summaryrefslogtreecommitdiff
path: root/freertos/Source/include/semphr.h
diff options
context:
space:
mode:
authorDominik Sliwa <dominik.sliwa@toradex.com>2018-10-30 16:31:29 +0100
committerDominik Sliwa <dominik.sliwa@toradex.com>2018-10-31 11:54:38 +0100
commit56e86c626df3dbf74c1021210636a7c5d92a49ce (patch)
tree54ba9581ad14d838d8926e4e6d673befad1f932c /freertos/Source/include/semphr.h
parent4dfc5493fec8f6290457446b0478695b153da60a (diff)
Signed-off-by: Dominik Sliwa <dominik.sliwa@toradex.com>
Diffstat (limited to 'freertos/Source/include/semphr.h')
-rw-r--r--freertos/Source/include/semphr.h1171
1 files changed, 0 insertions, 1171 deletions
diff --git a/freertos/Source/include/semphr.h b/freertos/Source/include/semphr.h
deleted file mode 100644
index a674b02..0000000
--- a/freertos/Source/include/semphr.h
+++ /dev/null
@@ -1,1171 +0,0 @@
-/*
- FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
-
-#ifndef SEMAPHORE_H
-#define SEMAPHORE_H
-
-#ifndef INC_FREERTOS_H
- #error "include FreeRTOS.h" must appear in source files before "include semphr.h"
-#endif
-
-#include "queue.h"
-
-typedef QueueHandle_t SemaphoreHandle_t;
-
-#define semBINARY_SEMAPHORE_QUEUE_LENGTH ( ( uint8_t ) 1U )
-#define semSEMAPHORE_QUEUE_ITEM_LENGTH ( ( uint8_t ) 0U )
-#define semGIVE_BLOCK_TIME ( ( TickType_t ) 0U )
-
-
-/**
- * semphr. h
- * <pre>vSemaphoreCreateBinary( SemaphoreHandle_t xSemaphore )</pre>
- *
- * In many usage scenarios it is faster and more memory efficient to use a
- * direct to task notification in place of a binary semaphore!
- * http://www.freertos.org/RTOS-task-notifications.html
- *
- * This old vSemaphoreCreateBinary() macro is now deprecated in favour of the
- * xSemaphoreCreateBinary() function. Note that binary semaphores created using
- * the vSemaphoreCreateBinary() macro are created in a state such that the
- * first call to 'take' the semaphore would pass, whereas binary semaphores
- * created using xSemaphoreCreateBinary() are created in a state such that the
- * the semaphore must first be 'given' before it can be 'taken'.
- *
- * <i>Macro</i> that implements a semaphore by using the existing queue mechanism.
- * The queue length is 1 as this is a binary semaphore. The data size is 0
- * as we don't want to actually store any data - we just want to know if the
- * queue is empty or full.
- *
- * This type of semaphore can be used for pure synchronisation between tasks or
- * between an interrupt and a task. The semaphore need not be given back once
- * obtained, so one task/interrupt can continuously 'give' the semaphore while
- * another continuously 'takes' the semaphore. For this reason this type of
- * semaphore does not use a priority inheritance mechanism. For an alternative
- * that does use priority inheritance see xSemaphoreCreateMutex().
- *
- * @param xSemaphore Handle to the created semaphore. Should be of type SemaphoreHandle_t.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xSemaphore = NULL;
-
- void vATask( void * pvParameters )
- {
- // Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
- // This is a macro so pass the variable in directly.
- vSemaphoreCreateBinary( xSemaphore );
-
- if( xSemaphore != NULL )
- {
- // The semaphore was created successfully.
- // The semaphore can now be used.
- }
- }
- </pre>
- * \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
- * \ingroup Semaphores
- */
-#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
- #define vSemaphoreCreateBinary( xSemaphore ) \
- { \
- ( xSemaphore ) = xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE ); \
- if( ( xSemaphore ) != NULL ) \
- { \
- ( void ) xSemaphoreGive( ( xSemaphore ) ); \
- } \
- }
-#endif
-
-/**
- * semphr. h
- * <pre>SemaphoreHandle_t xSemaphoreCreateBinary( void )</pre>
- *
- * Creates a new binary semaphore instance, and returns a handle by which the
- * new semaphore can be referenced.
- *
- * In many usage scenarios it is faster and more memory efficient to use a
- * direct to task notification in place of a binary semaphore!
- * http://www.freertos.org/RTOS-task-notifications.html
- *
- * Internally, within the FreeRTOS implementation, binary semaphores use a block
- * of memory, in which the semaphore structure is stored. If a binary semaphore
- * is created using xSemaphoreCreateBinary() then the required memory is
- * automatically dynamically allocated inside the xSemaphoreCreateBinary()
- * function. (see http://www.freertos.org/a00111.html). If a binary semaphore
- * is created using xSemaphoreCreateBinaryStatic() then the application writer
- * must provide the memory. xSemaphoreCreateBinaryStatic() therefore allows a
- * binary semaphore to be created without using any dynamic memory allocation.
- *
- * The old vSemaphoreCreateBinary() macro is now deprecated in favour of this
- * xSemaphoreCreateBinary() function. Note that binary semaphores created using
- * the vSemaphoreCreateBinary() macro are created in a state such that the
- * first call to 'take' the semaphore would pass, whereas binary semaphores
- * created using xSemaphoreCreateBinary() are created in a state such that the
- * the semaphore must first be 'given' before it can be 'taken'.
