDDATA_EN_TSEL_DLY, 0x0B },
	{ PHY_RDDATA_EN_OE_DLY, 0x0E },
	{ PHY_RPTR_UPDATE, 0x08 },
	{ PHY_WRLVL_RESP_WAIT_CNT, 0x2E },
	{ PHY_RDLVL_MAX_EDGE, 0x0164 },
	{ PHY_RDDATA_EN_DLY, 0x0E },
	{ PHY_RDDQS_LATENCY_ADJUST, 0x05 },
	{ PHY_RDDQS_GATE_SLAVE_DELAY, 0x30 },
	{ PHY_GTLVL_LAT_ADJ_START, 0x04 },
	{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_4266[] = {
	{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
	{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_pi_4266[] = {
	{ PI_TCKCKEL_F2, 0x03 },
	{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x64 },
	{ PI_TREF_F2, 0x81C },
	{ PI_TDFI_WRLVL_WW_F0, 0x2D },
	{ PI_TDFI_WRLVL_WW_F1, 0x2D },
	{ PI_TDFI_WRLVL_WW_F2, 0x2D },
	{ PI_RDLAT_ADJ_F2, 0x2B },
	{ PI_TDFI_CALVL_CAPTURE_F2, 0x20 },
	{ PI_TDFI_CALVL_CC_F2, 0x46 },
	{ PI_TVRCG_ENABLE_F2, 0x6C },
	{ PI_TVRCG_DISABLE_F2, 0x37 },
	{ PI_TXP_F2, 0x07 },
	{ PI_TMRWCKEL_F2, 0x0A },
	{ PI_TFC_F2, 0x86 },
	{ PI_TCKEHDQS_F2, 0x14 },
	{ PI_TDFI_WDQLVL_RW_F2, 0x0B },
	{ PI_TDFI_WDQLVL_WR_F2, 0x13 },
	{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x14 },
	{ PI_MBIST_RDLAT_ADJ_F2, 0x27 },
	{ PI_TWTR_S_F2, 0x07 },
	{ PI_TWTR_L_F2, 0x07 },
	{ PI_TWTR_F2, 0x07 },
	{ PI_TWR_F2, 0x13 },
	{ PI_TDFI_CTRLUPD_MAX_F2, 0x1038 },
	{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0xA230 },
	{ PI_TXSNR_F2, 0xCF },
	{ PI_ZQRESET_F2, 0x001B },
	{ PI_TCBTRTW_F2, 0x06 },
	{ PI_SEQ_WAIT_16_F2, 0x000086 },
	{ PI_SEQ_WAIT_17_F2, 0x000002 },
	{ PI_SEQ_WAIT_18_F2, 0x000007 },
	{ PI_SEQ_WAIT_19_F2, 0x000002 },
	{ PI_SEQ_WAIT_20_F2, 0x000002 },
	{ PI_SEQ_WAIT_21_F2, 0x00042B },
	{ PI_SEQ_WAIT_22_F2, 0x000002 },
	{ PI_SEQ_WAIT_23_F2, 0x000013 },
	{ PI_SEQ_WAIT_24_F2, 0x000037 },
	{ PI_SEQ_WAIT_25_F2, 0x00006C },
	{ PI_SEQ_WAIT_26_F2, 0x000006 },
	{ PI_SEQ_WAIT_30_F2, 0x000032 },
	{ PI_TINIT_F2, 0x01A0AB },
	{ PI_TINIT1_F2, 0x01A0AB },
	{ PI_TINIT3_F2, 0x1046AB },
	{ PI_TINIT4_F2, 0x00001B },
	{ PI_TINIT5_F2, 0x00042B }
};

static const struct dbsc5_table_patch dbsc5_table_patch_slice_4800[] = {
	{ PHY_REGULATOR_EN_CNT, 0x18 },
	{ PHY_RX_CAL_ALL_DLY, 0x0A },
	{ PHY_RDDATA_EN_TSEL_DLY, 0x0D },
	{ PHY_RDDATA_EN_OE_DLY, 0x10 },
	{ PHY_RPTR_UPDATE, 0x08 },
	{ PHY_WRLVL_RESP_WAIT_CNT, 0x31 },
	{ PHY_RDLVL_MAX_EDGE, 0x017F },
	{ PHY_RDDATA_EN_DLY, 0x10 },
	{ PHY_RDDQS_LATENCY_ADJUST, 0x05 },
	{ PHY_RDDQS_GATE_SLAVE_DELAY, 0xC6 },
	{ PHY_GTLVL_LAT_ADJ_START, 0x05 },
	{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_4800[] = {
	{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
	{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_pi_4800[] = {
	{ PI_TCKCKEL_F2, 0x03 },
	{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x68 },
	{ PI_RDLAT_ADJ_F2, 0x2D },
	{ PI_TREF_F2, 0x920 },
	{ PI_TDFI_WRLVL_WW_F0, 0x2E },
	{ PI_TDFI_WRLVL_WW_F1, 0x2E },
	{ PI_TDFI_WRLVL_WW_F2, 0x2E },
	{ PI_TDFI_CALVL_CAPTURE_F2, 0x21 },
	{ PI_TDFI_CALVL_CC_F2, 0x47 },
	{ PI_TVRCG_DISABLE_F2, 0x3D },
	{ PI_TVRCG_ENABLE_F2, 0x79 },
	{ PI_TXP_F2, 0x08 },
	{ PI_TMRWCKEL_F2, 0x0A },
	{ PI_TCKEHDQS_F2, 0x14 },
	{ PI_TFC_F2, 0x96 },
	{ PI_TDFI_WDQLVL_RW_F2, 0x0B },
	{ PI_TDFI_WDQLVL_WR_F2, 0x15 },
	{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x18 },
	{ PI_MBIST_RDLAT_ADJ_F2, 0x29 },
	{ PI_TWTR_S_F2, 0x08 },
	{ PI_TWR_F2, 0x15 },
	{ PI_TWTR_F2, 0x08 },
	{ PI_TWTR_L_F2, 0x08 },
	{ PI_TDFI_CTRLUPD_MAX_F2, 0x1240 },
	{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0xB680 },
	{ PI_TXSNR_F2, 0x0E9 },
	{ PI_ZQRESET_F2, 0x001E },
	{ PI_TCBTRTW_F2, 0x06 },
	{ PI_SEQ_WAIT_16_F2, 0x000096 },
	{ PI_SEQ_WAIT_17_F2, 0x000002 },
	{ PI_SEQ_WAIT_18_F2, 0x000008 },
	{ PI_SEQ_WAIT_19_F2, 0x000002 },
	{ PI_SEQ_WAIT_20_F2, 0x000002 },
	{ PI_SEQ_WAIT_21_F2, 0x0004B0 },
	{ PI_SEQ_WAIT_22_F2, 0x000002 },
	{ PI_SEQ_WAIT_23_F2, 0x000015 },
	{ PI_SEQ_WAIT_24_F2, 0x00003D },
	{ PI_SEQ_WAIT_25_F2, 0x000079 },
	{ PI_SEQ_WAIT_26_F2, 0x000008 },
	{ PI_SEQ_WAIT_30_F2, 0x000034 },
	{ PI_TINIT_F2, 0x01D4A9 },
	{ PI_TINIT1_F2, 0x01D4A9 },
	{ PI_TINIT3_F2, 0x124E91 },
	{ PI_TINIT4_F2, 0x00001E },
	{ PI_TINIT5_F2, 0x0004B0 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_slice_5500[] = {
	{ PHY_REGULATOR_EN_CNT, 0x1C },
	{ PHY_RX_CAL_ALL_DLY, 0x0C },
	{ PHY_RDDATA_EN_TSEL_DLY, 0x10 },
	{ PHY_RDDATA_EN_OE_DLY, 0x13 },
	{ PHY_WRLVL_RESP_WAIT_CNT, 0x37 },
	{ PHY_RDLVL_MAX_EDGE, 0x01A3 },
	{ PHY_RDDATA_EN_DLY, 0x13 },
	{ PHY_RDDQS_LATENCY_ADJUST, 0x06 },
	{ PHY_RDDQS_GATE_SLAVE_DELAY, 0x8F },
	{ PHY_GTLVL_LAT_ADJ_START, 0x06 },
	{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_5500[] = {
	{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
	{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_pi_5500[] = {
	{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x71 },
	{ PI_RDLAT_ADJ_F2, 0x32 },
	{ PI_TREF_F2, 0xA79 },
	{ PI_TDFI_WRLVL_WW_F0, 0x30 },
	{ PI_TDFI_WRLVL_WW_F1, 0x30 },
	{ PI_TDFI_WRLVL_WW_F2, 0x30 },
	{ PI_TDFI_CALVL_CAPTURE_F2, 0x23 },
	{ PI_TDFI_CALVL_CC_F2, 0x49 },
	{ PI_TVRCG_DISABLE_F2, 0x46 },
	{ PI_TVRCG_ENABLE_F2, 0x8B },
	{ PI_TMRWCKEL_F2, 0x0B },
	{ PI_TCKEHDQS_F2, 0x15 },
	{ PI_TFC_F2, 0xAD },
	{ PI_TDFI_WDQLVL_RW_F2, 0x0C },
	{ PI_TDFI_WDQLVL_WR_F2, 0x17 },
	{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x1C },
	{ PI_MBIST_RDLAT_ADJ_F2, 0x2E },
	{ PI_TWTR_S_F2, 0x09 },
	{ PI_TWR_F2, 0x18 },
	{ PI_TWTR_F2, 0x09 },
	{ PI_TWTR_L_F2, 0x09 },
	{ PI_TDFI_CTRLUPD_MAX_F2, 0x14F2 },
	{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0xD174 },
	{ PI_TXSNR_F2, 0x10B },
	{ PI_ZQRESET_F2, 0x0023 },
	{ PI_TCBTRTW_F2, 0x07 },
	{ PI_SEQ_WAIT_16_F2, 0x0000AD },
	{ PI_SEQ_WAIT_21_F2, 0x000561 },
	{ PI_SEQ_WAIT_23_F2, 0x000019 },
	{ PI_SEQ_WAIT_24_F2, 0x000046 },
	{ PI_SEQ_WAIT_25_F2, 0x00008B },
	{ PI_SEQ_WAIT_26_F2, 0x00000A },
	{ PI_SEQ_WAIT_30_F2, 0x000038 },
	{ PI_TINIT_F2, 0x0219AF },
	{ PI_TINIT1_F2, 0x0219AF },
	{ PI_TINIT3_F2, 0x1500CF },
	{ PI_TINIT4_F2, 0x000023 },
	{ PI_TINIT5_F2, 0x000561 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_slice_6000[] = {
	{ PHY_REGULATOR_EN_CNT, 0x1F },
	{ PHY_RDDATA_EN_TSEL_DLY, 0x12 },
	{ PHY_RDDATA_EN_OE_DLY, 0x15 },
	{ PHY_WRLVL_RESP_WAIT_CNT, 0x3A },
	{ PHY_RDLVL_MAX_EDGE, 0x01BD },
	{ PHY_RDDATA_EN_DLY, 0x15 },
	{ PHY_RDDQS_LATENCY_ADJUST, 0x07 },
	{ PHY_RDDQS_GATE_SLAVE_DELAY, 0x1B },
	{ PHY_GTLVL_LAT_ADJ_START, 0x06 },
	{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_6000[] = {
	{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
	{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};

static const struct dbsc5_table_patch dbsc5_table_patch_pi_6000[] = {
	{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x75 },
	{ PI_RDLAT_ADJ_F2, 0x34 },
	{ PI_TREF_F2, 0xB6B },
	{ PI_TDFI_WRLVL_WW_F0, 0x31 },
	{ PI_TDFI_WRLVL_WW_F1, 0x31 },
	{ PI_TDFI_WRLVL_WW_F2, 0x31 },
	{ PI_TVRCG_DISABLE_F2, 0x4D },
	{ PI_TVRCG_ENABLE_F2, 0x98 },
	{ PI_TMRWCKEL_F2, 0x0C },
	{ PI_TFC_F2, 0xBC },
	{ PI_TDFI_WDQLVL_RW_F2, 0x0C },
	{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x1C },
	{ PI_MBIST_RDLAT_ADJ_F2, 0x30 },
	{ PI_TWR_F2, 0x1A },
	{ PI_TDFI_CTRLUPD_MAX_F2, 0x16D6 },
	{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0xE45C },
	{ PI_TXSNR_F2, 0x123 },
	{ PI_ZQRESET_F2, 0x0026 },
	{ PI_SEQ_WAIT_16_F2, 0x0000BC },
	{ PI_SEQ_WAIT_21_F2, 0x0005DD },
	{ PI_SEQ_WAIT_23_F2, 0x00001B },
	{ PI_SEQ_WAIT_24_F2, 0x00004D },
	{ PI_SEQ_WAIT_25_F2, 0x000098 },
	{ PI_SEQ_WAIT_30_F2, 0x00003A },
	{ PI_TINIT_F2, 0x024A16 },
	{ PI_TINIT1_F2, 0x024A16 },
	{ PI_TINIT3_F2, 0x16E4D8 },
	{ PI_TINIT4_F2, 0x000026 },
	{ PI_TINIT5_F2, 0x0005DD }
};

static const struct dbsc5_table_patch dbsc5_table_patch_slice_mbpsdiv_640 = {
	PHY_DATA_DC_CAL_CLK_SEL, 0x05
};

static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_mbpsdiv_640 = {
	PHY_CLK_DC_CAL_CLK_SEL, 0x04
};

static const struct dbsc5_table_patch dbsc5_table_patch_adr_g_mbpsdiv_640 = {
	PHY_CAL_CLK_SELECT_0, 0x05
};

static const struct dbsc5_table_patch dbsc5_table_patch_slice_mbpsdiv_572 = {
	PHY_RX_PCLK_CLK_SEL, 0x3
};

static const struct dbsc5_table_patch dbsc5_table_patch_adr_g_mbpsdiv_572 = {
	PHY_PAD_ACS_RX_PCLK_CLK_SEL, 0x02
};

static const struct dbsc5_table_patch dbsc5_table_patch_adr_g_mbpsdiv_400[] = {
	{ PHY_PLL_CTRL, 0x1542 },
	{ PHY_PLL_CTRL_8X, 0x3342 }
};

/* Array of addresses for setting PI_DARRAY3_0 in each CS and frequency-set */
static const u32 PI_DARRAY3_0_CSx_Fx[CS_CNT][3] = {
	{ PI_DARRAY3_0_CS0_F0, PI_DARRAY3_0_CS0_F1, PI_DARRAY3_0_CS0_F2 },
	{ PI_DARRAY3_0_CS1_F0, PI_DARRAY3_0_CS1_F1, PI_DARRAY3_0_CS1_F2 }
};

/* Array of addresses for setting PI_DARRAY3_1 in each CS and frequency-set */
static const u32 PI_DARRAY3_1_CSx_Fx[CS_CNT][3] = {
	{ PI_DARRAY3_1_CS0_F0, PI_DARRAY3_1_CS0_F1, PI_DARRAY3_1_CS0_F2 },
	{ PI_DARRAY3_1_CS1_F0, PI_DARRAY3_1_CS1_F1, PI_DARRAY3_1_CS1_F2 }
};

/* DBSC registers */
#define DBSC_DBSYSCONF0			0x0
#define DBSC_DBSYSCONF1			0x0
#define DBSC_DBSYSCONF1A		0x4
#define DBSC_DBSYSCONF2			0x4
#define DBSC_DBPHYCONF0			0x8
#define DBSC_DBSYSCONF2A		0x8
#define DBSC_DBMEMKIND			0x20
#define DBSC_DBMEMKINDA			0x20
#define DBSC_DBMEMCONF(ch, cs)		(0x30 + (0x2000 * ((ch) & 0x2)) + (0x10 * ((ch) & 0x1)) + (0x4 * (cs)))
#define DBSC_DBMEMCONFA(ch, cs)		(0x30 + (0x4000 * ((ch) & 0x2)) + (0x10 * ((ch) & 0x1)) + (0x4 * (cs)))
#define DBSC_DBSYSCNT0			0x100
#define DBSC_DBSYSCNT0A			0x100
#define DBSC_DBACEN			0x200
#define DBSC_DBRFEN			0x204
#define DBSC_DBCMD			0x208
#define DBSC_DBCMD_CMD_OPCODE_PD	0x8
#define DBSC_DBCMD_CMD_OPCODE_MRW	0xe
#define DBSC_DBCMD_CMD_OPCODE_MRR	0xf
#define DBSC_DBCMD_CMD_CHANNEL_ALL	0x8
#define DBSC_DBCMD_CMD_RANK_ALL		0x4
#define DBSC_DBWAIT			0x210
#define DBSC_DBBL			0x400
#define DBSC_DBBLA			0x400
#define DBSC_DBRFCNF1			0x414
#define DBSC_DBRFCNF2			0x418
#define DBSC_DBCALCNF			0x424
#define DBSC_DBDBICNT			0x518
#define DBSC_DBDFIPMSTRCNF		0x520
#define DBSC_DBDFICUPDCNF		0x540
#define DBSC_DBBCAMDIS			0x9FC
#define DBSC_DBSCHRW1			0x1024
#define DBSC_DBSCHTR0			0x1030
#define DBSC_DBTR(x)			(0x300 + (0x4 * (x)))
#define DBSC_DBRNK(x)			(0x430 + (0x4 * (x)))
#define DBSC_DBDFISTAT(ch)		(0x600 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBDFICNT(ch)		(0x604 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDCNT2(ch)		(0x618 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDLK(ch)			(0x620 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDRGA(ch)		(0x624 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDRGD(ch)		(0x628 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDRGM(ch)		(0x62C + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDSTAT0(ch)		(0x630 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDSTAT1(ch)		(0x634 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBSCHFCTST0		0x1040
#define DBSC_DBSCHFCTST1		0x1044

/* CPG PLL3 registers */
#define CPG_CPGWPR			0x0
#define CPG_FRQCRD0			0x80C
#define CPG_PLLECR			0x820
#define CPG_PLL3CR0			0x83C
#define CPG_PLL3CR1			0x8C0
#define CPG_FSRCHKCLRR4			0x590
#define CPG_FSRCHKSETR4			0x510
#define CPG_FSRCHKRA4			0x410
#define CPG_SRCR4			0x2C10
#define CPG_SRSTCLR4			0x2C90

#define CPG_FRQCRD_KICK_BIT		BIT(31)
#define CPG_PLL3CR0_KICK_BIT		BIT(31)
#define CPG_PLLECR_PLL3ST_BIT		BIT(11)

