1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) ASPEED Technology Inc.
*/
#include <asm/io.h>
#include <asm/arch/fmc_hdr.h>
#include <asm/arch/scu.h>
#include <asm/arch/sdram.h>
#include <config.h>
#include <dm.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/sizes.h>
#include <ram.h>
enum ddr_type {
DDR4_1600 = 0x0,
DDR4_2400,
DDR4_3200,
DDR5_3200,
DDR_TYPES
};
enum ddr_size {
DDR_SIZE_256MB,
DDR_SIZE_512MB,
DDR_SIZE_1GB,
DDR_SIZE_2GB,
DDR_SIZE_MAX,
};
#define IS_DDR4(t) \
(((t) <= DDR4_3200) ? 1 : 0)
struct sdrammc_ac_timing {
u32 t_cl;
u32 t_cwl;
u32 t_bl;
u32 t_rcd; /* ACT-to-read/write command delay */
u32 t_rp; /* PRE command period */
u32 t_ras; /* ACT-to-PRE command delay */
u32 t_rrd; /* ACT-to-ACT delay for different BG */
u32 t_rrd_l; /* ACT-to-ACT delay for same BG */
u32 t_faw; /* Four active window */
u32 t_rtp; /* Read-to-PRE command delay */
u32 t_wtr; /* Minimum write to read command for different BG */
u32 t_wtr_l; /* Minimum write to read command for same BG */
u32 t_wtr_a; /* Write to read command for same BG with auto precharge */
u32 t_wtp; /* Minimum write to precharge command delay */
u32 t_rtw; /* minimum read to write command */
u32 t_ccd_l; /* CAS-to-CAS delay for same BG */
u32 t_dllk; /* DLL locking time */
u32 t_cksre; /* valid clock before after self-refresh or power-down entry/exit process */
u32 t_pd; /* power-down entry to exit minimum width */
u32 t_xp; /* exit power-down to valid command delay */
u32 t_rfc; /* refresh time period */
u32 t_mrd;
u32 t_refsbrd;
u32 t_rfcsb;
u32 t_cshsr;
u32 t_zq;
};
static const struct sdrammc_ac_timing ac_table[] = {
[DDR4_1600] = {
.t_cl = 10, .t_cwl = 9, .t_bl = 8, .t_rcd = 10,
.t_rp = 10, .t_ras = 28, .t_rrd = 5, .t_rrd_l = 6,
.t_faw = 28, .t_rtp = 6, .t_wtr = 2, .t_wtr_l = 6,
.t_wtr_a = 0, .t_wtp = 12, .t_rtw = 0, .t_ccd_l = 5,
.t_dllk = 597, .t_cksre = 8, .t_pd = 4, .t_xp = 5,
.t_rfc = 880, .t_mrd = 24, .t_refsbrd = 0, .t_rfcsb = 0,
.t_cshsr = 0, .t_zq = 80,
},
[DDR4_2400] = {
.t_cl = 15, .t_cwl = 12, .t_bl = 8, .t_rcd = 16,
.t_rp = 16, .t_ras = 39, .t_rrd = 7, .t_rrd_l = 8,
.t_faw = 37, .t_rtp = 10, .t_wtr = 4, .t_wtr_l = 10,
.t_wtr_a = 0, .t_wtp = 19, .t_rtw = 0, .t_ccd_l = 7,
.t_dllk = 768, .t_cksre = 13, .t_pd = 7, .t_xp = 8,
.t_rfc = 880, .t_mrd = 24, .t_refsbrd = 0, .t_rfcsb = 0,
.t_cshsr = 0, .t_zq = 80,
},
[DDR4_3200] = {
.t_cl = 20, .t_cwl = 16, .t_bl = 8, .t_rcd = 20,