- *
- * This type of semaphore can be used for pure synchronisation between tasks or
- * between an interrupt and a task. The semaphore need not be given back once
- * obtained, so one task/interrupt can continuously 'give' the semaphore while
- * another continuously 'takes' the semaphore. For this reason this type of
- * semaphore does not use a priority inheritance mechanism. For an alternative
- * that does use priority inheritance see xSemaphoreCreateMutex().
- *
- * @return Handle to the created semaphore, or NULL if the memory required to
- * hold the semaphore's data structures could not be allocated.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xSemaphore = NULL;
-
- void vATask( void * pvParameters )
- {
- // Semaphore cannot be used before a call to xSemaphoreCreateBinary().
- // This is a macro so pass the variable in directly.
- xSemaphore = xSemaphoreCreateBinary();
-
- if( xSemaphore != NULL )
- {
- // The semaphore was created successfully.
- // The semaphore can now be used.
- }
- }
- </pre>
- * \defgroup xSemaphoreCreateBinary xSemaphoreCreateBinary
- * \ingroup Semaphores
- */
-#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
- #define xSemaphoreCreateBinary() xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE )
-#endif
-
-/**
- * semphr. h
- * <pre>SemaphoreHandle_t xSemaphoreCreateBinaryStatic( StaticSemaphore_t *pxSemaphoreBuffer )</pre>
- *
- * Creates a new binary semaphore instance, and returns a handle by which the
- * new semaphore can be referenced.
- *
- * NOTE: In many usage scenarios it is faster and more memory efficient to use a
- * direct to task notification in place of a binary semaphore!
- * http://www.freertos.org/RTOS-task-notifications.html
- *
- * Internally, within the FreeRTOS implementation, binary semaphores use a block
- * of memory, in which the semaphore structure is stored. If a binary semaphore
- * is created using xSemaphoreCreateBinary() then the required memory is
- * automatically dynamically allocated inside the xSemaphoreCreateBinary()
- * function. (see http://www.freertos.org/a00111.html). If a binary semaphore
- * is created using xSemaphoreCreateBinaryStatic() then the application writer
- * must provide the memory. xSemaphoreCreateBinaryStatic() therefore allows a
- * binary semaphore to be created without using any dynamic memory allocation.
- *
- * This type of semaphore can be used for pure synchronisation between tasks or
- * between an interrupt and a task. The semaphore need not be given back once
- * obtained, so one task/interrupt can continuously 'give' the semaphore while
- * another continuously 'takes' the semaphore. For this reason this type of
- * semaphore does not use a priority inheritance mechanism. For an alternative
- * that does use priority inheritance see xSemaphoreCreateMutex().
- *
- * @param pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t,
- * which will then be used to hold the semaphore's data structure, removing the
- * need for the memory to be allocated dynamically.
- *
- * @return If the semaphore is created then a handle to the created semaphore is
- * returned. If pxSemaphoreBuffer is NULL then NULL is returned.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xSemaphore = NULL;
- StaticSemaphore_t xSemaphoreBuffer;
-
- void vATask( void * pvParameters )
- {
- // Semaphore cannot be used before a call to xSemaphoreCreateBinary().
- // The semaphore's data structures will be placed in the xSemaphoreBuffer
- // variable, the address of which is passed into the function. The
- // function's parameter is not NULL, so the function will not attempt any
- // dynamic memory allocation, and therefore the function will not return
- // return NULL.
- xSemaphore = xSemaphoreCreateBinary( &xSemaphoreBuffer );
-
- // Rest of task code goes here.
- }
- </pre>
- * \defgroup xSemaphoreCreateBinaryStatic xSemaphoreCreateBinaryStatic
- * \ingroup Semaphores
- */
-#if( configSUPPORT_STATIC_ALLOCATION == 1 )
- #define xSemaphoreCreateBinaryStatic( pxStaticSemaphore ) xQueueGenericCreateStatic( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticSemaphore, queueQUEUE_TYPE_BINARY_SEMAPHORE )
-#endif /* configSUPPORT_STATIC_ALLOCATION */
-
-/**
- * semphr. h
- * <pre>xSemaphoreTake(
- * SemaphoreHandle_t xSemaphore,
- * TickType_t xBlockTime
- * )</pre>
- *
- * <i>Macro</i> to obtain a semaphore. The semaphore must have previously been
- * created with a call to xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
- * xSemaphoreCreateCounting().
- *
- * @param xSemaphore A handle to the semaphore being taken - obtained when
- * the semaphore was created.
- *
- * @param xBlockTime The time in ticks to wait for the semaphore to become
- * available. The macro portTICK_PERIOD_MS can be used to convert this to a
- * real time. A block time of zero can be used to poll the semaphore. A block
- * time of portMAX_DELAY can be used to block indefinitely (provided
- * INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h).
- *
- * @return pdTRUE if the semaphore was obtained. pdFALSE
- * if xBlockTime expired without the semaphore becoming available.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xSemaphore = NULL;
-
- // A task that creates a semaphore.
- void vATask( void * pvParameters )
- {
- // Create the semaphore to guard a shared resource.
- xSemaphore = xSemaphoreCreateBinary();
- }
-
- // A task that uses the semaphore.
- void vAnotherTask( void * pvParameters )
- {
- // ... Do other things.
-
- if( xSemaphore != NULL )
- {
- // See if we can obtain the semaphore. If the semaphore is not available
- // wait 10 ticks to see if it becomes free.
- if( xSemaphoreTake( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
- {
- // We were able to obtain the semaphore and can now access the
- // shared resource.