#define CLK_DIV(a, diva, b, divb)	(((a) * (divb)) / ((b) * (diva)))

struct renesas_dbsc5_dram_priv {
	void __iomem	*regs;
	void __iomem	*cpg_regs;

	/* The board parameter structure of the board */
	const struct renesas_dbsc5_board_config *dbsc5_board_config;

	/* The board clock frequency */
	u32		brd_clk;
	u32		brd_clkdiv;
	u32		brd_clkdiva;

	/* The Mbps of Bus */
	u32		bus_clk;
	u32		bus_clkdiv;

	/* The Mbps of DDR */
	u32		ddr_mbps;
	u32		ddr_mbpsdiv;

	/* DDR memory multiplier setting value */
	u32		ddr_mul;
	u32		ddr_mul_nf;
	u32		ddr_mul_low;
	u32		ddr_mul_reg;

	/* Value indicating the enabled channel */
	u32		ddr_phyvalid;

	/* The tccd value of DDR */
	u32		ddr_tccd;

	/* Memory capacity in each channel and each CS */
	u8 ddr_density[DRAM_CH_CNT][CS_CNT];
	/* Channels used for each memory rank */
	u32		ch_have_this_cs[CS_CNT];
	/* The maximum memory capacity */
	u32		max_density;

	/* Index of jedec spec1 setting table you use */
	u32		js1_ind;
	/* Array of jedec spec2 setting table */
	u32		js2[JS2_CNT];
	/* Read latency */
	u32		RL;
	/* Write latency */
	u32		WL;

	/* Array for DDR PI Slice settings */
	u32		DDR_PI_REGSET[DDR_PI_REGSET_NUM_V4H];
	/* Array for DDRPHY Slice settings */
	u32		DDR_PHY_SLICE_REGSET[DDR_PHY_SLICE_REGSET_NUM_V4H];
	/* Array for DDRPHY ADRRESS VALUE Slice settings */
	u32		DDR_PHY_ADR_V_REGSET[DDR_PHY_SLICE_REGSET_NUM_V4H];
	/* Array for DDRPHY ADRRESS CONTROL Slice settings */
	u32		DDR_PHY_ADR_G_REGSET[DDR_PHY_SLICE_REGSET_NUM_V4H];
};

static const struct renesas_dbsc5_board_config renesas_v4h_dbsc5_board_config = {
	/* RENESAS V4H White Hawk (64Gbit 1rank) */
	.bdcfg_phyvalid	= 0xF,
	.bdcfg_vref_r	= 0x0,
	.bdcfg_vref_w	= 0x0,
	.bdcfg_vref_ca	= 0x0,
	.bdcfg_rfm_chk	= true,
	.ch = {
		[0] = {
			.bdcfg_ddr_density =	{ 0x06, 0xFF },
			.bdcfg_ca_swap =	0x04506132,
			.bdcfg_dqs_swap =	0x01,
			.bdcfg_dq_swap =	{ 0x26147085, 0x12306845 },
			.bdcfg_dm_swap =	{ 0x03, 0x07 },
			.bdcfg_cs_swap =	0x10
		},
		[1] = {
			.bdcfg_ddr_density =	{ 0x06, 0xFF },
			.bdcfg_ca_swap =	0x02341065,
			.bdcfg_dqs_swap =	0x10,
			.bdcfg_dq_swap =	{ 0x56782314, 0x71048365 },
			.bdcfg_dm_swap =	{ 0x00, 0x02 },
			.bdcfg_cs_swap =	0x10
		},
		[2] = {
			.bdcfg_ddr_density =	{ 0x06, 0xFF },
			.bdcfg_ca_swap =	0x02150643,
			.bdcfg_dqs_swap =	0x10,
			.bdcfg_dq_swap =	{ 0x58264071, 0x41207536 },
			.bdcfg_dm_swap =	{ 0x03, 0x08 },
			.bdcfg_cs_swap =	0x10
		},
		[3] = {
			.bdcfg_ddr_density =	{ 0x06, 0xFF },
			.bdcfg_ca_swap =	0x01546230,
			.bdcfg_dqs_swap =	0x01,
			.bdcfg_dq_swap =	{ 0x45761328, 0x62801745 },
			.bdcfg_dm_swap =	{ 0x00, 0x03 },
			.bdcfg_cs_swap =	0x10
		}
	}
};

/**
 * r_vch_nxt() - Macro for channel selection loop
 *
 * Return the ID of the channel to be used. Check for valid channels
 * between the value of posn and the maximum number of CHs. If a valid
 * channel is found, returns the value of that channel.
 */
static u32 r_vch_nxt(struct udevice *dev, u32 pos)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	int posn;

	for (posn = pos; posn < DRAM_CH_CNT; posn++)
		if (priv->ddr_phyvalid & BIT(posn))
			break;

	return posn;
}

/* Select only valid channels in all channels from CH0. */
#define r_foreach_vch(dev, ch)  \
for ((ch) = r_vch_nxt((dev), 0); (ch) < DRAM_CH_CNT; (ch) = r_vch_nxt((dev), (ch) + 1))

/* All channels are selected. */
#define r_foreach_ech(ch) \
for (ch = 0; ch < DRAM_CH_CNT; ch++)

/**
 * dbsc5_clk_cpg_write_32() - Write clock control register
 *
 * Write the complement value of setting value to the CPG_CPGWPR register
 * for releaseing the protect. Write setting value to destination address.
 */
static void dbsc5_clk_cpg_write_32(struct udevice *dev, void __iomem *a, u32 v)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);

	writel(~v, priv->cpg_regs + CPG_CPGWPR);
	writel(v, a);
}

enum dbsc5_clk_pll3_mode {
	PLL3_LOW_FREQUENCY_MODE = 0,
	PLL3_HIGH_FREQUENCY_MODE,
	PLL3_HIGH_FREQUENCY_MODE_LOAD_REGISTER
};

/**
 * dbsc5_clk_pll3_control() - Set PLL3
 * @dev: DBSC5 device
 * @mode: PLL3 frequency mode
 *
 * Determine the set value according to the frequency mode of the argument.
 * Write the set value to CPG_FRQCRD0 register and CPG_FRQCRD0 one.
 * Reflect settings
 */
static void dbsc5_clk_pll3_control(struct udevice *dev, u32 mode)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	u32 data_div, data_mul, data_nf, ssmode, val;
	int ret;

	/*
	 * PLL3VCO = EXTAL * priv->ddr_mul * 1/2
	 * clk_ctlr_sync = PLL3VCO * pll3_div
	 * priv->ddr_mul = (NI[7:0] + 1) * 2 + NF[24:0] / 2^24
	 */

	switch (mode) {
	case PLL3_LOW_FREQUENCY_MODE:
		/* Low frequency mode (50MHz) */
		data_mul = (priv->ddr_mul_low / 2) - 1;	/* PLL3VCO = 1600MHz */
		data_div = 0x9;				/* div = 32 */
		data_nf = 0x0;
		ssmode = 0x0;
		break;
	case PLL3_HIGH_FREQUENCY_MODE:
		/* High frequency mode */
		data_mul = (priv->ddr_mul / 2) - 1;
		data_div = 0x0;				/* div = 2 */
		data_nf = priv->ddr_mul_nf;
		ssmode = 0x4;
		break;
	case PLL3_HIGH_FREQUENCY_MODE_LOAD_REGISTER:
		/* High frequency mode for loading to DDRPHY registers */
		data_mul = (priv->ddr_mul_reg / 2) - 1;
		data_div = 0x0;				/* div = 2 */
		data_nf = 0x0;
		ssmode = 0x4;
		break;
	default:
		printf("%s Mode %d not supported\n", __func__, mode);
		hang();
	}

	data_mul = (data_mul << 20) | (ssmode << 16);
	data_nf = data_nf << 21;

	if (((readl(priv->cpg_regs + CPG_PLL3CR0) & 0x3FFFFF7F) != data_mul) ||
	    (readl(priv->cpg_regs + CPG_PLL3CR1) != data_nf)) {
		/* PLL3CR0 multiplie set */
		dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_PLL3CR0, data_mul);
		/* PLL3CR1 multiplie set */
		dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_PLL3CR1, data_nf);
		dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_PLL3CR0,
				       readl(priv->cpg_regs + CPG_PLL3CR0) |
				       CPG_PLL3CR0_KICK_BIT);

		ret = readl_poll_timeout(priv->cpg_regs + CPG_PLLECR, val,
					 (val & CPG_PLLECR_PLL3ST_BIT),
					 1000000);
		if (ret < 0) {
			printf("%s CPG_PLLECR bit CPG_PLLECR_PLL3ST_BIT timeout\n", __func__);
			hang();
		}
	}

	/* PLL3 DIV set(Target value) */
	ret = readl_poll_timeout(priv->cpg_regs + CPG_FRQCRD0, val,
				 ((val & CPG_FRQCRD_KICK_BIT) == 0),
				 1000000);
	if (ret < 0) {
		printf("%s CPG_FRQCRD0 bit CPG_FRQCRD_KICK_BIT div set timeout\n", __func__);
		hang();
	}

	dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_FRQCRD0,
			       (readl(priv->cpg_regs + CPG_FRQCRD0) & 0xFFFFFFF0) |
			       data_div);
	dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_FRQCRD0,
			       readl(priv->cpg_regs + CPG_FRQCRD0) |
			       CPG_FRQCRD_KICK_BIT);
	ret = readl_poll_timeout(priv->cpg_regs + CPG_FRQCRD0, val,
				 ((val & CPG_FRQCRD_KICK_BIT) == 0),
				 1000000);
	if (ret < 0) {
		printf("%s CPG_FRQCRD0 bit CPG_FRQCRD_KICK_BIT timeout\n", __func__);
		hang();
	}
}

/**
 * dbsc5_clk_wait_freqchgreq() - Training handshake functions
 *
 * Check the value of the argument req_assert. If req_assert is 1, wait until
 * FREQCHGREQ of all channels is 1 before time expires. If req_assert is 0,
 * wait until FREQCHGREQ of all channels is 0 before time expires. Return the
 * result of whether time has expired or not as a return value.
 */
static u32 dbsc5_clk_wait_freqchgreq(struct udevice *dev, u32 req_assert)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	u32 count = 0xFFFFFF;
	u32 ch, reg;

	do {
		reg = !!req_assert;
		r_foreach_vch(dev, ch)
			reg &= readl(regs_dbsc_d + DBSC_DBPDSTAT0(ch));
		count = count - 1;
	} while (((reg & 0x1) != !!req_assert) && (count != 0));

	return count == 0x0;
}

/**
 * dbsc5_clk_set_freqchgack() - Training handshake functions
 * @dev: DBSC5 device
 * @ack_assert: Select DBSC_DBPDCNT2 content
 *
 * Check the value of the argument ackassert. If the value of ackassert
 * is greater than or equal to 0, write 0xCF01 to DBSC_DBPDCNT2.
 * If the value of ackassert is 0, write 0x0 to DBSC_DBPDCNT2.
 */
static void dbsc5_clk_set_freqchgack(struct udevice *dev, u32 ack_assert)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	const u32 reg = ack_assert ? 0xcf01 : 0x0;
	u32 ch;

	r_foreach_vch(dev, ch)
		writel(reg, regs_dbsc_d + DBSC_DBPDCNT2(ch));
}

/**
 * dbsc5_clk_wait_dbpdstat1() - Wait for status register update
 * @dev: DBSC5 device
 * @status: Expected status
 *
 * Read value the DBSC_DBPDSTAT1(ch) register. Wait until the contents
 * of the status register are the same as status.
 */
static void dbsc5_clk_wait_dbpdstat1(struct udevice *dev, u32 status)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	u32 i, ch, chk, reg;

	for (i = 0; i < 2; i++) {
		do {
			reg = status;
			chk = 0;
			r_foreach_vch(dev, ch) {
				reg &= readl(regs_dbsc_d + DBSC_DBPDSTAT1(ch));
				chk |= readl(regs_dbsc_d + DBSC_DBPDSTAT0(ch));
			}
		} while (reg != status && !(chk & BIT(0)));
	}
}

/**
 * dbsc5_clk_pll3_freq() - Set up the pll3 frequency
 * @dev: DBSC5 device
 *
 * Wait for frequency change request. DBSC_DBPDSTAT0 value determines whether
 * dbsc5_clk_pll3_control is called in low frequency mode or high frequency
 * mode. Call dbsc5_clk_set_freqchgack(1) function. Check update completion until
 * timeout. Call dbsc5_clk_set_freqchgack(0) function. If timed out, return with
 * error log Wait for status register update.
 */
static int dbsc5_clk_pll3_freq(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	u32 fsel, timeout;

	dbsc5_clk_wait_freqchgreq(dev, 1);

	fsel = (readl(regs_dbsc_d + DBSC_DBPDSTAT0(0)) & 0x300) >> 8;
	dbsc5_clk_pll3_control(dev, fsel ? PLL3_HIGH_FREQUENCY_MODE :
					   PLL3_LOW_FREQUENCY_MODE);

	dbsc5_clk_set_freqchgack(dev, 1);
	timeout = dbsc5_clk_wait_freqchgreq(dev, 0);
	dbsc5_clk_set_freqchgack(dev, 0);

	if (timeout) {
		printf("Time out\n");
		return -ETIMEDOUT;
	}

	dbsc5_clk_wait_dbpdstat1(dev, 0x7);

	return 0;
}

/**
 * dbsc5_reg_write() - Write DBSC register
 * @addr: Destination address
 * @data: Setting value to be written
 *
 * Write 32bit value @data to register at @addr .
 */
static void dbsc5_reg_write(void __iomem *addr, u32 data)
{
	writel(data, addr);

	if (((uintptr_t)addr & 0x000A0000) == 0x000A0000)
		writel(data, addr + 0x4000);
	else
		writel(data, addr + 0x8000);
}

/**
 * dbsc5_wait_dbwait() - DRAM Command Wait Access Completion
 * @dev: DBSC5 device
 *
 * Wait for DRAM access completion. This is used before sending a command
 * to the DRAM to assure no other command is in flight already, or while
 * waiting for MRR command to complete.
 */
static void dbsc5_wait_dbwait(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	u32 val;
	int ret;

	ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBWAIT, val, ((val & BIT(0)) == 0), 1000000);
	if (ret < 0) {
		printf("%s DBWAIT bit 0 timeout\n", __func__);
		hang();
	}

	ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBWAIT + 0x4000, val, ((val & BIT(0)) == 0), 1000000);
	if (ret < 0) {
		printf("%s DBWAIT + 0x4000 bit 0 timeout\n", __func__);
		hang();
	}
}

/**
 * dbsc5_send_dbcmd2() - DRAM Command Write Access
 * @dev: DBSC5 device
 * @opcode DRAM controller opcode
 * @channel DRAM controller channel (0..3)
 * @rank DRAM controller rank (0..1)
 * @arg Command and argument bits (command specific encoding)
 *
 * First, execute the dummy read to DBSC_DBCMD.
 * Confirm that no DBSC command operation is in progress 0.
 * Write the contents of the command to be sent to DRAM.
 */
static void dbsc5_send_dbcmd2(struct udevice *dev, const u8 opcode,
			      const u8 channel, const u8 rank,
			      const u16 arg)
{
	const u32 cmd = (opcode << 24) | (channel << 20) | (rank << 16) | arg;
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;

	/* dummy read */
	readl(regs_dbsc_d + DBSC_DBCMD);

	dbsc5_wait_dbwait(dev);

	dbsc5_reg_write(regs_dbsc_d + DBSC_DBCMD, cmd);
}

/**
 * dbsc5_reg_ddrphy_read() - Read setting from DDR PHY register
 * @dev: DBSC5 device
 * @ch: Target channel
 * @regadd: Destination address
 *
 * Write matching values to DBPDRGA register and read value out of DBSC_DBPDRGD.
 * Wait until the write process completed in each step.
 */
static u32 dbsc5_reg_ddrphy_read(struct udevice *dev, u32 ch, u32 regadd)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	u32 val;
	int ret;

	writel(regadd | BIT(14), regs_dbsc_d + DBSC_DBPDRGA(ch));
	ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == (regadd | BIT(15) | BIT(14))), 1000000);
	if (ret < 0) {
		printf("%s regs_dbsc_d + DBSC_DBPDRGA timeout\n", __func__);
		hang();
	}

	val = readl(regs_dbsc_d + DBSC_DBPDRGA(ch));

	writel(regadd | BIT(15), regs_dbsc_d + DBSC_DBPDRGA(ch));
	ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == regadd), 1000000);
	if (ret < 0) {
		printf("%s regs_dbsc_d + DBSC_DBPDRGA | BIT(15) timeout\n", __func__);
		hang();
	}

	writel(regadd | BIT(15), regs_dbsc_d + DBSC_DBPDRGA(ch));
	ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == regadd), 1000000);
	if (ret < 0) {
		printf("%s regs_dbsc_d + DBSC_DBPDRGA | BIT(15) again timeout\n", __func__);
		hang();
	}

	return readl(regs_dbsc_d + DBSC_DBPDRGD(ch));
}

/**
 * dbsc5_reg_ddrphy_write(dev, ) - Write setting to DDR PHY register
 * @dev: DBSC5 device
 * @ch: Target channel
 * @regadd: Destination address
 * @regdata: Value to be written
 *
 * Write matching values to DBPDRGA, DBPDRGD, DBPDRGA, DBPDRGA registers.
 * Wait until the write process completed in each step.
 */
static void dbsc5_reg_ddrphy_write(struct udevice *dev, u32 ch, u32 regadd, u32 regdata)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	u32 val;
	int ret;

	writel(regadd, regs_dbsc_d + DBSC_DBPDRGA(ch));
	ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == regadd), 1000000);
	if (ret < 0) {
		printf("%s regs_dbsc_d + DBSC_DBPDRGA timeout\n", __func__);
		hang();
	}

	writel(regdata, regs_dbsc_d + DBSC_DBPDRGD(ch));
	ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == (regadd | BIT(15))), 1000000);
	if (ret < 0) {
		printf("%s regs_dbsc_d + DBSC_DBPDRGD timeout\n", __func__);
		hang();
	}

	writel(regadd | BIT(15), regs_dbsc_d + DBSC_DBPDRGA(ch));
	ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == regadd), 1000000);
	if (ret < 0) {
		printf("%s regs_dbsc_d + DBSC_DBPDRGA | BIT(15) timeout\n", __func__);
		hang();
	}

	writel(regadd, regs_dbsc_d + DBSC_DBPDRGA(ch));
}

/*
 * dbsc5_reg_ddrphy_write_all() - Write setting from DDR PHY register for all channels
 * @dev: DBSC5 device
 * @regadd: Destination address
 * @regdata: Value to be written
 *
 * Wrapper around dbsc5_reg_ddrphy_write() for all channels.
 */
static void dbsc5_reg_ddrphy_write_all(struct udevice *dev, u32 regadd, u32 regdata)
{
	u32 ch;

	r_foreach_vch(dev, ch)
		dbsc5_reg_ddrphy_write(dev, ch, regadd, regdata);
}

/**
 * dbsc5_reg_ddrphy_masked_write() - Write setting to DDR PHY register with mask
 * @dev: DBSC5 device
 * @ch: Target channel
 * @regadd: Destination address
 * @regdata: Value to be written
 * @msk: Register mask
 *
 * Wrapper around dbsc5_reg_ddrphy_write() with DBPDRGM set.
 */
static void dbsc5_reg_ddrphy_masked_write(struct udevice *dev, u32 ch, u32 regadd, u32 regdata, u32 msk)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	u32 val;
	int ret;

	writel(msk, regs_dbsc_d + DBSC_DBPDRGM(ch));
	ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGM(ch), val, (val == msk), 1000000);
	if (ret < 0) {
		printf("%s regs_dbsc_d + DBSC_DBPDRGM timeout\n", __func__);
		hang();
	}

	dbsc5_reg_ddrphy_write(dev, ch, regadd, regdata);

	writel(0, regs_dbsc_d + DBSC_DBPDRGM(ch));
	ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGM(ch), val, (val == 0), 1000000);
	if (ret < 0) {
		printf("%s regs_dbsc_d + DBSC_DBPDRGM != 0 timeout\n", __func__);
		hang();
	}
}