-
- // ...
-
- // We have finished accessing the shared resource. Release the
- // semaphore.
- xSemaphoreGive( xSemaphore );
- }
- else
- {
- // We could not obtain the semaphore and can therefore not access
- // the shared resource safely.
- }
- }
- }
- </pre>
- * \defgroup xSemaphoreTake xSemaphoreTake
- * \ingroup Semaphores
- */
-#define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueGenericReceive( ( QueueHandle_t ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
-
-/**
- * semphr. h
- * xSemaphoreTakeRecursive(
- * SemaphoreHandle_t xMutex,
- * TickType_t xBlockTime
- * )
- *
- * <i>Macro</i> to recursively obtain, or 'take', a mutex type semaphore.
- * The mutex must have previously been created using a call to
- * xSemaphoreCreateRecursiveMutex();
- *
- * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this
- * macro to be available.
- *
- * This macro must not be used on mutexes created using xSemaphoreCreateMutex().
- *
- * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
- * doesn't become available again until the owner has called
- * xSemaphoreGiveRecursive() for each successful 'take' request. For example,
- * if a task successfully 'takes' the same mutex 5 times then the mutex will
- * not be available to any other task until it has also 'given' the mutex back
- * exactly five times.
- *
- * @param xMutex A handle to the mutex being obtained. This is the
- * handle returned by xSemaphoreCreateRecursiveMutex();
- *
- * @param xBlockTime The time in ticks to wait for the semaphore to become
- * available. The macro portTICK_PERIOD_MS can be used to convert this to a
- * real time. A block time of zero can be used to poll the semaphore. If
- * the task already owns the semaphore then xSemaphoreTakeRecursive() will
- * return immediately no matter what the value of xBlockTime.
- *
- * @return pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime
- * expired without the semaphore becoming available.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xMutex = NULL;
-
- // A task that creates a mutex.
- void vATask( void * pvParameters )
- {
- // Create the mutex to guard a shared resource.
- xMutex = xSemaphoreCreateRecursiveMutex();
- }
-
- // A task that uses the mutex.
- void vAnotherTask( void * pvParameters )
- {
- // ... Do other things.
-
- if( xMutex != NULL )
- {
- // See if we can obtain the mutex. If the mutex is not available
- // wait 10 ticks to see if it becomes free.
- if( xSemaphoreTakeRecursive( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
- {
- // We were able to obtain the mutex and can now access the
- // shared resource.
-
- // ...
- // For some reason due to the nature of the code further calls to
- // xSemaphoreTakeRecursive() are made on the same mutex. In real
- // code these would not be just sequential calls as this would make
- // no sense. Instead the calls are likely to be buried inside
- // a more complex call structure.
- xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
- xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
-
- // The mutex has now been 'taken' three times, so will not be
- // available to another task until it has also been given back
- // three times. Again it is unlikely that real code would have
- // these calls sequentially, but instead buried in a more complex
- // call structure. This is just for illustrative purposes.
- xSemaphoreGiveRecursive( xMutex );
- xSemaphoreGiveRecursive( xMutex );
- xSemaphoreGiveRecursive( xMutex );
-
- // Now the mutex can be taken by other tasks.
- }
- else
- {
- // We could not obtain the mutex and can therefore not access
- // the shared resource safely.
- }
- }
- }
- </pre>
- * \defgroup xSemaphoreTakeRecursive xSemaphoreTakeRecursive
- * \ingroup Semaphores
- */
-#if( configUSE_RECURSIVE_MUTEXES == 1 )
- #define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( ( xMutex ), ( xBlockTime ) )
-#endif
-
-/**
- * semphr. h
- * <pre>xSemaphoreGive( SemaphoreHandle_t xSemaphore )</pre>
- *
- * <i>Macro</i> to release a semaphore. The semaphore must have previously been
- * created with a call to xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
- * xSemaphoreCreateCounting(). and obtained using sSemaphoreTake().
- *
- * This macro must not be used from an ISR. See xSemaphoreGiveFromISR () for
- * an alternative which can be used from an ISR.
- *
- * This macro must also not be used on semaphores created using
- * xSemaphoreCreateRecursiveMutex().
- *
- * @param xSemaphore A handle to the semaphore being released. This is the
- * handle returned when the semaphore was created.
- *
- * @return pdTRUE if the semaphore was released. pdFALSE if an error occurred.
- * Semaphores are implemented using queues. An error can occur if there is
- * no space on the queue to post a message - indicating that the
- * semaphore was not first obtained correctly.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xSemaphore = NULL;
-
- void vATask( void * pvParameters )
- {
- // Create the semaphore to guard a shared resource.
- xSemaphore = vSemaphoreCreateBinary();
-
- if( xSemaphore != NULL )
- {
- if( xSemaphoreGive( xSemaphore ) != pdTRUE )
- {
- // We would expect this call to fail because we cannot give
- // a semaphore without first "taking" it!
- }
-
- // Obtain the semaphore - don't block if the semaphore is not
- // immediately available.
- if( xSemaphoreTake( xSemaphore, ( TickType_t ) 0 ) )
- {
- // We now have the semaphore and can access the shared resource.
-
- // ...
-
- // We have finished accessing the shared resource so can free the
- // semaphore.
- if( xSemaphoreGive( xSemaphore ) != pdTRUE )
- {
- // We would not expect this call to fail because we must have
- // obtained the semaphore to get here.
- }
- }
- }
- }
- </pre>
- * \defgroup xSemaphoreGive xSemaphoreGive
- * \ingroup Semaphores
- */
-#define xSemaphoreGive( xSemaphore ) xQueueGenericSend( ( QueueHandle_t ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
-
-/**
- * semphr. h
- * <pre>xSemaphoreGiveRecursive( SemaphoreHandle_t xMutex )</pre>
- *
- * <i>Macro</i> to recursively release, or 'give', a mutex type semaphore.
- * The mutex must have previously been created using a call to
- * xSemaphoreCreateRecursiveMutex();
- *
- * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this
- * macro to be available.
- *
- * This macro must not be used on mutexes created using xSemaphoreCreateMutex().
- *
- * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
- * doesn't become available again until the owner has called
- * xSemaphoreGiveRecursive() for each successful 'take' request. For example,
- * if a task successfully 'takes' the same mutex 5 times then the mutex will
- * not be available to any other task until it has also 'given' the mutex back
- * exactly five times.
- *
- * @param xMutex A handle to the mutex being released, or 'given'. This is the
- * handle returned by xSemaphoreCreateMutex();
- *
- * @return pdTRUE if the semaphore was given.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xMutex = NULL;
-
- // A task that creates a mutex.
- void vATask( void * pvParameters )
- {
- // Create the mutex to guard a shared resource.
- xMutex = xSemaphoreCreateRecursiveMutex();
- }
-
- // A task that uses the mutex.
- void vAnotherTask( void * pvParameters )
- {
- // ... Do other things.
-
- if( xMutex != NULL )
- {
- // See if we can obtain the mutex. If the mutex is not available
- // wait 10 ticks to see if it becomes free.
- if( xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 ) == pdTRUE )
- {
- // We were able to obtain the mutex and can now access the
- // shared resource.
-
- // ...
- // For some reason due to the nature of the code further calls to
- // xSemaphoreTakeRecursive() are made on the same mutex. In real
- // code these would not be just sequential calls as this would make
- // no sense. Instead the calls are likely to be buried inside
- // a more complex call structure.
- xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
- xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
-
- // The mutex has now been 'taken' three times, so will not be
- // available to another task until it has also been given back
- // three times. Again it is unlikely that real code would have
- // these calls sequentially, it would be more likely that the calls
- // to xSemaphoreGiveRecursive() would be called as a call stack
- // unwound. This is just for demonstrative purposes.
- xSemaphoreGiveRecursive( xMutex );
- xSemaphoreGiveRecursive( xMutex );
- xSemaphoreGiveRecursive( xMutex );
-
- // Now the mutex can be taken by other tasks.
- }
- else
- {
- // We could not obtain the mutex and can therefore not access
- // the shared resource safely.
- }
- }
- }
- </pre>
- * \defgroup xSemaphoreGiveRecursive xSemaphoreGiveRecursive
- * \ingroup Semaphores
- */
-#if( configUSE_RECURSIVE_MUTEXES == 1 )
- #define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( ( xMutex ) )
-#endif
-
-/**
- * semphr. h
- * <pre>
- xSemaphoreGiveFromISR(
- SemaphoreHandle_t xSemaphore,
- BaseType_t *pxHigherPriorityTaskWoken
- )</pre>
- *
- * <i>Macro</i> to release a semaphore. The semaphore must have previously been
- * created with a call to xSemaphoreCreateBinary() or xSemaphoreCreateCounting().
- *
- * Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
- * must not be used with this macro.
- *
- * This macro can be used from an ISR.
- *
- * @param xSemaphore A handle to the semaphore being released. This is the
- * handle returned when the semaphore was created.
- *
- * @param pxHigherPriorityTaskWoken xSemaphoreGiveFromISR() will set
- * *pxHigherPriorityTaskWoken to pdTRUE if giving the semaphore caused a task
- * to unblock, and the unblocked task has a priority higher than the currently
- * running task. If xSemaphoreGiveFromISR() sets this value to pdTRUE then
- * a context switch should be requested before the interrupt is exited.
- *
- * @return pdTRUE if the semaphore was successfully given, otherwise errQUEUE_FULL.
- *
- * Example usage:
- <pre>
- \#define LONG_TIME 0xffff
- \#define TICKS_TO_WAIT 10
- SemaphoreHandle_t xSemaphore = NULL;
-
- // Repetitive task.
- void vATask( void * pvParameters )
- {
- for( ;; )
- {
- // We want this task to run every 10 ticks of a timer. The semaphore
- // was created before this task was started.
-
- // Block waiting for the semaphore to become available.
- if( xSemaphoreTake( xSemaphore, LONG_TIME ) == pdTRUE )
- {
- // It is time to execute.
-
- // ...
-
- // We have finished our task. Return to the top of the loop where
- // we will block on the semaphore until it is time to execute
- // again. Note when using the semaphore for synchronisation with an
- // ISR in this manner there is no need to 'give' the semaphore back.
- }
- }
- }
-
- // Timer ISR
- void vTimerISR( void * pvParameters )
- {
- static uint8_t ucLocalTickCount = 0;
- static BaseType_t xHigherPriorityTaskWoken;
-
- // A timer tick has occurred.
-
- // ... Do other time functions.
-
- // Is it time for vATask () to run?
- xHigherPriorityTaskWoken = pdFALSE;
- ucLocalTickCount++;
- if( ucLocalTickCount >= TICKS_TO_WAIT )
- {
- // Unblock the task by releasing the semaphore.
- xSemaphoreGiveFromISR( xSemaphore, &xHigherPriorityTaskWoken );
-
- // Reset the count so we release the semaphore again in 10 ticks time.