/**
 * dbsc5_ddr_setval_slice() - Write setting to DDR PHY hardware
 * @dev: DBSC5 device
 * @ch: Target channel
 * @slice: Target slice
 * @regdef: Encoded PHY/PI register and bitfield
 * @val: Value to be written
 *
 * Calculate the bit field in which to write the setting value
 * from encoded register and bitfield @regdef parameter. Call
 * dbsc5_reg_ddrphy_masked_write() to write the value to hardware.
 */
static void dbsc5_ddr_setval_slice(struct udevice *dev, u32 ch, u32 slice, u32 regdef, u32 val)
{
	const u32 adr = DDR_REGDEF_ADR(regdef) + (0x100 * slice);
	const u32 len = DDR_REGDEF_LEN(regdef);
	const u32 lsb = DDR_REGDEF_LSB(regdef);
	const u32 msk = (len == 32) ? 0xffffffff : ((BIT(len) - 1) << lsb);
	const u32 dms = ~((!!(msk & BIT(24)) << 3) | (!!(msk & BIT(16)) << 2) |
			  (!!(msk & BIT(8)) << 1) | !!(msk & BIT(0))) & 0xf;

	dbsc5_reg_ddrphy_masked_write(dev, ch, adr, val << lsb, dms);
}

/*
 * dbsc5_ddr_setval() - Write setting from DDR PHY hardware slice 0
 * @dev: DBSC5 device
 * @ch: Target channel
 * @regdef: Encoded PHY/PI register and bitfield
 * @val: Value to be written
 *
 * Wrapper around dbsc5_ddr_setval_slice() for slice 0.
 */
static void dbsc5_ddr_setval(struct udevice *dev, u32 ch, u32 regdef, u32 val)
{
	dbsc5_ddr_setval_slice(dev, ch, 0, regdef, val);
}

/*
 * dbsc5_ddr_setval_all_ch_slice() - Write setting from DDR PHY hardware for all channels and one slice
 * @dev: DBSC5 device
 * @slice: Target slice
 * @regdef: Encoded PHY/PI register and bitfield
 * @val: Value to be written
 *
 * Wrapper around dbsc5_ddr_setval_slice() for slice 0.
 */
static void dbsc5_ddr_setval_all_ch_slice(struct udevice *dev, u32 slice, u32 regdef, u32 val)
{
	u32 ch;

	r_foreach_vch(dev, ch)
		dbsc5_ddr_setval_slice(dev, ch, slice, regdef, val);
}

/*
 * dbsc5_ddr_setval_all_ch() - Write setting from DDR PHY hardware for all channels and slice 0
 * @dev: DBSC5 device
 * @regdef: Encoded PHY/PI register and bitfield
 * @val: Value to be written
 *
 * Wrapper around dbsc5_ddr_setval_all_ch_slice() for slice 0.
 */
static void dbsc5_ddr_setval_all_ch(struct udevice *dev, u32 regdef, u32 val)
{
	dbsc5_ddr_setval_all_ch_slice(dev, 0, regdef, val);
}

/*
 * dbsc5_ddr_setval_all_ch_all_slice() - Write setting from DDR PHY hardware for all channels and all slices
 * @dev: DBSC5 device
 * @regdef: Encoded PHY/PI register and bitfield
 * @val: Value to be written
 *
 * Wrapper around dbsc5_ddr_setval_all_ch_slice() for slice 0.
 */
static void dbsc5_ddr_setval_all_ch_all_slice(struct udevice *dev, u32 regdef, u32 val)
{
	u32 slice;

	for (slice = 0; slice < SLICE_CNT; slice++)
		dbsc5_ddr_setval_all_ch_slice(dev, slice, regdef, val);
}

/**
 * dbsc5_ddr_getval_slice() - Read setting from DDR PHY/PI hardware
 * @dev: DBSC5 device
 * @ch: Target channel
 * @slice: Target slice
 * @regdef: Encoded PHY/PI register and bitfield
 *
 * Calculate the address and the bit-field from "regdef" value.
 * Call dbsc5_reg_ddrphy_read() to read value from the target address.
 */
static u32 dbsc5_ddr_getval_slice(struct udevice *dev, u32 ch, u32 slice, u32 regdef)
{
	const u32 adr = DDR_REGDEF_ADR(regdef) + (0x100 * slice);
	const u32 len = DDR_REGDEF_LEN(regdef);
	const u32 lsb = DDR_REGDEF_LSB(regdef);
	const u32 msk = (len == 32) ? 0xffffffff : (BIT(len) - 1);

	return (dbsc5_reg_ddrphy_read(dev, ch, adr) >> lsb) & msk;
}

/**
 * dbsc5_ddr_getval() - Read setting from DDR PHY/PI hardware slice 0
 * @dev: DBSC5 device
 * @ch: Target channel
 * @regdef: Encoded PHY/PI register and bitfield
 *
 * Wrapper around dbsc5_ddr_getval_slice() for slice 0.
 */
static u32 dbsc5_ddr_getval(struct udevice *dev, u32 ch, u32 regdef)
{
	return dbsc5_ddr_getval_slice(dev, ch, 0, regdef);
}

/**
 * dbsc5_table_patch_set() - Modify DDR PHY/PI settings table
 * @tbl: DDR PHY/PI setting table pointer
 * @adrmsk_pi: Use wider address mask for PI register
 * @patch: List of modifications to the settings table
 * @patchlen: Length of the list of modifications to the settings table
 *
 * Calculate the target index of settings table, calculate the bit-field
 * to write the setting value, and write the setting value to the target
 * bit-field in the index.
 */
static void dbsc5_table_patch_set(u32 *tbl, const bool adrmsk_pi,
				  const struct dbsc5_table_patch *patch,
				  int patchlen)
{
	const u32 adrmsk = adrmsk_pi ? 0x7FF : 0xFF;
	u32 adr, len, lsb, msk;
	int i;

	for (i = 0; i < patchlen; i++) {
		adr = DDR_REGDEF_ADR(patch[i].reg);
		len = DDR_REGDEF_LEN(patch[i].reg);
		lsb = DDR_REGDEF_LSB(patch[i].reg);
		msk = (len == 32) ? 0xffffffff : ((BIT(len) - 1) << lsb);

		tbl[adr & adrmsk] &= ~msk;
		tbl[adr & adrmsk] |= (patch[i].val << lsb) & msk;
	}
}

/**
 * dbsc5_ddrtbl_getval() - Read setting from DDR PHY/PI settings table
 * @tbl: DDR PHY/PI setting table pointer
 * @regdef: Encoded PHY/PI register and bitfield
 * @adrmsk_pi: Use wider address mask for PI register
 *
 * Calculate the target index of *tbl and the bit-field to read the
 * setting value and read and return the setting value from the target
 * bit-field in the index.
 */
static u32 dbsc5_ddrtbl_getval(const u32 *tbl, u32 regdef, bool adrmsk_pi)
{
	const u32 adrmsk = adrmsk_pi ? 0x7FF : 0xFF;
	const u32 adr = DDR_REGDEF_ADR(regdef);
	const u32 len = DDR_REGDEF_LEN(regdef);
	const u32 lsb = DDR_REGDEF_LSB(regdef);
	const u32 msk = (len == 32) ? 0xffffffff : (BIT(len) - 1);

	return (tbl[adr & adrmsk] >> lsb) & msk;
}

/**
 * dbsc5_f_scale() - Calculate the best value for DBSC timing setting
 * @priv: Driver private data
 * @frac: Perform fractional rounding
 * @ps Optimal setting value in pico second
 * @cyc Optimal setting value in cycle count
 *
 * Convert the optimal value in pico second to in cycle count. Optionally, if @frac is true,
 * perform fractional rounding. Compare the value of the result of the conversion with the
 * value of the argument @cyc and return the larger value.
 */
static u32 dbsc5_f_scale(struct renesas_dbsc5_dram_priv *priv, const bool frac, u32 ps, u32 cyc)
{
	const u32 mul = frac ? 8 : 800000;
	const u32 tmp = DIV_ROUND_UP(ps, 10UL) * priv->ddr_mbps;
	const u32 f_scale_div = DIV_ROUND_UP(tmp, mul * priv->ddr_mbpsdiv);

	return (f_scale_div > cyc) ? f_scale_div : cyc;
}

/**
 * dbsc5_f_scale_js2() - Select optimal settings based on jedec_spec2
 * @priv: Driver private data
 *
 * Calculate and assign each setting value of jedec_spec2 by "dbsc5_f_scale" function.
 * Only the following array elements are calculated using different formulas from those
 * described above -- JS2_tRRD/JS2_tFAW/JS2_tZQCALns/JS2_tRCpb/JS2_tRCab.
 */
static void dbsc5_f_scale_js2(struct renesas_dbsc5_dram_priv *priv)
{
	const int derate = 0;
	int i;

	for (i = 0; i < JS2_TBLCNT; i++) {
		priv->js2[i] = dbsc5_f_scale(priv, false,
					     jedec_spec2[derate][i].ps,
					     jedec_spec2[derate][i].cyc);
	}

	priv->js2[JS2_tZQCALns] = dbsc5_f_scale(priv, false,
						jedec_spec2[derate][JS2_tZQCALns].ps * 1000UL, 0);
	priv->js2[JS2_tDQ72DQns] = dbsc5_f_scale(priv, false,
						 jedec_spec2[derate][JS2_tDQ72DQns].ps * 1000UL, 0);
	priv->js2[JS2_tCAENTns] = dbsc5_f_scale(priv, false,
						jedec_spec2[derate][JS2_tCAENTns].ps * 1000UL, 0);
	priv->js2[JS2_tRCpb] = priv->js2[JS2_tRAS] + priv->js2[JS2_tRPpb];
	priv->js2[JS2_tRCab] = priv->js2[JS2_tRAS] + priv->js2[JS2_tRPab];
	priv->js2[JS2_tRFCab] = dbsc5_f_scale(priv, false,
					      jedec_spec2_tRFC_ab[priv->max_density] * 1000UL, 0);

	priv->js2[JS2_tRBTP] = dbsc5_f_scale(priv, false, 7500, 2) - 2;
	priv->js2[JS2_tXSR] = priv->js2[JS2_tRFCab] +
			      dbsc5_f_scale(priv, false, 7500, 2);
	priv->js2[JS2_tPDN] = dbsc5_f_scale(priv, false, 10000, 0) + 1;
	priv->js2[JS2_tPDN_DSM] = dbsc5_f_scale(priv, true,
						jedec_spec2[derate][JS2_tPDN_DSM].ps * 10UL, 0);
	priv->js2[JS2_tXSR_DSM] = dbsc5_f_scale(priv, true,
						jedec_spec2[derate][JS2_tXSR_DSM].ps * 10UL, 0);
	priv->js2[JS2_tXDSM_XP] = dbsc5_f_scale(priv, true,
						jedec_spec2[derate][JS2_tXDSM_XP].ps * 10UL, 0);
	priv->js2[JS2_tWLWCKOFF] = dbsc5_f_scale(priv, false, 14000, 5);
}

/**
 * dbsc5_ddrtbl_calc() - Calculate JS1/JS2
 * @priv: Driver private data
 *
 * Determine jedec_spec1 configuration table based on priv->ddr_mbps
 * and priv->ddr_mbpsdiv. Calculate the value of the jedec_spec2
 * configuration table from priv->ddr_mbps and priv->ddr_mbpsdiv.
 */
static void dbsc5_ddrtbl_calc(struct renesas_dbsc5_dram_priv *priv)
{
	int i;

	/* Search jedec_spec1 index */
	for (i = JS1_USABLEC_SPEC_LO; i < JS1_FREQ_TBL_NUM - 1; i++)
		if (js1[i].fx3 * 2 * priv->ddr_mbpsdiv >= priv->ddr_mbps * 3)
			break;

	priv->js1_ind = clamp(i, 0, JS1_USABLEC_SPEC_HI);

	priv->RL = js1[priv->js1_ind].RLset1;
	priv->WL = js1[priv->js1_ind].WLsetA;

	/* Calculate jedec_spec2 */
	dbsc5_f_scale_js2(priv);
};

/**
 * dbsc5_ddrtbl_load() Load table data into DDR registers
 * @dev: DBSC5 device
 *
 * Copy the base configuration table to a local array. Change PI register table
 * settings to match priv->ddr_mbps and priv->ddr_mbpsdiv.
 *
 * If the set value vref_r is not 0, change the "Read Vref (SoC side) Training range"
 * setting in the configuration table.
 *
 * If the set value vref_w is not 0, change the "Write Vref (MR14, MR15) Training range"
 * setting in the configuration table.
 *
 * If the set value vref_ca is not 0, change the "CA Vref (MR12) Training range"
 * setting in the configuration table.
 *
 * If priv->ddr_mbps/priv->ddr_mbpsdiv is less than 5120,
 * change the contents of the PHY register setting table.
 * If priv->ddr_mbps/priv->ddr_mbpsdiv is less than 4576,
 * change the contents of the PHY register setting table.
 *
 * Reflect the contents of the configuration table in the register.
 */
static void dbsc5_ddrtbl_load(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	const struct dbsc5_table_patch dbsc5_table_patch_adr_g_mbps = {
		PHY_CAL_INTERVAL_COUNT_0, 10000 * priv->ddr_mbps / priv->ddr_mbpsdiv / 8 / 256,
	};

	const struct dbsc5_table_patch dbsc5_table_patch_pi_js[] = {
		{ PI_WRLAT_F2, priv->WL },
		{ PI_TWCKENL_WR_ADJ_F2, (js1[priv->js1_ind].WCKENLW * 4) + 4 },
		{ PI_TWCKENL_RD_ADJ_F2, (js1[priv->js1_ind].WCKENLR * 4) + 4 },
		{ PI_TWCKPRE_STATIC_F2, (js1[priv->js1_ind].WCKPRESTA * 4) },
		{ PI_TWCKPRE_TOGGLE_RD_F2, (js1[priv->js1_ind].WCKPRETGLR) * 4 },
		{ PI_CASLAT_F2, priv->RL },
		{ PI_TWCKENL_FS_ADJ_F2, (js1[priv->js1_ind].WCKENLF * 4) + 4 },
		{ PI_TRFC_F2, priv->js2[JS2_tRFCab] },
		{ PI_WRLVL_WCKOFF_F2, (priv->js2[JS2_tWLWCKOFF]) + 3 },
		{ PI_WRLAT_ADJ_F2, (priv->WL * 4) + 2 },
		{ PI_TCAENT_F2, priv->js2[JS2_tCAENTns] },
		{ PI_TVREF_LONG_F2, (priv->js2[JS2_tCAENTns]) + 1 },
		{ PI_TVREF_SHORT_F2, (priv->js2[JS2_tCAENTns]) + 1 },
		{ PI_TRCD_F2, priv->js2[JS2_tRCD] },
		{ PI_TRP_F2, priv->js2[JS2_tRPab] },
		{ PI_TRTP_F2, js1[priv->js1_ind].nRBTP },
		{ PI_TRAS_MIN_F2, priv->js2[JS2_tRAS] },
		{ PI_TMRD_F2, (priv->js2[JS2_tMRD]) + 1 },
		{ PI_TSR_F2, priv->js2[JS2_tSR] },
		{ PI_TZQCAL_F2, priv->js2[JS2_tZQCALns] },
		{ PI_TZQLAT_F2, priv->js2[JS2_tZQLAT] },
		{ PI_TDQ72DQ_F2, priv->js2[JS2_tDQ72DQns] },
		{ PI_MC_TRFC_F2, priv->js2[JS2_tRFCab] },
	};

	const u32 vref_r = priv->dbsc5_board_config->bdcfg_vref_r;
	const struct dbsc5_table_patch dbsc5_table_patch_slice_vref_r[] = {
		{ PHY_VREF_INITIAL_START_POINT, vref_r & 0xFF },
		{ PHY_VREF_INITIAL_STOP_POINT, (vref_r & 0xFF00) >> 8 },
		{ PHY_VREF_INITIAL_STEPSIZE, (vref_r & 0xFF0000) >> 16 }
	};

	const u32 vref_w = priv->dbsc5_board_config->bdcfg_vref_w;
	const struct dbsc5_table_patch dbsc5_table_patch_pi_vref_w[] = {
		{ PI_WDQLVL_VREF_INITIAL_START_POINT_F0, vref_w & 0xff },
		{ PI_WDQLVL_VREF_INITIAL_START_POINT_F1, vref_w & 0xff },
		{ PI_WDQLVL_VREF_INITIAL_START_POINT_F2, vref_w & 0xff },
		{ PI_WDQLVL_VREF_INITIAL_STOP_POINT_F0, (vref_w & 0xff00) >> 8 },
		{ PI_WDQLVL_VREF_INITIAL_STOP_POINT_F1, (vref_w & 0xff00) >> 8 },
		{ PI_WDQLVL_VREF_INITIAL_STOP_POINT_F2, (vref_w & 0xff00) >> 8 }
	};

	const u32 vref_ca = priv->dbsc5_board_config->bdcfg_vref_ca;
	const struct dbsc5_table_patch dbsc5_table_patch_pi_vref_ca[] = {
		{ PI_CALVL_VREF_INITIAL_START_POINT_F0, vref_ca & 0xff },
		{ PI_CALVL_VREF_INITIAL_START_POINT_F1, vref_ca & 0xff },
		{ PI_CALVL_VREF_INITIAL_START_POINT_F2, vref_ca & 0xff },
		{ PI_CALVL_VREF_INITIAL_STOP_POINT_F0, (vref_ca & 0xff00) >> 8 },
		{ PI_CALVL_VREF_INITIAL_STOP_POINT_F1, (vref_ca & 0xff00) >> 8 },
		{ PI_CALVL_VREF_INITIAL_STOP_POINT_F2, (vref_ca & 0xff00) >> 8 }
	};

	int i, cs, slice;
	u32 adr;

	/* Prepare register tables */
	memcpy(priv->DDR_PHY_SLICE_REGSET, DDR_PHY_SLICE_REGSET_V4H, sizeof(DDR_PHY_SLICE_REGSET_V4H));
	memcpy(priv->DDR_PHY_ADR_V_REGSET, DDR_PHY_ADR_V_REGSET_V4H, sizeof(DDR_PHY_ADR_V_REGSET_V4H));
	memcpy(priv->DDR_PHY_ADR_G_REGSET, DDR_PHY_ADR_G_REGSET_V4H, sizeof(DDR_PHY_ADR_G_REGSET_V4H));
	memcpy(priv->DDR_PI_REGSET, DDR_PI_REGSET_V4H, sizeof(DDR_PI_REGSET_V4H));

	/* Adjust PI parameters */
	dbsc5_table_patch_set(priv->DDR_PHY_ADR_G_REGSET, false,
			      &dbsc5_table_patch_adr_g_mbps, 1);
	dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
			      dbsc5_table_patch_pi_js,
			      ARRAY_SIZE(dbsc5_table_patch_pi_js));

	if (priv->ddr_mbps < (3201 * priv->ddr_mbpsdiv)) {
		/* 2751-3200 */
		dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
				      dbsc5_table_patch_slice_3200,
				      ARRAY_SIZE(dbsc5_table_patch_slice_3200));
		dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
				      dbsc5_table_patch_adr_v_3200,
				      ARRAY_SIZE(dbsc5_table_patch_adr_v_3200));
		dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
				      dbsc5_table_patch_pi_3200,
				      ARRAY_SIZE(dbsc5_table_patch_pi_3200));
	} else if (priv->ddr_mbps < (3734 * priv->ddr_mbpsdiv)) {
		/* 3201-3733 */
		dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
				      dbsc5_table_patch_slice_3733,
				      ARRAY_SIZE(dbsc5_table_patch_slice_3733));
		dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
				      dbsc5_table_patch_adr_v_3733,
				      ARRAY_SIZE(dbsc5_table_patch_adr_v_3733));
		dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
				      dbsc5_table_patch_pi_3733,
				      ARRAY_SIZE(dbsc5_table_patch_pi_3733));
	} else if (priv->ddr_mbps < (4268 * priv->ddr_mbpsdiv)) {
		/* 3734-4267 */
		dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
				      dbsc5_table_patch_slice_4266,
				      ARRAY_SIZE(dbsc5_table_patch_slice_4266));
		dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
				      dbsc5_table_patch_adr_v_4266,
				      ARRAY_SIZE(dbsc5_table_patch_adr_v_4266));
		dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
				      dbsc5_table_patch_pi_4266,
				      ARRAY_SIZE(dbsc5_table_patch_pi_4266));
	} else if (priv->ddr_mbps < (4801 * priv->ddr_mbpsdiv)) {
		/* 4269-4800 */
		dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
				      dbsc5_table_patch_slice_4800,
				      ARRAY_SIZE(dbsc5_table_patch_slice_4800));
		dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
				      dbsc5_table_patch_adr_v_4800,
				      ARRAY_SIZE(dbsc5_table_patch_adr_v_4800));
		dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
				      dbsc5_table_patch_pi_4800,
				      ARRAY_SIZE(dbsc5_table_patch_pi_4800));
	} else if (priv->ddr_mbps < (5501 * priv->ddr_mbpsdiv)) {
		/* 4801 - 5500 */
		dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
				      dbsc5_table_patch_slice_5500,
				      ARRAY_SIZE(dbsc5_table_patch_slice_5500));
		dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
				      dbsc5_table_patch_adr_v_5500,
				      ARRAY_SIZE(dbsc5_table_patch_adr_v_5500));
		dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
				      dbsc5_table_patch_pi_5500,
				      ARRAY_SIZE(dbsc5_table_patch_pi_5500));
	} else if (priv->ddr_mbps < (6001 * priv->ddr_mbpsdiv)) {
		/* 5501 - 6000 */
		dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
				      dbsc5_table_patch_slice_6000,
				      ARRAY_SIZE(dbsc5_table_patch_slice_6000));
		dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
				      dbsc5_table_patch_adr_v_6000,
				      ARRAY_SIZE(dbsc5_table_patch_adr_v_6000));
		dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
				      dbsc5_table_patch_pi_6000,
				      ARRAY_SIZE(dbsc5_table_patch_pi_6000));
	}

	for (cs = 0; cs < CS_CNT; cs++) {
		struct dbsc5_table_patch dbsc5_table_patch_pi_mr12[] = {
			{ PI_DARRAY3_0_CSx_Fx[cs][2], js1[priv->js1_ind].MR1 },
			{ PI_DARRAY3_1_CSx_Fx[cs][2], js1[priv->js1_ind].MR2 },
		};

		dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
				      dbsc5_table_patch_pi_mr12,
				      ARRAY_SIZE(dbsc5_table_patch_pi_mr12));
	}

	/* Read Vref (SoC side) Training range */
	if (priv->dbsc5_board_config->bdcfg_vref_r) {
		dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
				      dbsc5_table_patch_slice_vref_r,
				      ARRAY_SIZE(dbsc5_table_patch_slice_vref_r));
	}

	/* Write Vref (MR14, MR15) Training range */
	if (priv->dbsc5_board_config->bdcfg_vref_w) {
		dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
				      dbsc5_table_patch_pi_vref_w,
				      ARRAY_SIZE(dbsc5_table_patch_pi_vref_w));
	}

	/* CA Vref (MR12) Training range */
	if (priv->dbsc5_board_config->bdcfg_vref_ca) {
		dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
				      dbsc5_table_patch_pi_vref_ca,
				      ARRAY_SIZE(dbsc5_table_patch_pi_vref_ca));
	}

	/* Low Freq setting */
	if (priv->ddr_mbps < (8 * 640 * priv->ddr_mbpsdiv)) {
		/* CAL_CLK(10-20MHz) */
		dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
				      &dbsc5_table_patch_slice_mbpsdiv_640, 1);
		dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
				      &dbsc5_table_patch_adr_v_mbpsdiv_640, 1);
		dbsc5_table_patch_set(priv->DDR_PHY_ADR_G_REGSET, false,
				      &dbsc5_table_patch_adr_g_mbpsdiv_640, 1);
	}

	if (priv->ddr_mbps < (8 * 572 * priv->ddr_mbpsdiv)) {
		/* CAL_CLK(10-20MHz) */
		dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
				      &dbsc5_table_patch_slice_mbpsdiv_572, 1);
		dbsc5_table_patch_set(priv->DDR_PHY_ADR_G_REGSET, false,
				      &dbsc5_table_patch_adr_g_mbpsdiv_572, 1);
	}

	if (priv->ddr_mbps < (8 * 401 * priv->ddr_mbpsdiv)) {
		dbsc5_table_patch_set(priv->DDR_PHY_ADR_G_REGSET, false,
				      dbsc5_table_patch_adr_g_mbpsdiv_400,
				      ARRAY_SIZE(dbsc5_table_patch_adr_g_mbpsdiv_400));
	}

	/* SET DATA SLICE TABLE */
	for (slice = 0; slice < SLICE_CNT; slice++) {
		adr = DDR_PHY_SLICE_REGSET_OFS_V4H + (DDR_PHY_SLICE_REGSET_SIZE_V4H * slice);
		for (i = 0; i < DDR_PHY_SLICE_REGSET_NUM_V4H; i++)
			dbsc5_reg_ddrphy_write_all(dev, adr + i, priv->DDR_PHY_SLICE_REGSET[i]);
	}

	/* SET ADR SLICE TABLE */
	for (i = 0; i < DDR_PHY_ADR_V_REGSET_NUM_V4H; i++)
		dbsc5_reg_ddrphy_write_all(dev, DDR_PHY_ADR_V_REGSET_OFS_V4H + i, priv->DDR_PHY_ADR_V_REGSET[i]);

	/* SET ADRCTRL SLICE TABLE */
	for (i = 0; i < DDR_PHY_ADR_G_REGSET_NUM_V4H; i++)
		dbsc5_reg_ddrphy_write_all(dev, DDR_PHY_ADR_G_REGSET_OFS_V4H + i, priv->DDR_PHY_ADR_G_REGSET[i]);

	/* SET PI REGISTERS */
	for (i = 0; i < DDR_PI_REGSET_NUM_V4H; i++)
		dbsc5_reg_ddrphy_write_all(dev, DDR_PI_REGSET_OFS_V4H + i, priv->DDR_PI_REGSET[i]);
}

/**
 * dbsc5_ddr_config() - Configure DDR registers
 * @dev: DBSC5 device
 *
 * Set up wiring for DQ and DM pins and VREF_DRIVING. Set the CA pin wiring
 * and ADR_CALVL_SWIZZLE settings. Make wiring settings for the CS pin. When
 * memory rank is 1, set RANK setting to 1 to disable CS training. Configure
 * the DATA_BYTE_SWAP setting.
 */
static void dbsc5_ddr_config(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	u32 ca_swap, cs_swap, dqs_swap;
	u32 ch, slice;

	r_foreach_vch(dev, ch) {
		/* Board settings (DQ, DM, VREF_DRIVING) */
		dqs_swap = priv->dbsc5_board_config->ch[ch].bdcfg_dqs_swap;
		for (slice = 0; slice < SLICE_CNT; slice++) {
			dbsc5_ddr_setval_slice(dev, ch, slice, PHY_DQ_DM_SWIZZLE0,
					       priv->dbsc5_board_config->ch[ch].bdcfg_dq_swap[slice]);
			dbsc5_ddr_setval_slice(dev, ch, slice, PHY_DQ_DM_SWIZZLE1,
					       priv->dbsc5_board_config->ch[ch].bdcfg_dm_swap[slice]);
			dbsc5_ddr_setval_slice(dev, ch, slice, PHY_CALVL_VREF_DRIVING_SLICE,
					       !((dqs_swap >> (4 * slice)) & 1));
		}
		dbsc5_ddr_setval(dev, ch, PHY_DATA_BYTE_ORDER_SEL,
				 priv->dbsc5_board_config->ch[ch].bdcfg_dqs_swap | 0x76543200);

		/* Board settings (CA, ADDR_MUX) */
		ca_swap = priv->dbsc5_board_config->ch[ch].bdcfg_ca_swap;

		/* ADDR_MUX */
		dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_0, ca_swap & 0xf);
		ca_swap >>= 4;
		dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_1, ca_swap & 0xf);
		ca_swap >>= 4;
		dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_2, ca_swap & 0xf);
		ca_swap >>= 4;
		dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_3, ca_swap & 0xf);
		ca_swap >>= 4;
		dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_4, ca_swap & 0xf);
		ca_swap >>= 4;
		dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_5, ca_swap & 0xf);
		ca_swap >>= 4;
		dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_6, ca_swap & 0xf);
		ca_swap >>= 4;

		/* ADR_CALVL_SWIZZLE */
		ca_swap = priv->dbsc5_board_config->ch[ch].bdcfg_ca_swap;
		dbsc5_ddr_setval(dev, ch, PHY_ADR_CALVL_SWIZZLE0, ca_swap & 0x0fffffff);

		/* Board settings (CS) */
		/* CKE_MUX */
		/* SoC CKE -> DRAM CS */
		cs_swap = priv->dbsc5_board_config->ch[ch].bdcfg_cs_swap;
		dbsc5_ddr_setval(dev, ch, PI_CKE_MUX_0, (cs_swap & 0xf) + 2);
		dbsc5_ddr_setval(dev, ch, PI_CKE_MUX_1, ((cs_swap >> 4) & 0xf) + 2);
		dbsc5_ddr_setval(dev, ch, PHY_CS_ACS_ALLOCATION_BIT2_2, (cs_swap & 0xf) + 1);
		dbsc5_ddr_setval(dev, ch, PHY_CS_ACS_ALLOCATION_BIT3_2, ((cs_swap >> 4) & 0xf) + 1);

		/* Mask CS_MAP if RANK1 is not found */
		if (!(priv->ch_have_this_cs[1] & BIT(ch))) {
			dbsc5_ddr_setval(dev, ch, PHY_ADR_CALVL_RANK_CTRL, 0x0);
			for (slice = 0; slice < SLICE_CNT; slice++)
				dbsc5_ddr_setval_slice(dev, ch, slice, PHY_PER_CS_TRAINING_EN, 0x0);
		}
	}

	r_foreach_vch(dev, ch) {
		/* DATA_BYTE_SWAP */
		dqs_swap = priv->dbsc5_board_config->ch[ch].bdcfg_dqs_swap;

		dbsc5_ddr_setval(dev, ch, PI_DATA_BYTE_SWAP_EN, 0x1);
		dbsc5_ddr_setval(dev, ch, PI_DATA_BYTE_SWAP_SLICE0, dqs_swap & 0xf);
		dbsc5_ddr_setval(dev, ch, PI_DATA_BYTE_SWAP_SLICE1, (dqs_swap >> 4) & 0xf);

		if (!(priv->ch_have_this_cs[1] & BIT(ch)))
			dbsc5_ddr_setval(dev, ch, PI_CS_MAP, 0x1);
	}
}

/**
 * dbsc5_dbsc_regset_pre() - Configure primary DDR registers
 * @dev: DBSC5 device
 *
 * Set SDRAM type, Burst length, and PHY type. Frequency mode setting.
 * Write SDRAM configuration contents to registers.
 */
static void dbsc5_dbsc_regset_pre(struct udevice *dev)
{
#define DBMEMCONF_REG(d3, row, bg, bank, col, dw)	\
	(((d3) << 30) | ((row) << 24) | ((bg) << 20) | ((bank) << 16) | ((col) << 8) | (dw))
#define DBMEMCONF_REGD(density)		   /* 16bit */	\
	DBMEMCONF_REG(((density) % 2), ((((density) + 1) / 2) + (28 - 2 - 2 - 10 - 1)), 2, 2, 10, 1)

	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_a = priv->regs + DBSC5_DBSC_A_OFFSET;
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	u32 density;
	u32 ch, cs;

	/* Primary settings */
	/* LPDDR5, BL=16, DFI interface */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBMEMKIND, 0xC);
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBMEMKINDA, 0xC);
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBBL, 0x2);
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBBLA, 0x2);
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBPHYCONF0, 0x1);

	dbsc5_reg_write(regs_dbsc_a + DBSC_DBSYSCONF0, 0x1);

	/* FREQRATIO=2 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBSYSCONF1, 0x20000);
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBSYSCONF1A, 0x0);

	dbsc5_reg_write(regs_dbsc_d + DBSC_DBSYSCONF2, 0x1);
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBSYSCONF2A, 0x241);

	r_foreach_ech(ch) {
		for (cs = 0; cs < CS_CNT; cs++) {
			if (priv->ddr_density[ch][cs] == 0xFF) {
				writel(0x00, regs_dbsc_d + DBSC_DBMEMCONF(ch, cs));
				writel(0x00, regs_dbsc_a + DBSC_DBMEMCONFA(ch, cs));
			} else {
				density = priv->ddr_density[ch][cs];
				writel(DBMEMCONF_REGD(density),
				       regs_dbsc_d + DBSC_DBMEMCONF(ch, cs));
				writel(DBMEMCONF_REGD(density),
				       regs_dbsc_a + DBSC_DBMEMCONFA(ch, cs));
			}
		}
	}
}

/**
 * dbsc5_dbsc_regset() - Set DBSC timing parameters
 * @dev: DBSC5 device
 *
 * Set the timing registers of the DBSC.
 * Configure Scheduler settings.
 */
static void dbsc5_dbsc_regset(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_a = priv->regs + DBSC5_DBSC_A_OFFSET;
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	u32 tmp[4];

	/* DBTR0.CL  : RL */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(0), priv->RL);

	/* DBTR1.CWL : WL */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(1), priv->WL);

	/* DBTR2.AL = 0 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(2), 0x0);

	/* DBTR3.TRCD: tRCD */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(3), priv->js2[JS2_tRCD]);

	/* DBTR4.TRPA,TRP: tRPab,tRPpb */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(4), (priv->js2[JS2_tRPab] << 16) |
				      priv->js2[JS2_tRPpb]);

	/* DBTR5.TRC : tRCpb */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(5), priv->js2[JS2_tRCpb]);

	/* DBTR6.TRAS : tRAS */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(6), priv->js2[JS2_tRAS]);

	/* DBTR7.TRRD : tRRD */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(7), ((priv->js2[JS2_tRRD] - 1) << 16) |
				      (priv->js2[JS2_tRRD] - 1));

	/* DBTR8.TFAW : tFAW */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(8), priv->js2[JS2_tFAW] - 1);

	/* DBTR9.TRDPR: nRBTP */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(9), js1[priv->js1_ind].nRBTP);

	/* DBTR10.TWR : nWR */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(10), js1[priv->js1_ind].nWR);

	/*
	 * DBTR11.TRDWR : RL + BL/n_max + RU(tWCK2DQO(max)/tCK) +
	 * RD(tRPST/tCK) - ODTLon - RD(tODTon(min)/tCK) + 1 + feature
	 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(11),
			priv->RL + 4 + priv->js2[JS2_tWCK2DQO_HF] -
			js1[priv->js1_ind].ODTLon - priv->js2[JS2_tODTon_min] + 2);

	/* DBTR12.TWRRD_S : WL + BL/2 + tWTR_S, TWRRD_L : WL + BL + tWTR_L */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(12),
			((priv->WL + 2 + priv->js2[JS2_tWTR_S]) << 16) |
			(priv->WL + 4 + priv->js2[JS2_tWTR_L]));

	/* DBTR13.TRFCAB : tRFCab */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(13), priv->js2[JS2_tRFCab]);

	/* DBTR14.TCSCAL,TCKEHDLL,tCKEH : tCSCAL,tXP,tXP */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(14), (priv->js2[JS2_tCSCAL] << 24) |
				       (priv->js2[JS2_tXP] << 16) |
				       priv->js2[JS2_tXP]);