- ucLocalTickCount = 0;
- }
-
- if( xHigherPriorityTaskWoken != pdFALSE )
- {
- // We can force a context switch here. Context switching from an
- // ISR uses port specific syntax. Check the demo task for your port
- // to find the syntax required.
- }
- }
- </pre>
- * \defgroup xSemaphoreGiveFromISR xSemaphoreGiveFromISR
- * \ingroup Semaphores
- */
-#define xSemaphoreGiveFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueGiveFromISR( ( QueueHandle_t ) ( xSemaphore ), ( pxHigherPriorityTaskWoken ) )
-
-/**
- * semphr. h
- * <pre>
- xSemaphoreTakeFromISR(
- SemaphoreHandle_t xSemaphore,
- BaseType_t *pxHigherPriorityTaskWoken
- )</pre>
- *
- * <i>Macro</i> to take a semaphore from an ISR. The semaphore must have
- * previously been created with a call to xSemaphoreCreateBinary() or
- * xSemaphoreCreateCounting().
- *
- * Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
- * must not be used with this macro.
- *
- * This macro can be used from an ISR, however taking a semaphore from an ISR
- * is not a common operation. It is likely to only be useful when taking a
- * counting semaphore when an interrupt is obtaining an object from a resource
- * pool (when the semaphore count indicates the number of resources available).
- *
- * @param xSemaphore A handle to the semaphore being taken. This is the
- * handle returned when the semaphore was created.
- *
- * @param pxHigherPriorityTaskWoken xSemaphoreTakeFromISR() will set
- * *pxHigherPriorityTaskWoken to pdTRUE if taking the semaphore caused a task
- * to unblock, and the unblocked task has a priority higher than the currently
- * running task. If xSemaphoreTakeFromISR() sets this value to pdTRUE then
- * a context switch should be requested before the interrupt is exited.
- *
- * @return pdTRUE if the semaphore was successfully taken, otherwise
- * pdFALSE
- */
-#define xSemaphoreTakeFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueReceiveFromISR( ( QueueHandle_t ) ( xSemaphore ), NULL, ( pxHigherPriorityTaskWoken ) )
-
-/**
- * semphr. h
- * <pre>SemaphoreHandle_t xSemaphoreCreateMutex( void )</pre>
- *
- * Creates a new mutex type semaphore instance, and returns a handle by which
- * the new mutex can be referenced.
- *
- * Internally, within the FreeRTOS implementation, mutex semaphores use a block
- * of memory, in which the mutex structure is stored. If a mutex is created
- * using xSemaphoreCreateMutex() then the required memory is automatically
- * dynamically allocated inside the xSemaphoreCreateMutex() function. (see
- * http://www.freertos.org/a00111.html). If a mutex is created using
- * xSemaphoreCreateMutexStatic() then the application writer must provided the
- * memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to be created
- * without using any dynamic memory allocation.
- *
- * Mutexes created using this function can be accessed using the xSemaphoreTake()
- * and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and
- * xSemaphoreGiveRecursive() macros must not be used.
- *
- * This type of semaphore uses a priority inheritance mechanism so a task
- * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
- * semaphore it is no longer required.
- *
- * Mutex type semaphores cannot be used from within interrupt service routines.
- *
- * See xSemaphoreCreateBinary() for an alternative implementation that can be
- * used for pure synchronisation (where one task or interrupt always 'gives' the
- * semaphore and another always 'takes' the semaphore) and from within interrupt
- * service routines.
- *
- * @return If the mutex was successfully created then a handle to the created
- * semaphore is returned. If there was not enough heap to allocate the mutex
- * data structures then NULL is returned.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xSemaphore;
-
- void vATask( void * pvParameters )
- {
- // Semaphore cannot be used before a call to xSemaphoreCreateMutex().
- // This is a macro so pass the variable in directly.
- xSemaphore = xSemaphoreCreateMutex();
-
- if( xSemaphore != NULL )
- {
- // The semaphore was created successfully.
- // The semaphore can now be used.
- }
- }
- </pre>
- * \defgroup xSemaphoreCreateMutex xSemaphoreCreateMutex
- * \ingroup Semaphores
- */
-#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
- #define xSemaphoreCreateMutex() xQueueCreateMutex( queueQUEUE_TYPE_MUTEX )
-#endif
-
-/**
- * semphr. h
- * <pre>SemaphoreHandle_t xSemaphoreCreateMutexStatic( StaticSemaphore_t *pxMutexBuffer )</pre>
- *
- * Creates a new mutex type semaphore instance, and returns a handle by which
- * the new mutex can be referenced.
- *
- * Internally, within the FreeRTOS implementation, mutex semaphores use a block
- * of memory, in which the mutex structure is stored. If a mutex is created
- * using xSemaphoreCreateMutex() then the required memory is automatically
- * dynamically allocated inside the xSemaphoreCreateMutex() function. (see
- * http://www.freertos.org/a00111.html). If a mutex is created using
- * xSemaphoreCreateMutexStatic() then the application writer must provided the
- * memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to be created
- * without using any dynamic memory allocation.
- *
- * Mutexes created using this function can be accessed using the xSemaphoreTake()
- * and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and
- * xSemaphoreGiveRecursive() macros must not be used.
- *
- * This type of semaphore uses a priority inheritance mechanism so a task
- * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
- * semaphore it is no longer required.
- *
- * Mutex type semaphores cannot be used from within interrupt service routines.