	/* DBTR15.TESPD,TCKESR,TCKEL : tESPD = 2,tSR,tSR */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(15), (0x02 << 24) |
				       (priv->js2[JS2_tSR] << 16) |
				       priv->js2[JS2_tSR]);

	/* DBTR16 */
	/* wdql(tphy_wrlat + tphy_wrdata) */
	tmp[0] = (priv->WL * 4) - 1 + 5;
	/* dqenltcy(tphy_wrlat) */
	tmp[1] = (priv->WL * 4) - 2 - 2 + 5;
	/* dql(tphy_rdlat + trddata_en) RL * 4 + phy_rptr_update + phy_rddqs_latency_adjust + 39 */
	tmp[2] = (priv->RL * 4) +
		 dbsc5_ddrtbl_getval(priv->DDR_PHY_SLICE_REGSET, PHY_RPTR_UPDATE, false) +
		 dbsc5_ddrtbl_getval(priv->DDR_PHY_SLICE_REGSET, PHY_RDDQS_LATENCY_ADJUST, false) +
		 39;
	/* dqienltncy(trddata_en) RL * 4 - phy_rddata_en_dly_X + 4 * phy_wck_freq_ratio_X */
	tmp[3] = (priv->RL * 4) + 4 -
		 dbsc5_ddrtbl_getval(priv->DDR_PHY_SLICE_REGSET, PHY_RDDATA_EN_DLY, false);
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(16), (tmp[3] << 24) | (tmp[2] << 16) |
				       (tmp[1] << 8) | tmp[0]);

	/* DBTR17.TMODRD,TMOD: tMRR,tMRW */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(17), (priv->js2[JS2_tMRR] << 24) |
				       (priv->js2[JS2_tMRW] << 16));

	/* DBTR18. RODTL, RODTA = 0 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(18), 0x0);

	/* DBTR19. TZQCL, TZQCS = 0 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(19), 0x0);

	/* DBTR20.TXSDLL, TXS : tXSR,tXSR */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(20), ((priv->js2[JS2_tXSR]) << 16) |
				       priv->js2[JS2_tXSR]);

	/* DBTR21.TCCD */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(21), (priv->ddr_tccd << 16) |
				       (priv->ddr_tccd * 2));

	/* DBTR22.TZQCAL,TZQLAT : tZQCAL,tZQLAT */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(22), (priv->js2[JS2_tZQCALns] << 16) | priv->js2[JS2_tZQLAT]);

	/* DBTR23. RRSPC = 0 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(23), 0x0);

	/* DBTR24 */
	/* WRCSLAT(tphy_wrcslat) */
	tmp[0] = (priv->WL * 4) - 2;
	/* WRCSGAP(tphy_wrcsgap) */
	tmp[1] = 0x0C;
	/* RDCSLAT(tphy_rdcslat) */
	tmp[2] = priv->RL * 4;
	/* RDCSGAP(tphy_rdcsgap) */
	tmp[3] = 0x0C;
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(24), (tmp[3] << 24) | (tmp[2] << 16) |
				       (tmp[1] << 8) | tmp[0]);

	/* DBTR25. TWDQLVLDIS = 0 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(25), 0x0);

	/* DBTR26. TWCK2DQOOSC,TDQSOSC : WCK2DQI interval timer run time, WCK2DQO interval timer run time */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(26), 0x0);

	/* DBTR27.TPDN : tPDN */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(27), priv->js2[JS2_tPDN]);

	/* DBTR28.txsrdsm : tXSR_DSM */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(28), priv->js2[JS2_tXSR_DSM]);

	/* DBTR29.tdsmxp : tXDSM_XP */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(29), priv->js2[JS2_tXDSM_XP]);

	/* DBTR30.TCMDPD : tCMDPD = 3 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(30), 0x3);

	/* DBTR31.TWCK2DQOMAX,TWCK2DQIMAX : tWCK2DQI/O_HF/LF */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(31), (priv->js2[JS2_tWCK2DQO_HF] << 4) |
				       priv->js2[JS2_tWCK2DQI_HF]);

	/* DBTR32 */
	/* twckenr */
	tmp[0] = (js1[priv->js1_ind].WCKENLR * 4) + 4 - 1;
	/* twckenw  */
	tmp[1] = (js1[priv->js1_ind].WCKENLW * 4) + 4 - 1;
	/* twckenlf */
	tmp[2] = (js1[priv->js1_ind].WCKENLF * 4) + 4;
	/* twckpresta */
	tmp[3] = js1[priv->js1_ind].WCKPRESTA * 4;
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(32), (tmp[3] << 24) | (tmp[2] << 16) |
				       (tmp[1] << 8) | tmp[0]);

	/* DBTR33 */
	/* TWCKTGL */
	tmp[0] = 4;
	/* TWCKDIS  (RL+ bl/n_max) * 4 + RU(tWCKPST/tWCK) : tWCKPST = 2.5(MR10[3:2]) */
	tmp[1] = ((priv->RL + 4) * 4) + 3;
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(33), (tmp[1] << 8) | tmp[0]);

	/* DBTR34 */
	/* TWCKSUS = 4 */
	tmp[0] = 4;
	/* TWCKPST  RU(tWCKPST/tCK) : tWCKPST=2.5(MR10[3:2]) */
	tmp[1] = 1;
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(34), (tmp[1] << 8) | tmp[0]);

	/* DBTR35 */
	/* TRD2WCKOFF RL + BL/n_max + RD(tWCKPST/tCK) + 1 */
	tmp[0] = priv->RL + 4 + 0 + 1;
	/* TWR2WCKOFF WL + BL/n_max + RD(tWCKPST/tCK) + 1 */
	tmp[1] = priv->WL + 4 + 0 + 1;
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(35), (tmp[1] << 16) | tmp[0]);

	/* DBTR36 */
	/* TWSSUSWRX : CAS(WCKSUS)WRX */
	tmp[0] = 3;
	/* TWSOFFWRX : CAS(WS_OFF)WRX */
	tmp[1] = 3;
	/* TWSFSWRX : CAS(WS_FS)WRX */
	tmp[2] = 2;
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(36), (tmp[2] << 16) | (tmp[1] << 8) | tmp[0]);

	/* DBTR37 */
	/* tOSCO */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(37), priv->js2[JS2_tOSCODQI]);

	/* DBRNK2 */
	/* RNKRR = 12 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBRNK(2), 0xCC);

	/* DBRNK3 */
	/* RNKRW = 6 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBRNK(3), 0x66);

	/* DBRNK4 */
	/* RNKWR = 6 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBRNK(4), 0x66);

	/* DBRNK5 */
	/* RNKWW = 14 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBRNK(5), 0xEE);

	/* Timing registers for Scheduler */
	/* SCFCTST0 */
	/* SCPREACT */
	tmp[0] = priv->js2[JS2_tRPpb] * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv;
	/* SCACTRDWR */
	tmp[1] = (priv->WL + 2 + 1 + js1[priv->js1_ind].nWR + priv->js2[JS2_tRPpb]) *
		 priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv;
	/* SCRDACRT */
	tmp[2] = ((js1[priv->js1_ind].nRBTP + 2) + priv->js2[JS2_tRPpb]) *
		 priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv;
	/* SCACTACT */
	tmp[3] = priv->js2[JS2_tRCpb] * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv;
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBSCHFCTST0, (tmp[3] << 24) | (tmp[2] << 16) |
					  (tmp[1] << 8) | tmp[0]);

	/* SCFCTST1 */
	/* SCASYNCOFS */
	tmp[0] = 12;
	/* SCACTRDWR */
	tmp[1] = priv->js2[JS2_tRCD] * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv;
	/* SCWRRD */
	tmp[2] = (readl(regs_dbsc_d + DBSC_DBTR(12)) & 0xFF) * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv;
	/* SCRDWR */
	tmp[3] = (readl(regs_dbsc_d + DBSC_DBTR(11)) & 0xFF) * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv;
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBSCHFCTST1, (tmp[3] << 24) | (tmp[2] << 16) |
					  (tmp[1] << 8) | tmp[0]);

	/* DBSCHRW1 */
	/* SCTRFCAB */
	tmp[0] = (priv->js2[JS2_tRFCab] + priv->js2[JS2_tZQLAT]) *
		 priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv;
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBSCHRW1, tmp[0]);

	/* DBSCHTR0 */
	/* SCDT0 */
	tmp[0] = (4 * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv) - 1;
	/* SCDT1 */
	tmp[1] = (8 * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv) - 1;
	/* SCDT2 */
	tmp[2] = (12 * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv) - 1;
	/* SCDT3 */
	tmp[3] = (16 * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
		 priv->ddr_mbps / priv->bus_clkdiv) - 1;
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBSCHTR0, (tmp[3] << 24) | (tmp[2] << 16) |
				       (tmp[1] << 8) | tmp[0]);

	/* QOS and CAM */
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBBCAMDIS, 0x1);
}

/**
 * dbsc5_dbsc_regset_post() - Set DBSC registers
 * @dev: DBSC5 device
 *
 * If memory rank is 2, CS_TRAINING_EN is set to the other side.
 * Configure DBI read/write settings. Execute DRAM refresh settings.
 * Set WTmode of DFI PHY to OFF. Set up PHY Periodic Write DQ training.
 * Set WTmode of DFI PHY to ON. Calibration settings for PHY PAD.
 * Set SDRAM calibration. Make DFI Control Update Setting settings.
 * In the case of WARM_BOOT, cancel the self-refresh setting.
 * Enable SDRAM auto refresh. Set up PHY Periodic Write DQ training.
 * Enable access to SDRAM.
 */
static void dbsc5_dbsc_regset_post(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_a = priv->regs + DBSC5_DBSC_A_OFFSET;
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	/* Average periodic refresh interval/Average Refresh Interval [ns] */
	const u32 dbsc_refint = 1920;
	/* 0: Average interval is REFINT, 1: Average interval is 1/2 REFINT */
	const u32 dbsc_refints = 0;
	/* Periodic-WriteDQ/ReadDQ Training Interval [us] */
	const u32 periodic_training_interval = 20000;
	u32 phymster_req_interval;
	u32 ch, slice;
	u32 clk_count;
	u32 refcycle;
	u32 ctrl_clk;
	u32 reg;

	if ((renesas_get_cpu_rev_integer() < 3) && priv->ch_have_this_cs[1]) {
		r_foreach_vch(dev, ch) {
			for (slice = 0; slice < SLICE_CNT; slice++) {
				dbsc5_ddr_setval_slice(dev, ch, slice,
						       PHY_PER_CS_TRAINING_EN,
						       0x0);
			}
		}
	}

	dbsc5_reg_write(regs_dbsc_d + DBSC_DBDBICNT, 0x3);

	/* set REFCYCLE */
	refcycle = dbsc_refint * priv->ddr_mbps / 8000 / priv->ddr_mbpsdiv;
	/* refpmax=8 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBRFCNF1, (refcycle & 0xFFFF) | BIT(19));
	/* refpmin=1 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBRFCNF2, dbsc_refints | BIT(16));

	dbsc5_reg_write(regs_dbsc_d + DBSC_DBDFIPMSTRCNF, 0x0);

	/* Periodic-WriteDQ Training setting */
	dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_EN_F2, 0x3);
	dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_VREF_EN, 0x0);
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_DATA_DC_WDQLVL_ENABLE, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_PERIODIC, 0x1);

	/* Periodic-ReadDQ Training setting */
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_EN_F2, 0x3);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_VREF_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDLVL_DLY_STEP, 0x4);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_PERIODIC, 0x1);

	/* DFI_PHYMSTR_ACK , WTmode = b'01 */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBDFIPMSTRCNF, 0x11);

	/* periodic SoC zqcal enable */
	reg = dbsc5_ddrtbl_getval(priv->DDR_PHY_ADR_G_REGSET, PHY_CAL_MODE_0, false);
	dbsc5_ddr_setval_all_ch(dev, PHY_CAL_MODE_0, reg | BIT(1));

	/* Periodic dram zqcal enable */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBCALCNF, 0x1000010);

	/* Periodic phy ctrl update enable */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBDFICUPDCNF, 0x504C0001);

	/* Set Auto Refresh */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBRFEN, 0x1);

	/* Periodic-WriteDQ/ReadDQ Training Interval setting */
	phymster_req_interval = periodic_training_interval - 3000;
	clk_count = 1024 - (dbsc5_ddrtbl_getval(priv->DDR_PI_REGSET, PI_LONG_COUNT_MASK, true) * 32);
	ctrl_clk = priv->ddr_mbps / priv->ddr_mbpsdiv / 8;
	reg = phymster_req_interval * ctrl_clk / clk_count;

	dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_INTERVAL, reg);

	/* DRAM access enable */
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBACEN, 0x1);
}

/**
 * dbsc5_pi_training() - Training by PI
 * @dev: DBSC5 device
 *
 * Enable WCK signal training and read gate training. Start PI training.
 * After DFI initialization for all channels is once turned off, turned
 * on all chennels of it. Power down the DRAM device once and then release
 * the power down mode. Perform training in low frequency mode and training
 * in high frequency mode. Wait for the DFI training completion status
 * bit to stand until the time limit. Turn off DFI initialization for all
 * channels. Turn off WTMODE of DFI PHY. Check if CA/CS Training has failed.
 * Check if Wrlvl training is in error. If an error can be confirmed from
 * the check result, the result is returned as a return value. Clear the
 * status register for PI training.
 */
static u32 dbsc5_pi_training(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	const int retry_max = 0x10000;
	u32 ca_training_ng = 0;
	u32 wr_training_ng = 0;
	u32 phytrainingok = 0;
	u32 complete_ng = 0;
	bool frqchg_req;
	u32 ch, reg;
	int retry;
	int ret;

	/* Init start */
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_GATE_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_WRDCM_LVL_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_DFS_INITIALIZATION_SEQ_9, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_DFS_INITIALIZATION_SEQ_10, 0x0);

	/* PI_START */
	dbsc5_ddr_setval_all_ch(dev, PI_START, 0x1);

	r_foreach_vch(dev, ch)
		writel(0x20, regs_dbsc_d + DBSC_DBDFICNT(ch));

	r_foreach_vch(dev, ch)
		writel(0x21, regs_dbsc_d + DBSC_DBDFICNT(ch));

	/* Dummy PDE */
	dbsc5_send_dbcmd2(dev, DBSC_DBCMD_CMD_OPCODE_PD,
			  DBSC_DBCMD_CMD_CHANNEL_ALL,
			  DBSC_DBCMD_CMD_RANK_ALL, 0);

	/* PDX */
	dbsc5_send_dbcmd2(dev, DBSC_DBCMD_CMD_OPCODE_PD,
			  DBSC_DBCMD_CMD_CHANNEL_ALL,
			  DBSC_DBCMD_CMD_RANK_ALL, 1);

	/* Wait init_complete */
	for (retry = 0; retry < retry_max; retry++) {
		frqchg_req = false;
		for (ch = 0; ch < DRAM_CH_CNT; ch++) {
			if (!((~phytrainingok & priv->ddr_phyvalid) & BIT(ch)))
				continue;

			if (!(readl(regs_dbsc_d + DBSC_DBPDSTAT0(ch)) & BIT(0)))
				continue;

			frqchg_req = true;
			break;
		}

		if (frqchg_req) {
			ret = dbsc5_clk_pll3_freq(dev);
			if (ret)
				break;
		} else {
			r_foreach_vch(dev, ch) {
				if (readl(regs_dbsc_d + DBSC_DBDFISTAT(ch)) & BIT(0))
					phytrainingok |= BIT(ch);
			}

			if (phytrainingok == priv->ddr_phyvalid)
				break;
		}
	}

	/*
	 * dbdficnt0:
	 * dfi_dram_clk_disable=0
	 * dfi_frequency = 0
	 * freq_ratio = 10 (4:1)
	 * init_start =0
	 */
	r_foreach_vch(dev, ch)
		writel(0x20, regs_dbsc_d + DBSC_DBDFICNT(ch));

	/* DFI_PHYMSTR_ACK */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBDFIPMSTRCNF, 0x1);

	/* Error check */
	r_foreach_vch(dev, ch) {
		/* CA/CS Training Error Check */
		/* PI_CALVL_ERROR_BIT */
		reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(4);
		/* Error on decrement/increment pass */
		reg |= dbsc5_ddr_getval(dev, ch, PHY_ADR_CALVL_OBS1) & (0x3 << 30);
		/* Start outside of initial search range */
		reg |= dbsc5_ddr_getval(dev, ch, PHY_ADR_CALVL_OBS2) & (0x3 << 24);
		/* CSlvl error */
		reg |= dbsc5_ddr_getval(dev, ch, PHY_CSLVL_OBS1) & (0xF << 28);
		if (reg) {
			ca_training_ng |= BIT(ch);
			printf("%s pi_training_error:1\n", __func__);
		}

		/* Wrlvl Error Check */
		/* PI_WRLVL_ERROR_BIT */
		reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(3);
		/* SLICE0 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_STATUS_OBS) & BIT(12);
		/* SLICE1 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_STATUS_OBS) & BIT(12);
		/* SLICE0 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_ERROR_OBS);
		/* SLICE1 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_ERROR_OBS);
		if (reg) {
			wr_training_ng |= BIT(ch);
			printf("%s pi_training_error:2\n", __func__);
		}
	}

	complete_ng = (wr_training_ng | ca_training_ng);
	if (complete_ng)
		return ~complete_ng;

	/* PI_INT_ACK assert */
	r_foreach_vch(dev, ch) {
		dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, 0xFFFFFFFF);
		dbsc5_ddr_setval(dev, ch, PI_INT_ACK_1, 0x7);
	}

	return phytrainingok;
}

/**
 * dbsc5_write_leveling_adjust() - Write Leveling Cycle Adjust
 * @dev: DBSC5 device
 *
 * Get delay value from the result write leveling of slice 0 and 1.
 * Calculate latency of dfi_wrdata_en / dfi_wrdata / dfi_wrdata_mask
 * signals based on delay values.
 */
static void dbsc5_write_leveling_adjust(struct udevice *dev)
{
	u32 result_hard0, result_hard1;
	u32 avg, avg_frac, avg_cycle;
	u32 ch;

	r_foreach_vch(dev, ch) {
		/* SLICE0 */
		result_hard0 = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_HARD0_DELAY_OBS);
		result_hard1 = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_HARD1_DELAY_OBS);

		avg = result_hard0 + result_hard1;
		if (result_hard0 > result_hard1)
			avg += 0x400;
		avg /= 2;

		avg_frac = avg & 0xFF;
		avg_cycle = (avg >> 8) & 0x3;

		if (avg_cycle == 0x3) {
			dbsc5_ddr_setval_slice(dev, ch, 0, PHY_WRITE_PATH_LAT_DEC, 0x1);
			dbsc5_ddr_setval_slice(dev, ch, 0, PHY_WRITE_PATH_LAT_ADD, 0x0);
		} else {
			dbsc5_ddr_setval_slice(dev, ch, 0, PHY_WRITE_PATH_LAT_DEC, 0x0);
			dbsc5_ddr_setval_slice(dev, ch, 0, PHY_WRITE_PATH_LAT_ADD, avg_cycle);
		}
		dbsc5_ddr_setval_slice(dev, ch, 0, PHY_WRITE_PATH_LAT_FRAC, avg_frac);

		/* SLICE1 */
		result_hard0 = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_HARD0_DELAY_OBS);
		result_hard1 = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_HARD1_DELAY_OBS);

		avg = result_hard0 + result_hard1;
		if (result_hard0 >= result_hard1)
			avg += 0x400;
		avg /= 2;
		avg_frac = avg & 0xFF;
		avg_cycle = (avg >> 8) & 0x3;

		if (avg_cycle == 0x3) {
			dbsc5_ddr_setval_slice(dev, ch, 1, PHY_WRITE_PATH_LAT_DEC, 0x1);
			dbsc5_ddr_setval_slice(dev, ch, 1, PHY_WRITE_PATH_LAT_ADD, 0x0);
		} else {
			dbsc5_ddr_setval_slice(dev, ch, 1, PHY_WRITE_PATH_LAT_DEC, 0x0);
			dbsc5_ddr_setval_slice(dev, ch, 1, PHY_WRITE_PATH_LAT_ADD, avg_cycle);
		}
		dbsc5_ddr_setval_slice(dev, ch, 1, PHY_WRITE_PATH_LAT_FRAC, avg_frac);
	}

	dbsc5_ddr_setval_all_ch_all_slice(dev, SC_PHY_WCK_CALC, 0x1);
}

/**
 * dbsc5_wl_gt_training() - Re-run Write Leveling & Read Gate Training
 * @dev: DBSC5 device
 *
 * Set CA leveling OFF, read gate leveling ON, write gate leveling ON,
 * PI dram wck training ON. Perform PI_DFS configuration. Start PI
 * frequency training in manual mode. Perform training in high-frequency
 * mode. Check for Write leveling Error and Gate leveling Error. If an
 * error is identified, the resulting value is inverted and returned.
 * Clear the PI status register.
 */
static u32 dbsc5_wl_gt_training(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	const int retry_max = 0x10000;
	u32 gt_training_ng = 0;
	u32 wr_training_ng = 0;
	u32 phytrainingok = 0;
	u32 complete_ng = 0;
	int retry, ret;
	u32 ch, reg;

	dbsc5_ddr_setval_all_ch(dev, PI_CALVL_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_GATE_EN_F2, 0x1);

	dbsc5_ddr_setval_all_ch(dev, PI_DFS_ENTRY_SEQ_0, 0x181F0000);
	dbsc5_ddr_setval_all_ch(dev, PI_DFS_INITIALIZATION_SEQ_1, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_TRAIN_ALL_FREQ_REQ, 0x1);

	/* Freq Change High to High*/
	ret = dbsc5_clk_pll3_freq(dev);
	if (ret)
		return ret;

	for (retry = 0; retry < retry_max; retry++) {
		r_foreach_vch(dev, ch)
			if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(0))
				phytrainingok |= BIT(ch);

		if (phytrainingok == priv->ddr_phyvalid)
			break;
	}

	/* Error Check */
	r_foreach_vch(dev, ch) {
		/* Wrlvl Error Check */
		/* PI_WRLVL_ERROR_BIT */
		reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(3);
		/* SLICE0 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_STATUS_OBS) & BIT(12);
		/* SLICE1 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_STATUS_OBS) & BIT(12);
		/* SLICE0 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_ERROR_OBS);
		/* SLICE1 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_ERROR_OBS);
		if (reg) {
			wr_training_ng |= BIT(ch);
			printf("%s wl_gt_training_error:1\n", __func__);
		}

		/* Gtlvl Error Check */
		/* PI_RDLVL_GATE_ERROR_BIT */
		reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(2);
		/* SLICE0 delay setup error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_GTLVL_STATUS_OBS) & (0x3 << 7);
		/* SLICE1 delay setup error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_GTLVL_STATUS_OBS) & (0x3 << 7);
		if (reg) {
			gt_training_ng |= BIT(ch);
			printf("%s wl_gt_training_error:2\n", __func__);
		}
	}

	complete_ng = (wr_training_ng | gt_training_ng);
	if (complete_ng)
		return ~complete_ng;

	/* PI_INT_ACK assert */
	r_foreach_vch(dev, ch) {
		dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, 0xFFFFFFFF);
		dbsc5_ddr_setval(dev, ch, PI_INT_ACK_1, 0x7);
	}

	return phytrainingok;
}

/**
 * dbsc5_pi_int_ack_0_assert() - Training handshake functions
 * @dev: DBSC5 device
 * @bit: Status bit to poll
 *
 * Wait for the status bit specified in the argument to become 1 until the
 * time limit. After checking status bits on all channels, clear the target
 * status bits and returns the result of the check as the return value.
 */
static u32 dbsc5_pi_int_ack_0_assert(struct udevice *dev, u32 bit)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	const int retry_max = 0x10000;
	u32 ch, phytrainingok = 0;
	int retry;

	for (retry = 0; retry < retry_max; retry++) {
		r_foreach_vch(dev, ch)
			if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(bit))
				phytrainingok |= BIT(ch);

		if (phytrainingok == priv->ddr_phyvalid)
			break;
	}

	if (phytrainingok != priv->ddr_phyvalid)
		return phytrainingok;

	r_foreach_vch(dev, ch)
		dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, BIT(bit));

	return phytrainingok;
}

/**
 * dbsc5_write_dca() - Write DCA Training
 * @dev: DBSC5 device
 *
 * Get DCA Training CS0 Flip-0 training results for RANK0.
 * Get DCA Training CS1 Flip-0 training results for RANK0.
 * Calculate DRAMDCA settings from training results and write
 * them to registers. Set DRAM DCA in MR30. Ensure that the
 * training has been successfully completed. Clear CA status
 * to 0.
 */
static void dbsc5_write_dca(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	const int retry_max = 0x10000;
	u32 phytrainingok = 0;
	u32 ch, reg;
	int retry;

	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_DATA_DC_CAL_START, 0x1);

	for (retry = 0; retry < retry_max; retry++) {
		r_foreach_vch(dev, ch) {
			reg = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_DATA_DC_CAL_START) |
			      dbsc5_ddr_getval_slice(dev, ch, 1, PHY_DATA_DC_CAL_START);
			if (!reg)
				phytrainingok |= BIT(ch);
		}

		if (phytrainingok == priv->ddr_phyvalid)
			break;
	}
}

/**
 * dbsc5_dramdca_training() - DRAM DCA Training and Calculations
 * @dev: DBSC5 device
 *
 * Get DCA Training CS0 Flip-0 training results for RANK0.
 * Get DCA Training CS1 Flip-0 training results for RANK0.
 * Calculate DRAMDCA settings from training results and write
 * them to registers. Set DRAM DCA in MR30. Ensure that the
 * training has been successfully completed. Clear CA status
 * to 0.
 */
static u32 dbsc5_dramdca_training(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	const u32 rank = priv->ch_have_this_cs[1] ? 0x3 : 0x1;
	const u32 mr30_conv[16] = {
		0x8, 0x7, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1,
		0x0, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF
	};
	u32 dca_result_l_0[DRAM_CH_CNT][CS_CNT];
	u32 dca_result_u_0[DRAM_CH_CNT][CS_CNT];
	u32 dca_result_l_1[DRAM_CH_CNT][CS_CNT];
	u32 dca_result_u_1[DRAM_CH_CNT][CS_CNT];
	u32 ch, phytrainingok, reg;
	u32 tempu, templ;

	/* Run DRAM DCA Training for Flip-0 */
	dbsc5_ddr_setval_all_ch(dev, PI_DCMLVL_CS_SW, rank);

	/* DRAMDCA go */
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_REQ, 0x1);

	/* PI_INT_ACK assert */
	phytrainingok = dbsc5_pi_int_ack_0_assert(dev, 28);
	if (phytrainingok != priv->ddr_phyvalid)
		return phytrainingok;

	/* Result for DRAMDCA flip-0 */
	r_foreach_vch(dev, ch) {
		reg = dbsc5_ddr_getval(dev, ch, PI_DARRAY3_20_CS0_F2);
		dca_result_u_0[ch][0] = mr30_conv[reg >> 4];
		dca_result_l_0[ch][0] = mr30_conv[reg & 0xF];
		if (!(rank & 0x2))
			continue;

		reg = dbsc5_ddr_getval(dev, ch, PI_DARRAY3_20_CS1_F2);
		dca_result_u_0[ch][1] = mr30_conv[reg >> 4];
		dca_result_l_0[ch][1] = mr30_conv[reg & 0xF];
	}

	/* Run DRAM DCA Training for Flip-1 */
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_FLIP_MASK, 0x1);
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_3, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_4, 0x0);

	/* DRAMDCA go */
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_REQ, 0x1);

	/* PI_INT_ACK assert */
	phytrainingok = dbsc5_pi_int_ack_0_assert(dev, 28);
	if (phytrainingok != priv->ddr_phyvalid)
		return phytrainingok;

	/* Result for DRAMDCA flip-1 */
	r_foreach_vch(dev, ch) {
		reg = dbsc5_ddr_getval(dev, ch, PI_DARRAY3_20_CS0_F2);
		dca_result_u_1[ch][0] = mr30_conv[reg >> 4];
		dca_result_l_1[ch][0] = mr30_conv[reg & 0xF];
		if (!(rank & 0x2))
			continue;

		reg = dbsc5_ddr_getval(dev, ch, PI_DARRAY3_20_CS1_F2);
		dca_result_u_1[ch][1] = mr30_conv[reg >> 4];
		dca_result_l_1[ch][1] = mr30_conv[reg & 0xF];
	}

	/* Calculate and set DRAMDCA value */
	r_foreach_vch(dev, ch) {
		/* CS0 */
		tempu = (dca_result_u_0[ch][0] + dca_result_u_1[ch][0]) / 2;
		templ = (dca_result_l_0[ch][0] + dca_result_l_1[ch][0]) / 2;
		reg = (mr30_conv[tempu] << 4) | mr30_conv[templ];
		dbsc5_ddr_setval(dev, ch, PI_DARRAY3_20_CS0_F2, reg);
		if (!(rank & 0x2))
			continue;

		/* CS1 */
		tempu = (dca_result_u_0[ch][1] + dca_result_u_1[ch][1]) / 2;
		templ = (dca_result_l_0[ch][1] + dca_result_l_1[ch][1]) / 2;
		reg = (mr30_conv[tempu] << 4) | mr30_conv[templ];
		dbsc5_ddr_setval(dev, ch, PI_DARRAY3_20_CS1_F2, reg);
	}

	/* Set DRAMDCA value in MR30 */
	dbsc5_ddr_setval_all_ch(dev, PI_SW_SEQ_0, 0x1A11E14);
	dbsc5_ddr_setval_all_ch(dev, PI_SW_SEQ_1, 0x1F0000);
	dbsc5_ddr_setval_all_ch(dev, PI_SEQ_DEC_SW_CS, rank);
	dbsc5_ddr_setval_all_ch(dev, PI_SW_SEQ_START, 0x1);

	/* PI_INT_ACK assert */
	phytrainingok = dbsc5_pi_int_ack_0_assert(dev, 19);
	if (phytrainingok != priv->ddr_phyvalid)
		return phytrainingok;

	dbsc5_ddr_setval_all_ch(dev, PI_SEQ_DEC_SW_CS, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_FLIP_MASK, 0x2);
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_2, 0x1101FC);
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_3, 0x211A00);
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_4, 0x51500);

	return phytrainingok;
}

/**
 * dbsc5_write_leveling() - Re-run Write Leveling
 * @dev: DBSC5 device
 *
 * CALVL training is set to OFF, WRDCM training is set to OFF, and DRAMDCA
 * training is set to OFF. Set the memory rank for the Write leveling target
 * and start leveling. Wait until leveling is complete.
 *
 * Check for Write leveling errors. If an error is confirmed to have occurred,
 * the result is returned as a return value. Clear the PI status bit.
 */
static u32 dbsc5_write_leveling(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	const u32 rank = priv->ch_have_this_cs[1] ? 0x3 : 0x1;
	const int retry_max = 0x10000;
	u32 wr_training_ng = 0;
	u32 phytrainingok = 0;
	u32 ch, reg;
	int retry;

	dbsc5_ddr_setval_all_ch(dev, PI_CALVL_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_WRDCM_LVL_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_WRLVL_CS_SW, rank);
	dbsc5_ddr_setval_all_ch(dev, PI_WRLVL_REQ, 0x1);

	for (retry = 0; retry < retry_max; retry++) {
		r_foreach_vch(dev, ch)
			if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(29))
				phytrainingok |= BIT(ch);

		if (phytrainingok == priv->ddr_phyvalid)
			break;
	}

	/* Error check */
	r_foreach_vch(dev, ch) {
		/* Wrlvl Error Check */
		/* PI_WRLVL_ERROR_BIT */
		reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(3);
		/* SLICE0 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_STATUS_OBS) & BIT(12);
		/* SLICE1 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_STATUS_OBS) & BIT(12);
		/* SLICE0 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_ERROR_OBS);
		/* SLICE1 wrlvl error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_ERROR_OBS);
		if (reg) {
			wr_training_ng |= BIT(ch);
			printf("%s write_leveling_error:1\n", __func__);
		}
	}

	if (wr_training_ng)
		return ~wr_training_ng;

	/* PI_INT_ACK assert */
	r_foreach_vch(dev, ch) {
		dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, 0xFFFFFFFF);
		dbsc5_ddr_setval(dev, ch, PI_INT_ACK_1, 0x7);
	}

	return phytrainingok;
}

/**
 * dbsc5_manual_write_dca() - Manual Write DCA Training
 * @dev: DBSC5 device
 *
 * Write DCA training according to memory rank.
 */
static void dbsc5_manual_write_dca(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	const u32 rank = priv->ch_have_this_cs[1] ? 0x2 : 0x1;
	u32 phy_slv_dly[DRAM_CH_CNT][CS_CNT][SLICE_CNT];
	u32 phy_slv_dly_avg[DRAM_CH_CNT][SLICE_CNT];
	u32 slv_dly_min[DRAM_CH_CNT][SLICE_CNT];
	u32 slv_dly_max[DRAM_CH_CNT][SLICE_CNT];
	u32 phy_dcc_code_min[DRAM_CH_CNT][SLICE_CNT];
	u32 phy_dcc_code_max[DRAM_CH_CNT][SLICE_CNT];
	u32 phy_dcc_code_mid;
	const int retry_max = 0x10000;
	const u8 ratio_min_div = 0xA;
	const u8 ratio_max_div = 0x2;
	const u8 ratio_min = 0x6;
	const u8 ratio_max = 0x3;
	u32 ch, cs, slice, tmp;
	u32 complete = 0;
	int i, retry;

	r_foreach_vch(dev, ch) {
		for (slice = 0; slice < SLICE_CNT; slice++) {
			phy_dcc_code_min[ch][slice] = 0x7F;
			phy_dcc_code_max[ch][slice] = 0x0;
		}
	}

	for (cs = 0; cs < rank; cs++) {
		dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_PER_CS_TRAINING_INDEX, cs);
		r_foreach_vch(dev, ch) {
			for (slice = 0; slice < SLICE_CNT; slice++) {
				phy_slv_dly[ch][cs][slice] =
					dbsc5_ddr_getval_slice(dev, ch, slice,
							       PHY_CLK_WRDQS_SLAVE_DELAY);
			}
		}
	}

	r_foreach_vch(dev, ch) {
		for (slice = 0; slice < SLICE_CNT; slice++) {
			if (rank == 0x2) {
				/* Calculate average between ranks */
				phy_slv_dly_avg[ch][slice] = (phy_slv_dly[ch][0][slice] +
							      phy_slv_dly[ch][1][slice]) / 2;
			} else {
				phy_slv_dly_avg[ch][slice] = phy_slv_dly[ch][0][slice];
			}
			/* Determine the search range */
			slv_dly_min[ch][slice] = (phy_slv_dly_avg[ch][slice] & 0x07F) * ratio_min / ratio_min_div;
			slv_dly_max[ch][slice] = (phy_slv_dly_avg[ch][slice] & 0x07F) * ratio_max / ratio_max_div;
			if (slv_dly_max[ch][slice] > 0x7F)
				slv_dly_max[ch][slice] = 0x7F;
		}
	}

	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_SLV_DLY_CTRL_GATE_DISABLE, 0x1);

	for (i = 0; i <= 0x7F; i++) {
		r_foreach_vch(dev, ch) {
			for (slice = 0; slice < SLICE_CNT; slice++) {
				if (slv_dly_max[ch][slice] < (slv_dly_min[ch][slice] + i)) {
					complete |= BIT(ch) << (8 * slice);
				} else {
					/* CS0/1 same setting, Need masked write */
					dbsc5_ddr_setval_slice(dev, ch, slice,
							       PHY_CLK_WRDQS_SLAVE_DELAY,
							       slv_dly_min[ch][slice] + i);
					dbsc5_ddr_setval_slice(dev, ch, slice, SC_PHY_WCK_CALC, 0x1);
					dbsc5_ddr_setval(dev, ch, SC_PHY_MANUAL_UPDATE, 0x1);
				}
			}
		}

		if (complete == (priv->ddr_phyvalid | (priv->ddr_phyvalid << 8)))
			break;