- *
- * See xSemaphoreCreateBinary() for an alternative implementation that can be
- * used for pure synchronisation (where one task or interrupt always 'gives' the
- * semaphore and another always 'takes' the semaphore) and from within interrupt
- * service routines.
- *
- * @param pxMutexBuffer Must point to a variable of type StaticSemaphore_t,
- * which will be used to hold the mutex's data structure, removing the need for
- * the memory to be allocated dynamically.
- *
- * @return If the mutex was successfully created then a handle to the created
- * mutex is returned. If pxMutexBuffer was NULL then NULL is returned.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xSemaphore;
- StaticSemaphore_t xMutexBuffer;
-
- void vATask( void * pvParameters )
- {
- // A mutex cannot be used before it has been created. xMutexBuffer is
- // into xSemaphoreCreateMutexStatic() so no dynamic memory allocation is
- // attempted.
- xSemaphore = xSemaphoreCreateMutexStatic( &xMutexBuffer );
-
- // As no dynamic memory allocation was performed, xSemaphore cannot be NULL,
- // so there is no need to check it.
- }
- </pre>
- * \defgroup xSemaphoreCreateMutexStatic xSemaphoreCreateMutexStatic
- * \ingroup Semaphores
- */
- #if( configSUPPORT_STATIC_ALLOCATION == 1 )
- #define xSemaphoreCreateMutexStatic( pxMutexBuffer ) xQueueCreateMutexStatic( queueQUEUE_TYPE_MUTEX, ( pxMutexBuffer ) )
-#endif /* configSUPPORT_STATIC_ALLOCATION */
-
-
-/**
- * semphr. h
- * <pre>SemaphoreHandle_t xSemaphoreCreateRecursiveMutex( void )</pre>
- *
- * Creates a new recursive mutex type semaphore instance, and returns a handle
- * by which the new recursive mutex can be referenced.
- *
- * Internally, within the FreeRTOS implementation, recursive mutexs use a block
- * of memory, in which the mutex structure is stored. If a recursive mutex is
- * created using xSemaphoreCreateRecursiveMutex() then the required memory is
- * automatically dynamically allocated inside the
- * xSemaphoreCreateRecursiveMutex() function. (see
- * http://www.freertos.org/a00111.html). If a recursive mutex is created using
- * xSemaphoreCreateRecursiveMutexStatic() then the application writer must
- * provide the memory that will get used by the mutex.
- * xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to
- * be created without using any dynamic memory allocation.
- *
- * Mutexes created using this macro can be accessed using the
- * xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The
- * xSemaphoreTake() and xSemaphoreGive() macros must not be used.
- *
- * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
- * doesn't become available again until the owner has called
- * xSemaphoreGiveRecursive() for each successful 'take' request. For example,
- * if a task successfully 'takes' the same mutex 5 times then the mutex will
- * not be available to any other task until it has also 'given' the mutex back
- * exactly five times.
- *
- * This type of semaphore uses a priority inheritance mechanism so a task
- * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
- * semaphore it is no longer required.
- *
- * Mutex type semaphores cannot be used from within interrupt service routines.
- *
- * See xSemaphoreCreateBinary() for an alternative implementation that can be
- * used for pure synchronisation (where one task or interrupt always 'gives' the
- * semaphore and another always 'takes' the semaphore) and from within interrupt
- * service routines.
- *
- * @return xSemaphore Handle to the created mutex semaphore. Should be of type
- * SemaphoreHandle_t.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xSemaphore;
-
- void vATask( void * pvParameters )
- {
- // Semaphore cannot be used before a call to xSemaphoreCreateMutex().
- // This is a macro so pass the variable in directly.
- xSemaphore = xSemaphoreCreateRecursiveMutex();
-
- if( xSemaphore != NULL )
- {
- // The semaphore was created successfully.
- // The semaphore can now be used.
- }
- }
- </pre>
- * \defgroup xSemaphoreCreateRecursiveMutex xSemaphoreCreateRecursiveMutex
- * \ingroup Semaphores
- */
-#if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configUSE_RECURSIVE_MUTEXES == 1 ) )
- #define xSemaphoreCreateRecursiveMutex() xQueueCreateMutex( queueQUEUE_TYPE_RECURSIVE_MUTEX )
-#endif
-
-/**
- * semphr. h
- * <pre>SemaphoreHandle_t xSemaphoreCreateRecursiveMutexStatic( StaticSemaphore_t *pxMutexBuffer )</pre>
- *
- * Creates a new recursive mutex type semaphore instance, and returns a handle
- * by which the new recursive mutex can be referenced.
- *
- * Internally, within the FreeRTOS implementation, recursive mutexs use a block
- * of memory, in which the mutex structure is stored. If a recursive mutex is
- * created using xSemaphoreCreateRecursiveMutex() then the required memory is
- * automatically dynamically allocated inside the
- * xSemaphoreCreateRecursiveMutex() function. (see
- * http://www.freertos.org/a00111.html). If a recursive mutex is created using
- * xSemaphoreCreateRecursiveMutexStatic() then the application writer must
- * provide the memory that will get used by the mutex.
- * xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to
- * be created without using any dynamic memory allocation.
- *
- * Mutexes created using this macro can be accessed using the
- * xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The
- * xSemaphoreTake() and xSemaphoreGive() macros must not be used.
- *
- * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
- * doesn't become available again until the owner has called
- * xSemaphoreGiveRecursive() for each successful 'take' request. For example,
- * if a task successfully 'takes' the same mutex 5 times then the mutex will
- * not be available to any other task until it has also 'given' the mutex back
- * exactly five times.
- *
- * This type of semaphore uses a priority inheritance mechanism so a task
- * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
- * semaphore it is no longer required.
- *
- * Mutex type semaphores cannot be used from within interrupt service routines.
- *
- * See xSemaphoreCreateBinary() for an alternative implementation that can be
- * used for pure synchronisation (where one task or interrupt always 'gives' the
- * semaphore and another always 'takes' the semaphore) and from within interrupt
- * service routines.
- *
- * @param pxMutexBuffer Must point to a variable of type StaticSemaphore_t,
- * which will then be used to hold the recursive mutex's data structure,
- * removing the need for the memory to be allocated dynamically.
- *
- * @return If the recursive mutex was successfully created then a handle to the
- * created recursive mutex is returned. If pxMutexBuffer was NULL then NULL is
- * returned.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xSemaphore;
- StaticSemaphore_t xMutexBuffer;
-
- void vATask( void * pvParameters )
- {
- // A recursive semaphore cannot be used before it is created. Here a
- // recursive mutex is created using xSemaphoreCreateRecursiveMutexStatic().
- // The address of xMutexBuffer is passed into the function, and will hold
- // the mutexes data structures - so no dynamic memory allocation will be
- // attempted.
- xSemaphore = xSemaphoreCreateRecursiveMutexStatic( &xMutexBuffer );
-
- // As no dynamic memory allocation was performed, xSemaphore cannot be NULL,
- // so there is no need to check it.
- }
- </pre>
- * \defgroup xSemaphoreCreateRecursiveMutexStatic xSemaphoreCreateRecursiveMutexStatic
- * \ingroup Semaphores
- */
-#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configUSE_RECURSIVE_MUTEXES == 1 ) )
- #define xSemaphoreCreateRecursiveMutexStatic( pxStaticSemaphore ) xQueueCreateMutexStatic( queueQUEUE_TYPE_RECURSIVE_MUTEX, pxStaticSemaphore )
-#endif /* configSUPPORT_STATIC_ALLOCATION */
-
-/**
- * semphr. h
- * <pre>SemaphoreHandle_t xSemaphoreCreateCounting( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount )</pre>
- *
- * Creates a new counting semaphore instance, and returns a handle by which the
- * new counting semaphore can be referenced.
- *
- * In many usage scenarios it is faster and more memory efficient to use a
- * direct to task notification in place of a counting semaphore!
- * http://www.freertos.org/RTOS-task-notifications.html
- *
- * Internally, within the FreeRTOS implementation, counting semaphores use a
- * block of memory, in which the counting semaphore structure is stored. If a
- * counting semaphore is created using xSemaphoreCreateCounting() then the
- * required memory is automatically dynamically allocated inside the
- * xSemaphoreCreateCounting() function. (see
- * http://www.freertos.org/a00111.html). If a counting semaphore is created
- * using xSemaphoreCreateCountingStatic() then the application writer can
- * instead optionally provide the memory that will get used by the counting
- * semaphore. xSemaphoreCreateCountingStatic() therefore allows a counting
- * semaphore to be created without using any dynamic memory allocation.
- *
- * Counting semaphores are typically used for two things:
- *
- * 1) Counting events.
- *
- * In this usage scenario an event handler will 'give' a semaphore each time
- * an event occurs (incrementing the semaphore count value), and a handler
- * task will 'take' a semaphore each time it processes an event
- * (decrementing the semaphore count value). The count value is therefore
- * the difference between the number of events that have occurred and the
- * number that have been processed. In this case it is desirable for the
- * initial count value to be zero.
- *
- * 2) Resource management.
- *
- * In this usage scenario the count value indicates the number of resources
- * available. To obtain control of a resource a task must first obtain a
- * semaphore - decrementing the semaphore count value. When the count value
- * reaches zero there are no free resources. When a task finishes with the
- * resource it 'gives' the semaphore back - incrementing the semaphore count
- * value. In this case it is desirable for the initial count value to be
- * equal to the maximum count value, indicating that all resources are free.
- *
- * @param uxMaxCount The maximum count value that can be reached. When the
- * semaphore reaches this value it can no longer be 'given'.
- *
- * @param uxInitialCount The count value assigned to the semaphore when it is
- * created.
- *
- * @return Handle to the created semaphore. Null if the semaphore could not be
- * created.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xSemaphore;
-
- void vATask( void * pvParameters )
- {
- SemaphoreHandle_t xSemaphore = NULL;
-
- // Semaphore cannot be used before a call to xSemaphoreCreateCounting().
- // The max value to which the semaphore can count should be 10, and the
- // initial value assigned to the count should be 0.
- xSemaphore = xSemaphoreCreateCounting( 10, 0 );
-
- if( xSemaphore != NULL )
- {
- // The semaphore was created successfully.
- // The semaphore can now be used.
- }
- }
- </pre>
- * \defgroup xSemaphoreCreateCounting xSemaphoreCreateCounting
- * \ingroup Semaphores
- */
-#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
- #define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( ( uxMaxCount ), ( uxInitialCount ) )
-#endif
-
-/**
- * semphr. h
- * <pre>SemaphoreHandle_t xSemaphoreCreateCountingStatic( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount, StaticSemaphore_t *pxSemaphoreBuffer )</pre>
- *
- * Creates a new counting semaphore instance, and returns a handle by which the
- * new counting semaphore can be referenced.
- *
- * In many usage scenarios it is faster and more memory efficient to use a
- * direct to task notification in place of a counting semaphore!