		/* Execute write dca */
		r_foreach_vch(dev, ch)
			for (slice = 0; slice < SLICE_CNT; slice++)
				if (!(((complete >> (8 * slice)) >> ch) & 0x1))
					dbsc5_ddr_setval_slice(dev, ch, slice, PHY_DATA_DC_CAL_START, 0x1);

		r_foreach_vch(dev, ch) {
			for (slice = 0; slice < SLICE_CNT; slice++) {
				if (!(((complete >> (8 * slice)) >> ch) & 0x1)) {
					for (retry = 0; retry < retry_max; retry++) {
						tmp = dbsc5_ddr_getval_slice(dev, ch, slice,
									     PHY_DATA_DC_CAL_START);
						if (!tmp)
							break;
					}
				}
			}
		}

		r_foreach_vch(dev, ch) {
			for (slice = 0; slice < SLICE_CNT; slice++) {
				if ((slv_dly_min[ch][slice] + i) > slv_dly_max[ch][slice])
					continue;

				tmp = (dbsc5_ddr_getval_slice(dev, ch, slice, PHY_DATA_DC_DQS_CLK_ADJUST));
				if ((tmp >> 6) == 0x1)
					tmp = 0x0;
				else if ((tmp >> 6) == 0x2)
					tmp = 0x3F;

				if (tmp < phy_dcc_code_min[ch][slice])
					phy_dcc_code_min[ch][slice] = tmp;

				if (phy_dcc_code_max[ch][slice] < tmp)
					phy_dcc_code_max[ch][slice] = tmp;
			}
		}
	}

	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_PER_CS_TRAINING_MULTICAST_EN, 0x0);
	for (cs = 0; cs < rank; cs++) {
		dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_PER_CS_TRAINING_INDEX, cs);
		r_foreach_vch(dev, ch) {
			for (slice = 0; slice < SLICE_CNT; slice++) {
				dbsc5_ddr_setval_slice(dev, ch, slice,
						       PHY_CLK_WRDQS_SLAVE_DELAY,
						       phy_slv_dly[ch][cs][slice]);
				dbsc5_ddr_setval_slice(dev, ch, slice,
						       SC_PHY_WCK_CALC, 0x1);
				dbsc5_ddr_setval(dev, ch, SC_PHY_MANUAL_UPDATE, 0x1);
			}
		}
	}

	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_SLV_DLY_CTRL_GATE_DISABLE, 0x0);

	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_PER_CS_TRAINING_MULTICAST_EN, 0x1);

	r_foreach_vch(dev, ch) {
		for (slice = 0; slice < SLICE_CNT; slice++) {
			phy_dcc_code_mid = (phy_dcc_code_min[ch][slice] +
					    phy_dcc_code_max[ch][slice]) / 2;
			dbsc5_ddr_setval_slice(dev, ch, slice,
					       PHY_DATA_DC_DQS_CLK_ADJUST,
					       phy_dcc_code_mid);
		}
	}
}

/**
 * dbsc5_read_gate_training() - Re-run read gate training by PI
 * @dev: DBSC5 device
 *
 * Write leveling set to OFF, read gate leveling set to ON. Set memory rank
 * for leveling target, turn on read gate leveling. Wait for leveling to be
 * completed until the time limit. Check for errors during gate leveling.
 *
 * If an error is confirmed to have occurred, the result is returned as a
 * return value. Clear the PI status register.
 */
static u32 dbsc5_read_gate_training(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	const u32 rank = priv->ch_have_this_cs[1] ? 0x3 : 0x1;
	const int retry_max = 0x10000;
	u32 gt_training_ng = 0;
	u32 phytrainingok = 0;
	u32 ch, reg;
	int retry;

	dbsc5_ddr_setval_all_ch(dev, PI_WRLVL_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_GATE_EN_F2, 0x1);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_CS_SW, rank);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_GATE_REQ, 0x1);

	for (retry = 0; retry < retry_max; retry++) {
		r_foreach_vch(dev, ch)
			if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(24))
				phytrainingok |= BIT(ch);

		if (phytrainingok == priv->ddr_phyvalid)
			break;
	}

	/* Error Check */
	r_foreach_vch(dev, ch) {
		/* Gtlvl Error Check */
		/* PI_RDLVL_GATE_ERROR_BIT */
		reg = (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(2));
		/* SLICE0 delay setup error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_GTLVL_STATUS_OBS) & (0x3 << 7);
		/* SLICE1 delay setup error */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_GTLVL_STATUS_OBS) & (0x3 << 7);
		if (reg) {
			gt_training_ng |= BIT(ch);
			printf("%s read_gate_training_error\n", __func__);
		}
	}

	if (gt_training_ng)
		return ~gt_training_ng;

	/* PI_INT_ACK assert */
	r_foreach_vch(dev, ch) {
		dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, 0xFFFFFFFF);
		dbsc5_ddr_setval(dev, ch, PI_INT_ACK_1, 0x7);
	}

	return phytrainingok;
}

/**
 * dbsc5_read_vref_training() - Read Data Training with VREF Training
 * @dev: DBSC5 device
 *
 * Set reading leveling to ON and Vref leveling of reading to OFF.
 * Set Vref reading training to OFF. Get start value, end value and
 * number of steps for Vref training. Determine the optimal VREFSEL
 * value while increasing the Vref training setpoint by the starting
 * value+step value.
 */
static u32 dbsc5_read_vref_training(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	const u32 rank = priv->ch_have_this_cs[1] ? 0x3 : 0x1;
	u32 best_dvw_min_byte0, best_dvw_min_byte1;
	u32 dvw_min_byte0_table[DRAM_CH_CNT][128];
	u32 dvw_min_byte1_table[DRAM_CH_CNT][128];
	u32 dvw_min_byte0[DRAM_CH_CNT] = { 0 };
	u32 dvw_min_byte1[DRAM_CH_CNT] = { 0 };
	u32 best_lower_vref, best_upper_vref;
	u32 best_vref_byte0, best_vref_byte1;
	u32 vref_start, vref_stop, vref_step;
	u32 best_vref_byte0_index = 0;
	u32 best_vref_byte1_index = 0;
	const int retry_max = 0x10000;
	u32 win_byte0, win_byte1;
	u32 phytrainingok = 0;
	u32 vref_stop_index;
	u32 temple, tempte;
	u32 best_thrshld;
	u32 vref_outlier;
	u32 outlier_cnt;
	u32 curr_rank;
	int i, retry;
	u32 obs_sel;
	u32 ch, reg;

	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_EN_F2, 0x3);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_VREF_EN_F0, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_VREF_EN_F1, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_VREF_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_VREF_TRAINING_CTRL, 0x0);

	/* ch0 vref_point */
	vref_start = dbsc5_ddr_getval(dev, 0, PHY_VREF_INITIAL_START_POINT);
	vref_stop = dbsc5_ddr_getval(dev, 0, PHY_VREF_INITIAL_STOP_POINT);
	vref_step = dbsc5_ddr_getval(dev, 0, PHY_VREF_INITIAL_STEPSIZE);
	vref_stop_index = (vref_stop - vref_start) / vref_step;

	if (vref_stop_index > 0x80)
		return 0;

	for (i = 0; i <= vref_stop_index; i++) {
		r_foreach_vch(dev, ch) {
			reg = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_PAD_VREF_CTRL_DQ);
			reg &= 0xF << 10;
			dbsc5_ddr_setval_slice(dev, ch, 0, PHY_PAD_VREF_CTRL_DQ,
					       reg | BIT(9) | (vref_start + (vref_step * i)));
			reg = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_PAD_VREF_CTRL_DQ);
			reg &= 0xF << 10;
			dbsc5_ddr_setval_slice(dev, ch, 1, PHY_PAD_VREF_CTRL_DQ,
					       reg | BIT(9) | (vref_start + (vref_step * i)));
		}

		for (curr_rank = 0; curr_rank < rank; curr_rank++) {
			/* All ch Read Training Start */
			dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_CS_SW, BIT(curr_rank));
			dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_REQ, 0x1);

			phytrainingok = 0;
			for (retry = 0; retry < retry_max; retry++) {
				r_foreach_vch(dev, ch)
					if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(25))
						phytrainingok |= BIT(ch);

				if (phytrainingok == priv->ddr_phyvalid)
					break;
			}

			/* Read Training End */
			dbsc5_ddr_setval_all_ch(dev, PI_INT_ACK_0, BIT(25));

			r_foreach_vch(dev, ch) {
				/* minimum Data Valid Window for each VREF */
				dvw_min_byte0[ch] = 0xFFFFFFFF;
				dvw_min_byte1[ch] = 0xFFFFFFFF;
				for (obs_sel = 0x0; obs_sel < 0x19; obs_sel++) {
					if (!((obs_sel < 0x11) || (obs_sel == 0x18)))
						continue;

					dbsc5_ddr_setval_slice(dev, ch, 0,
							       PHY_RDLVL_RDDQS_DQ_OBS_SELECT,
							       obs_sel);
					dbsc5_ddr_setval_slice(dev, ch, 1,
							       PHY_RDLVL_RDDQS_DQ_OBS_SELECT,
							       obs_sel);

					temple = dbsc5_ddr_getval_slice(dev, ch, 0,
									PHY_RDLVL_RDDQS_DQ_LE_DLY_OBS);
					tempte = dbsc5_ddr_getval_slice(dev, ch, 0,
									PHY_RDLVL_RDDQS_DQ_TE_DLY_OBS);
					if (tempte > temple)
						win_byte0 = tempte - temple;
					else
						win_byte0 = 0;

					temple = dbsc5_ddr_getval_slice(dev, ch, 1,
									PHY_RDLVL_RDDQS_DQ_LE_DLY_OBS);
					tempte = dbsc5_ddr_getval_slice(dev, ch, 1,
									PHY_RDLVL_RDDQS_DQ_TE_DLY_OBS);
					if (tempte > temple)
						win_byte1 = tempte - temple;
					else
						win_byte1 = 0;

					if (dvw_min_byte0[ch] > win_byte0)
						dvw_min_byte0[ch] = win_byte0;

					if (dvw_min_byte1[ch] > win_byte1)
						dvw_min_byte1[ch] = win_byte1;
				}
			}
		}

		r_foreach_vch(dev, ch) {
			dvw_min_byte0_table[ch][i] = dvw_min_byte0[ch];
			dvw_min_byte1_table[ch][i] = dvw_min_byte1[ch];
		}
	}

	r_foreach_vch(dev, ch) {
		/* Search best VREF byte0 */
		best_vref_byte0 = vref_start;
		best_vref_byte0_index = 0;
		best_dvw_min_byte0 = dvw_min_byte0_table[ch][0];

		for (i = 0; i <= vref_stop_index; i++) {
			if (best_dvw_min_byte0 >= dvw_min_byte0_table[ch][i])
				continue;

			best_vref_byte0 = vref_start + (vref_step * i);
			best_vref_byte0_index = i;
			best_dvw_min_byte0 = dvw_min_byte0_table[ch][i];
		}

		/* Search best_lower VREF byte0 */
		reg = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_RDLVL_DLY_STEP);
		if (reg == 0)
			reg = 1;
		best_thrshld = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_RDLVL_BEST_THRSHLD) * reg;

		vref_outlier = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_RDLVL_VREF_OUTLIER);
		best_lower_vref = best_vref_byte0;
		outlier_cnt = vref_outlier;
		for (i = best_vref_byte0_index; i >= 0; i--) {
			if (dvw_min_byte0_table[ch][i] <= 0)
				break;

			if (dvw_min_byte0_table[ch][i] >= (best_dvw_min_byte0 - best_thrshld)) {
				best_lower_vref = vref_start + (vref_step * i);
			} else {
				if (outlier_cnt > 0)
					outlier_cnt--;
				else
					break;
			}

			if (i == 0)
				break;
		}

		/* Search best_upper VREF byte0 */
		vref_outlier = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_RDLVL_VREF_OUTLIER);
		best_upper_vref = best_vref_byte0;
		outlier_cnt = vref_outlier;
		for (i = best_vref_byte0_index; i <= vref_stop_index; i++) {
			if (dvw_min_byte0_table[ch][i] <= 0)
				break;

			if (dvw_min_byte0_table[ch][i] >= (best_dvw_min_byte0 - best_thrshld)) {
				best_upper_vref = vref_start + (vref_step * i);
			} else {
				if (outlier_cnt > 0)
					outlier_cnt--;
				else
					break;
			}
		}

		/*  Calculate center of best vref range byte0 */
		best_vref_byte0 = (best_lower_vref + best_upper_vref) / 2;

		/* Search best VREF byte1 */
		best_vref_byte1 = vref_start;
		best_vref_byte1_index = 0;
		best_dvw_min_byte1 = dvw_min_byte1_table[ch][0];
		for (i = 0; i <= vref_stop_index; i++) {
			if (best_dvw_min_byte1 >= dvw_min_byte1_table[ch][i])
				continue;

			best_vref_byte1 = vref_start + (vref_step * i);
			best_vref_byte1_index = i;
			best_dvw_min_byte1 = dvw_min_byte1_table[ch][i];
		}

		/* Search best_lower VREF byte1 */
		reg = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_RDLVL_DLY_STEP);
		if (reg == 0)
			reg = 1;
		best_thrshld = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_RDLVL_BEST_THRSHLD) * reg;

		vref_outlier = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_RDLVL_VREF_OUTLIER);
		best_lower_vref = best_vref_byte1;
		outlier_cnt = vref_outlier;
		for (i = best_vref_byte1_index; i >= 0; i--) {
			if (dvw_min_byte1_table[ch][i] <= 0)
				break;

			if (dvw_min_byte1_table[ch][i] >= (best_dvw_min_byte1 - best_thrshld)) {
				best_lower_vref = vref_start + (vref_step * i);
			} else {
				if (outlier_cnt > 0)
					outlier_cnt--;
				else
					break;
			}

			if (i == 0)
				break;
		}

		/* Search best_upper VREF byte1 */
		vref_outlier = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_RDLVL_VREF_OUTLIER);
		best_upper_vref = best_vref_byte1;
		outlier_cnt = vref_outlier;
		for (i = best_vref_byte1_index; i <= vref_stop_index; i++) {
			if (dvw_min_byte1_table[ch][i] <= 0)
				break;

			if (dvw_min_byte1_table[ch][i] >= (best_dvw_min_byte1 - best_thrshld)) {
				best_upper_vref = vref_start + (vref_step * i);
			} else {
				if (outlier_cnt > 0)
					outlier_cnt--;
				else
					break;
			}
		}

		/*  Calculate center of best vref range byte1 */
		best_vref_byte1 = (best_lower_vref + best_upper_vref) / 2;

		reg = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_PAD_VREF_CTRL_DQ);
		reg &= 0xF << 10;
		dbsc5_ddr_setval_slice(dev, ch, 0, PHY_PAD_VREF_CTRL_DQ,
				       reg | BIT(9) | best_vref_byte0);
		reg = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_PAD_VREF_CTRL_DQ);
		reg &= 0xF << 10;
		dbsc5_ddr_setval_slice(dev, ch, 1, PHY_PAD_VREF_CTRL_DQ,
				       reg | BIT(9) | best_vref_byte1);
	}

	return phytrainingok;
}

/**
 * dbsc5_read_write_training() - Read Data & RDDQ Training with best VREF & Write DQ VREF Training
 * @dev: DBSC5 device
 *
 * Set read DQS/RDQS slave delay setting to 0. Write leveling set to OFF,
 * read gate leveling set to OFF. Turn on read and write leveling. Start
 * frequency training. Training in high-frequency mode. Wait until training
 * is complete. Check for errors in write dq leveling and read leveling.

 * If an error is confirmed to have occurred, return the inverted result
 * value. Clear the PI status register.
 */
static u32 dbsc5_read_write_training(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	const int retry_max = 0x10000;
	u32 wdq_training_ng = 0;
	u32 rd_training_ng = 0;
	u32 phytrainingok = 0;
	u32 complete_ng = 0;
	int retry, ret;
	u32 ch, reg;

	/* RDDQ_SLAVE_DELAY Set 0x0050 -> 0x0000 */
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ0_SLAVE_DELAY, 0x0);
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ1_SLAVE_DELAY, 0x0);
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ2_SLAVE_DELAY, 0x0);
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ3_SLAVE_DELAY, 0x0);
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ4_SLAVE_DELAY, 0x0);
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ5_SLAVE_DELAY, 0x0);
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ6_SLAVE_DELAY, 0x0);
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ7_SLAVE_DELAY, 0x0);
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDM_SLAVE_DELAY, 0x0);

	dbsc5_ddr_setval_all_ch(dev, PI_WRLVL_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_GATE_EN_F2, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_EN_F2, 0x3);
	dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_EN_F2, 0x3);

	dbsc5_ddr_setval_all_ch(dev, PI_TRAIN_ALL_FREQ_REQ, 0x1);

	/* Freq Change High to High*/
	ret = dbsc5_clk_pll3_freq(dev);
	if (ret)
		return ret;

	for (retry = 0; retry < retry_max; retry++) {
		r_foreach_vch(dev, ch)
			if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(0))
				phytrainingok |= BIT(ch);

		if (phytrainingok == priv->ddr_phyvalid)
			break;
	}

	/* Error Check */
	r_foreach_vch(dev, ch) {
		/* Rdlvl Error Check */
		/* PI_RDLVL_ERROR_BIT */
		reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(1);
		if (reg) {
			rd_training_ng |= BIT(ch);
			printf("%s read_write_training_error:1\n", __func__);
		}

		/* Wdqlvl Error Check */
		/* PI_WDQLVL_ERROR_BIT */
		reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(5);
		/* SLICE0 wdqlvl_fail_dqZ */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WDQLVL_STATUS_OBS) & (0x1FF << 18);
		/* SLICE1 wdqlvl_fail_dqZ */
		reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WDQLVL_STATUS_OBS) & (0x1FF << 18);
		if (reg) {
			wdq_training_ng |= BIT(ch);
			printf("%s read_write_training_error:2\n", __func__);
		}
	}

	complete_ng = wdq_training_ng | rd_training_ng;
	if (complete_ng)
		return ~complete_ng;

	/* PI_INT_ACK assert */
	r_foreach_vch(dev, ch) {
		dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, 0xFFFFFFFF);
		dbsc5_ddr_setval(dev, ch, PI_INT_ACK_1, 0x7);
	}

	return phytrainingok;
}

/**
 * dbsc5_read_training() - Correct RDDQ Training result & Re-Run Read Data Training
 * @dev: DBSC5 device
 *
 * Set the Read DQ correction value and its upper limit from the board
 * settings. Check DDR memory ranks. Add the offset value to the current
 * Read DQ value and write it to the register. Write the setting value
 * to PI_RDLVL_TRAIN_SEQ_x. Start the Read training. PI_INT_ACK assert.
 * Execute the Rdlvl Error Check. Confirm that training has been successfully
 * completed. Return the result of the confirmation as the return value.
 */
static u32 dbsc5_read_training(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	const u32 rank = priv->ch_have_this_cs[1] ? 0x3 : 0x1;
	const u32 rddq_delay_offset_ps = 0x19;
	const u32 rddq_delay_max_ps = 0x67;
	const u32 rddq_delay_addr[] = {
		PHY_RDDQ0_SLAVE_DELAY, PHY_RDDQ1_SLAVE_DELAY, PHY_RDDQ2_SLAVE_DELAY,
		PHY_RDDQ3_SLAVE_DELAY, PHY_RDDQ4_SLAVE_DELAY, PHY_RDDQ5_SLAVE_DELAY,
		PHY_RDDQ6_SLAVE_DELAY, PHY_RDDQ7_SLAVE_DELAY, PHY_RDDM_SLAVE_DELAY
	};
	const u32 rddq_delay_offset = rddq_delay_offset_ps * priv->ddr_mbps * 256 /
				      (priv->ddr_mbpsdiv * 2 * 1000000);
	const u32 rddq_delay_max = rddq_delay_max_ps * priv->ddr_mbps * 256 /
				   (priv->ddr_mbpsdiv * 2 * 1000000);
	u32 rd_training_ng = 0;
	u32 ch, reg, slice;
	u32 phytrainingok;
	int i;

	r_foreach_vch(dev, ch) {
		for (slice = 0; slice < SLICE_CNT; slice++) {
			for (i = 0; i < 9; i++) {
				reg = dbsc5_ddr_getval_slice(dev, ch, slice,
							     rddq_delay_addr[i]) +
							     rddq_delay_offset;
				if (reg > rddq_delay_max)
					reg = rddq_delay_max;
				dbsc5_ddr_setval_slice(dev, ch, slice, rddq_delay_addr[i], reg);
			}
		}
	}

	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_TRAIN_SEQ_1, 0x89080);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_TRAIN_SEQ_2, 0x811C0);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_TRAIN_SEQ_3, 0x40811C0);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_TRAIN_SEQ_4, 0x2000000);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_TRAIN_SEQ_5, 0x0);
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_CS_SW, rank);

	/* Read training go */
	dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_REQ, 0x1);

	/* PI_INT_ACK assert */
	phytrainingok = dbsc5_pi_int_ack_0_assert(dev, 25);
	if (phytrainingok != priv->ddr_phyvalid)
		return phytrainingok;

	/* Error Check */
	r_foreach_vch(dev, ch) {
		/* Rdlvl Error Check */
		/* PI_RDLVL_ERROR_BIT */
		reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(1);
		if (reg) {
			rd_training_ng |= BIT(ch);
			printf("%s read_training_error\n", __func__);
		}
	}

	if (rd_training_ng)
		return ~rd_training_ng;

	return phytrainingok;
}

/**
 * dbsc5_ddr_register_mr28_set() - DDR mode register MR28 set
 * @dev: DBSC5 device
 *
 * Set the mode register 28 of the SDRAM.
 * ZQ Mode: Command-Based ZQ Calibration
 * ZQ interval: Background Cal Interval < 64ms
 */
static void dbsc5_ddr_register_mr28_set(struct udevice *dev)
{
	dbsc5_send_dbcmd2(dev, DBSC_DBCMD_CMD_OPCODE_MRW,
			  DBSC_DBCMD_CMD_CHANNEL_ALL,
			  DBSC_DBCMD_CMD_RANK_ALL, (28 << 8) | 0x24);
}

/**
 * dbsc5_ddr_register_mr27_mr57_read() - DDR mode register MR27/MR57 read
 * @dev: DBSC5 device
 *
 * Set the mode register 27 and 57 of the SDRAM.
 */
static void dbsc5_ddr_register_mr27_mr57_read(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);

	if (!priv->dbsc5_board_config->bdcfg_rfm_chk)
		return;

	/* MR27 rank0 */
	dbsc5_send_dbcmd2(dev, DBSC_DBCMD_CMD_OPCODE_MRR,
			  DBSC_DBCMD_CMD_CHANNEL_ALL, 0, 27 << 8);
	/* MR57 rank0 */
	dbsc5_send_dbcmd2(dev, DBSC_DBCMD_CMD_OPCODE_MRR,
			  DBSC_DBCMD_CMD_CHANNEL_ALL, 0, 57 << 8);

	if (!priv->ch_have_this_cs[1])
		return;

	/* MR27 rank1 */
	dbsc5_send_dbcmd2(dev, DBSC_DBCMD_CMD_OPCODE_MRR,
			  DBSC_DBCMD_CMD_CHANNEL_ALL, 1, 27 << 8);
	/* MR57 rank1 */
	dbsc5_send_dbcmd2(dev, DBSC_DBCMD_CMD_OPCODE_MRR,
			  DBSC_DBCMD_CMD_CHANNEL_ALL, 1, 57 << 8);
}

/**
 * dbsc5_init_ddr() - Initialize DDR
 * @dev: DBSC5 device
 *
 * Status monitor and perform reset and software reset for DDR.
 * Disable DDRPHY software reset. Unprotect the DDRPHY register.
 * Perform pre-setting of DBSC registers. Configure the ddrphy
 * registers. Process ddr backup. Set DBSC registers.
 *
 * Initialize DFI and perform PI training. Setup DDR mode registers
 * pre-traning. Adjust number of write leveling cycles. Perform PI
 * training in manual mode. Perform DRAM DCA training. Perform write
 * leveling. Execute phydca training. Execute read gate training.
 *
 * Perform Vref training on read gate. Read DQ Write DQ Execute.
 * Frequency selection change (F1->F2). Disable the FREQ_SEL_MULTICAST &
 * PER_CS_TRAINING_MULTICAST. Start setting DDR mode registers. Set DBSC
 * registers after training is completed. Set write protection for PHY
 * registers.
 */
static u32 dbsc5_init_ddr(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	u32 phytrainingok;
	u32 ch, val;
	int ret;

	/* PLL3 initialization setting */
	/* Reset Status Monitor clear */
	dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_FSRCHKCLRR4, 0x600);
	/* Reset Status Monitor set */
	dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_FSRCHKSETR4, 0x600);
	/* ddrphy soft reset assert */
	dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_SRCR4, readl(priv->cpg_regs + CPG_SRCR4) | 0x600);
	/* Wait reset FB */
	ret = readl_poll_timeout(priv->cpg_regs + CPG_FSRCHKRA4, val, ((val & 0x600) == 0), 1000000);
	if (ret < 0) {
		printf("%s CPG_FSRCHKRA4 Wait reset FB timeout\n", __func__);
		hang();
	}
	/* Reset Status Monitor clear */
	dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_FSRCHKCLRR4, 0x600);

	/* Initialize PLL3 setting */
	dbsc5_clk_pll3_control(dev, PLL3_HIGH_FREQUENCY_MODE_LOAD_REGISTER);

	/* DDRPHY soft reset negate */
	dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_SRSTCLR4, 0x600);
	ret = readl_poll_timeout(priv->cpg_regs + CPG_SRCR4, val, ((val & 0x600) == 0), 1000000);
	if (ret < 0) {
		printf("%s CPG_SRCR4 DDRPHY soft reset negate timeout\n", __func__);
		hang();
	}

	/* Unlock PHY */
	/* Unlock DDRPHY register */
	r_foreach_vch(dev, ch)
		writel(0xA55A, regs_dbsc_d + DBSC_DBPDLK(ch));

	/* DBSC register pre-setting */
	dbsc5_dbsc_regset_pre(dev);

	/* Load DDRPHY registers */
	dbsc5_ddrtbl_calc(priv);
	dbsc5_ddrtbl_load(dev);

	/* Configure ddrphy registers */
	dbsc5_ddr_config(dev);

	/* DDR backupmode end */

	/* DBSC register set */
	dbsc5_dbsc_regset(dev);

	/* Frequency selection change (F1->F2) */
	dbsc5_ddr_setval_all_ch(dev, PHY_FREQ_SEL_INDEX, 0x1);
	dbsc5_ddr_setval_all_ch(dev, PHY_FREQ_SEL_MULTICAST_EN, 0x0);

	/* dfi_init_start (start ddrphy) & execute pi_training */
	phytrainingok = dbsc5_pi_training(dev);
	if (priv->ddr_phyvalid != phytrainingok) {
		printf("%s init_ddr_error:1\n", __func__);
		return phytrainingok;
	}

	/* Write leveling cycle adjust */
	dbsc5_write_leveling_adjust(dev);

	/* Execute write leveling & read gate training */
	phytrainingok = dbsc5_wl_gt_training(dev);
	if (priv->ddr_phyvalid != phytrainingok) {
		printf("%s init_ddr_error:2\n", __func__);
		return phytrainingok;
	}

	/* Execute write dca training */
	dbsc5_write_dca(dev);

	/* Execute dram dca training */
	phytrainingok = dbsc5_dramdca_training(dev);

	if (priv->ddr_phyvalid != phytrainingok) {
		printf("%s init_ddr_error:3\n", __func__);
		return phytrainingok;
	}

	/* Execute write leveling */
	phytrainingok = dbsc5_write_leveling(dev);

	if (priv->ddr_phyvalid != phytrainingok) {
		printf("%s init_ddr_error:4\n", __func__);
		return phytrainingok;
	}

	/* Execute manual write dca training */
	dbsc5_manual_write_dca(dev);

	/* Execute read gate training */
	phytrainingok = dbsc5_read_gate_training(dev);

	if (priv->ddr_phyvalid != phytrainingok) {
		printf("%s init_ddr_error:5\n", __func__);
		return phytrainingok;
	}

	/* Execute read vref training */
	phytrainingok = dbsc5_read_vref_training(dev);

	if (priv->ddr_phyvalid != phytrainingok) {
		printf("%s init_ddr_error:6\n", __func__);
		return phytrainingok;
	}

	/* Execute read dq & write dq training with best vref */
	phytrainingok = dbsc5_read_write_training(dev);
	if (priv->ddr_phyvalid != phytrainingok) {
		printf("%s init_ddr_error:7\n", __func__);
		return phytrainingok;
	}

	/* correct rddq training result & Execute read dq training */
	phytrainingok = dbsc5_read_training(dev);

	if (priv->ddr_phyvalid != phytrainingok) {
		printf("%s init_ddr_error:8\n", __func__);
		return phytrainingok;
	}

	/* PER_CS_TRAINING_MULTICAST SET (disable) */
	dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_PER_CS_TRAINING_MULTICAST_EN, 0x0);

	/* setup DDR mode registers */
	/* MRS */
	dbsc5_ddr_register_mr28_set(dev);

	/* MRR */
	dbsc5_ddr_register_mr27_mr57_read(dev);

	/* training complete, setup DBSC */
	dbsc5_dbsc_regset_post(dev);

	/* Lock PHY */
	/* Lock DDRPHY register */
	r_foreach_vch(dev, ch)
		writel(0x0, regs_dbsc_d + DBSC_DBPDLK(ch));

	return phytrainingok;
}

/**
 * dbsc5_get_board_data() - Obtain board specific DRAM configuration
 * @dev: DBSC5 device
 * @modemr0: MODEMR0 register content
 *
 * Return board specific DRAM configuration structure pointer.
 */
__weak const struct renesas_dbsc5_board_config *
dbsc5_get_board_data(struct udevice *dev, const u32 modemr0)
{
	return &renesas_v4h_dbsc5_board_config;
}

/**
 * renesas_dbsc5_dram_probe() - DDR Initialize entry
 * @dev: DBSC5 device
 *
 * Remove write protection on DBSC register. Read DDR configuration
 * information from driver data. Calculate board clock frequency and
 * operating frequency from DDR configuration information. Call the
 * main function of DDR initialization. Perform DBSC write protection
 * after initialization is complete.
 */
static int renesas_dbsc5_dram_probe(struct udevice *dev)
{
#define RST_MODEMR0			0x0
#define RST_MODEMR1			0x4
#define OTP_MONITOR17			0x1144
	struct renesas_dbsc5_data *data = (struct renesas_dbsc5_data *)dev_get_driver_data(dev);
	ofnode cnode = ofnode_by_compatible(ofnode_null(), data->clock_node);
	ofnode rnode = ofnode_by_compatible(ofnode_null(), data->reset_node);
	ofnode onode = ofnode_by_compatible(ofnode_null(), data->otp_node);
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
	void __iomem *regs_dbsc_a = priv->regs + DBSC5_DBSC_A_OFFSET;
	void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
	phys_addr_t rregs = ofnode_get_addr(rnode);
	const u32 modemr0 = readl(rregs + RST_MODEMR0);
	const u32 modemr1 = readl(rregs + RST_MODEMR1);
	phys_addr_t oregs = ofnode_get_addr(onode);
	const u32 otpmon17 = readl(oregs + OTP_MONITOR17);
	u32 breg, reg, md, sscg, product;
	u32 ch, cs;

	/* Get board data */
	priv->dbsc5_board_config = dbsc5_get_board_data(dev, modemr0);
	priv->ddr_phyvalid = (u32)(priv->dbsc5_board_config->bdcfg_phyvalid);
	priv->max_density = 0;
	priv->cpg_regs = (void __iomem *)ofnode_get_addr(cnode);

	for (cs = 0; cs < CS_CNT; cs++)
		priv->ch_have_this_cs[cs] = 0;

	r_foreach_ech(ch)
		for (cs = 0; cs < CS_CNT; cs++)
			priv->ddr_density[ch][cs] = 0xFF;

	r_foreach_vch(dev, ch) {
		for (cs = 0; cs < CS_CNT; cs++) {
			priv->ddr_density[ch][cs] = priv->dbsc5_board_config->ch[ch].bdcfg_ddr_density[cs];

			if (priv->ddr_density[ch][cs] == 0xFF)
				continue;

			if (priv->ddr_density[ch][cs] > priv->max_density)
				priv->max_density = priv->ddr_density[ch][cs];

			priv->ch_have_this_cs[cs] |= BIT(ch);
		}
	}

	/* Decode board clock frequency from MD[14:13] pins */
	priv->brd_clkdiv = 3;

	breg = (modemr0 >> 13) & 0x3;
	if (breg == 0) {
		priv->brd_clk = 50;	/* 16.66 MHz */
		priv->bus_clk = priv->brd_clk * 0x18;
		priv->bus_clkdiv = priv->brd_clkdiv;
	} else if (breg == 1) {
		priv->brd_clk = 60;	/* 20 MHz */
		priv->bus_clk = priv->brd_clk * 0x14;
		priv->bus_clkdiv = priv->brd_clkdiv;
	} else if (breg == 3) {
		priv->brd_clk = 100;	/* 33.33 MHz */
		priv->bus_clk = priv->brd_clk * 0x18;
		priv->bus_clkdiv = priv->brd_clkdiv * 2;
	} else {
		printf("MD[14:13] setting 0x%x not supported!", breg);
		hang();
	}

	priv->brd_clkdiva = !!(modemr0 & BIT(14));	/* MD14 */

	/* Decode DDR operating frequency from MD[37:36,19,17] pins */
	md = ((modemr0 & BIT(19)) >> 18) | ((modemr0 & BIT(17)) >> 17);
	product = otpmon17 & 0xff;
	sscg = (modemr1 >> 4) & 0x03;
	if (sscg == 2) {
		printf("MD[37:36] setting 0x%x not supported!", sscg);
		hang();
	}

	if (product == 0x2) {			/* V4H-3 */
		priv->ddr_mbps = 4800;
		priv->ddr_mbpsdiv = 1;
	} else if (product == 0x1) {		/* V4H-5 */
		if (md == 3)
			priv->ddr_mbps = 4800;
		else
			priv->ddr_mbps = 5000;
		priv->ddr_mbpsdiv = 1;
	} else {				/* V4H-7 */
		if (md == 0) {
			if (sscg == 0) {
				priv->ddr_mbps = 6400;
				priv->ddr_mbpsdiv = 1;
			} else {
				priv->ddr_mbps = 19000;
				priv->ddr_mbpsdiv = 3;
			}
		} else if (md == 1) {
			priv->ddr_mbps = 6000;
			priv->ddr_mbpsdiv = 1;
		} else if (md == 2) {
			priv->ddr_mbps = 5500;
			priv->ddr_mbpsdiv = 1;
		} else if (md == 3) {
			priv->ddr_mbps = 4800;
			priv->ddr_mbpsdiv = 1;
		}
	}

	priv->ddr_mul = CLK_DIV(priv->ddr_mbps, priv->ddr_mbpsdiv * 2,
				priv->brd_clk, priv->brd_clkdiv * (priv->brd_clkdiva + 1));
	priv->ddr_mul_low = CLK_DIV(6400, 2, priv->brd_clk,
				    priv->brd_clkdiv * (priv->brd_clkdiva + 1));

	priv->ddr_mul_reg = priv->ddr_mul_low;
	if (sscg != 0)
		priv->ddr_mul_reg -= 2;

	priv->ddr_mul_nf = ((8 * priv->ddr_mbps * priv->brd_clkdiv * (priv->brd_clkdiva + 1)) /
		      (priv->ddr_mbpsdiv * priv->brd_clk * 2)) - (8 * (priv->ddr_mul / 2) * 2);

	/* Adjust tccd */
	priv->ddr_tccd = 2;

	/* Initialize DDR */
	dbsc5_reg_write(regs_dbsc_d + DBSC_DBSYSCNT0, 0x1234);
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBSYSCNT0A, 0x1234);

	reg = dbsc5_init_ddr(dev);

	dbsc5_reg_write(regs_dbsc_d + DBSC_DBSYSCNT0, 0x0);
	dbsc5_reg_write(regs_dbsc_a + DBSC_DBSYSCNT0A, 0x0);

	return reg != priv->ddr_phyvalid;
}

/**
 * renesas_dbsc5_dram_of_to_plat() - Convert OF data to plat data
 * @dev: DBSC5 device
 *
 * Extract DBSC5 address from DT and store it in driver data.
 */
static int renesas_dbsc5_dram_of_to_plat(struct udevice *dev)
{
	struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);

	priv->regs = dev_read_addr_ptr(dev);
	if (!priv->regs)
		return -EINVAL;

	return 0;
}

/**
 * renesas_dbsc5_dram_get_info() - Return RAM size
 * @dev: DBSC5 device
 * @info: Output RAM info
 *
 * Return size of the RAM managed by this RAM driver.
 */
static int renesas_dbsc5_dram_get_info(struct udevice *dev,
				       struct ram_info *info)
{
	info->base = 0x40000000;
	info->size = 0;

	return 0;
}

static const struct ram_ops renesas_dbsc5_dram_ops = {
	.get_info = renesas_dbsc5_dram_get_info,
};

U_BOOT_DRIVER(renesas_dbsc5_dram) = {
	.name		= "dbsc5_dram",
	.id		= UCLASS_RAM,
	.of_to_plat	= renesas_dbsc5_dram_of_to_plat,
	.ops		= &renesas_dbsc5_dram_ops,
	.probe		= renesas_dbsc5_dram_probe,
	.priv_auto	= sizeof(struct renesas_dbsc5_dram_priv),
};