- * http://www.freertos.org/RTOS-task-notifications.html
- *
- * Internally, within the FreeRTOS implementation, counting semaphores use a
- * block of memory, in which the counting semaphore structure is stored. If a
- * counting semaphore is created using xSemaphoreCreateCounting() then the
- * required memory is automatically dynamically allocated inside the
- * xSemaphoreCreateCounting() function. (see
- * http://www.freertos.org/a00111.html). If a counting semaphore is created
- * using xSemaphoreCreateCountingStatic() then the application writer must
- * provide the memory. xSemaphoreCreateCountingStatic() therefore allows a
- * counting semaphore to be created without using any dynamic memory allocation.
- *
- * Counting semaphores are typically used for two things:
- *
- * 1) Counting events.
- *
- * In this usage scenario an event handler will 'give' a semaphore each time
- * an event occurs (incrementing the semaphore count value), and a handler
- * task will 'take' a semaphore each time it processes an event
- * (decrementing the semaphore count value). The count value is therefore
- * the difference between the number of events that have occurred and the
- * number that have been processed. In this case it is desirable for the
- * initial count value to be zero.
- *
- * 2) Resource management.
- *
- * In this usage scenario the count value indicates the number of resources
- * available. To obtain control of a resource a task must first obtain a
- * semaphore - decrementing the semaphore count value. When the count value
- * reaches zero there are no free resources. When a task finishes with the
- * resource it 'gives' the semaphore back - incrementing the semaphore count
- * value. In this case it is desirable for the initial count value to be
- * equal to the maximum count value, indicating that all resources are free.
- *
- * @param uxMaxCount The maximum count value that can be reached. When the
- * semaphore reaches this value it can no longer be 'given'.
- *
- * @param uxInitialCount The count value assigned to the semaphore when it is
- * created.
- *
- * @param pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t,
- * which will then be used to hold the semaphore's data structure, removing the
- * need for the memory to be allocated dynamically.
- *
- * @return If the counting semaphore was successfully created then a handle to
- * the created counting semaphore is returned. If pxSemaphoreBuffer was NULL
- * then NULL is returned.
- *
- * Example usage:
- <pre>
- SemaphoreHandle_t xSemaphore;
- StaticSemaphore_t xSemaphoreBuffer;
-
- void vATask( void * pvParameters )
- {
- SemaphoreHandle_t xSemaphore = NULL;
-
- // Counting semaphore cannot be used before they have been created. Create
- // a counting semaphore using xSemaphoreCreateCountingStatic(). The max
- // value to which the semaphore can count is 10, and the initial value
- // assigned to the count will be 0. The address of xSemaphoreBuffer is
- // passed in and will be used to hold the semaphore structure, so no dynamic
- // memory allocation will be used.
- xSemaphore = xSemaphoreCreateCounting( 10, 0, &xSemaphoreBuffer );
-
- // No memory allocation was attempted so xSemaphore cannot be NULL, so there
- // is no need to check its value.
- }
- </pre>
- * \defgroup xSemaphoreCreateCountingStatic xSemaphoreCreateCountingStatic
- * \ingroup Semaphores
- */
-#if( configSUPPORT_STATIC_ALLOCATION == 1 )
- #define xSemaphoreCreateCountingStatic( uxMaxCount, uxInitialCount, pxSemaphoreBuffer ) xQueueCreateCountingSemaphoreStatic( ( uxMaxCount ), ( uxInitialCount ), ( pxSemaphoreBuffer ) )
-#endif /* configSUPPORT_STATIC_ALLOCATION */
-
-/**
- * semphr. h
- * <pre>void vSemaphoreDelete( SemaphoreHandle_t xSemaphore );</pre>
- *
- * Delete a semaphore. This function must be used with care. For example,
- * do not delete a mutex type semaphore if the mutex is held by a task.
- *
- * @param xSemaphore A handle to the semaphore to be deleted.
- *
- * \defgroup vSemaphoreDelete vSemaphoreDelete
- * \ingroup Semaphores
- */
-#define vSemaphoreDelete( xSemaphore ) vQueueDelete( ( QueueHandle_t ) ( xSemaphore ) )
-
-/**
- * semphr.h
- * <pre>TaskHandle_t xSemaphoreGetMutexHolder( SemaphoreHandle_t xMutex );</pre>
- *
- * If xMutex is indeed a mutex type semaphore, return the current mutex holder.
- * If xMutex is not a mutex type semaphore, or the mutex is available (not held
- * by a task), return NULL.
- *
- * Note: This is a good way of determining if the calling task is the mutex
- * holder, but not a good way of determining the identity of the mutex holder as
- * the holder may change between the function exiting and the returned value
- * being tested.
- */
-#define xSemaphoreGetMutexHolder( xSemaphore ) xQueueGetMutexHolder( ( xSemaphore ) )
-
-/**
- * semphr.h
- * <pre>UBaseType_t uxSemaphoreGetCount( SemaphoreHandle_t xSemaphore );</pre>
- *
- * If the semaphore is a counting semaphore then uxSemaphoreGetCount() returns
- * its current count value. If the semaphore is a binary semaphore then
- * uxSemaphoreGetCount() returns 1 if the semaphore is available, and 0 if the
- * semaphore is not available.
- *
- */
-#define uxSemaphoreGetCount( xSemaphore ) uxQueueMessagesWaiting( ( QueueHandle_t ) ( xSemaphore ) )
-
-#endif /* SEMAPHORE_H */
-
-