.t_rp = 20, .t_ras = 52, .t_rrd = 9, .t_rrd_l = 11,
.t_faw = 48, .t_rtp = 12, .t_wtr = 4, .t_wtr_l = 12,
.t_wtr_a = 0, .t_wtp = 24, .t_rtw = 0, .t_ccd_l = 8,
.t_dllk = 1023, .t_cksre = 16, .t_pd = 8, .t_xp = 10,
.t_rfc = 880, .t_mrd = 24, .t_refsbrd = 0, .t_rfcsb = 0,
.t_cshsr = 0, .t_zq = 80,
},
[DDR5_3200] = {
.t_cl = 26, .t_cwl = 24, .t_bl = 16, .t_rcd = 26,
.t_rp = 26, .t_ras = 52, .t_rrd = 8, .t_rrd_l = 8,
.t_faw = 40, .t_rtp = 12, .t_wtr = 4, .t_wtr_l = 16,
.t_wtr_a = 36, .t_wtp = 48, .t_rtw = 0, .t_ccd_l = 8,
.t_dllk = 1024, .t_cksre = 9, .t_pd = 13, .t_xp = 13,
.t_rfc = 880, .t_mrd = 23, .t_refsbrd = 48, .t_rfcsb = 208,
.t_cshsr = 30,
.t_zq = 48,
},
};
struct sdrammc {
u32 type;
void __iomem *regs;
void __iomem *phy;
void __iomem *scu0;
void __iomem *scu1;
const struct sdrammc_ac_timing *ac;
struct ram_info info;
};
static size_t ast2700_sdrammc_get_vga_mem_size(struct sdrammc *sdrammc)
{
struct sdrammc_regs *regs = sdrammc->regs;
void *scu0 = sdrammc->scu0;
size_t vga_memsz[] = {
SZ_32M,
SZ_64M,
};
u32 reg, sel, dual = 0;
sel = readl(®s->gfmcfg) & 0x1;
reg = readl(scu0 + SCU0_PCI_MISC70);
if (reg & SCU0_PCI_MISC70_EN_PCIEVGA0) {
debug("VGA0:%dMB\n", vga_memsz[sel] / SZ_1M);
dual++;
}
reg = readl(scu0 + SCU0_PCI_MISC80);
if (reg & SCU0_PCI_MISC80_EN_PCIEVGA1) {
debug("VGA1:%dMB\n", vga_memsz[sel] / SZ_1M);
dual++;
}
return vga_memsz[sel] * dual;
}
static int sdrammc_calc_size(struct sdrammc *sdrammc)
{
struct sdrammc_regs *regs = sdrammc->regs;
u32 val, test_pattern = 0xdeadbeef;
size_t sz;
struct {
u32 size;
int rfc[2];
} ddr_capacity[] = {
{ 0x10000000UL, {208, 256} }, /* 256MB */
{ 0x20000000UL, {208, 416} }, /* 512MB */
{ 0x40000000UL, {208, 560} }, /* 1GB */
{ 0x80000000UL, {472, 880} }, /* 2GB */
};
/* Configure ram size to max to enable whole area */
val = readl(®s->mcfg);
val &= ~(0x7 << 2);
writel(val | (DDR_SIZE_2GB << 2), ®s->mcfg);
/* Clear basement. */
writel(0, (void *)CFG_SYS_SDRAM_BASE);
for (sz = DDR_SIZE_2GB - 1; sz > DDR_SIZE_256MB; sz--) {
test_pattern = (test_pattern << 4) + sz;
writel(test_pattern, (void *)(CFG_SYS_SDRAM_BASE + ddr_capacity[sz].size));
if (readl((void *)CFG_SYS_SDRAM_BASE) != test_pattern)
break;
}
/* re-configure ram size to dramc. */
val = readl(®s->mcfg);
val &= ~(0x7 << 2);
writel(val | ((sz + 1) << 2), ®s->mcfg);
/* update rfc in ac_timing5 register. */
val = readl(®s->actime5);
val &= ~(0x3ff);
val |= (ddr_capacity[sz + 1].rfc[IS_DDR4(sdrammc->type)] >> 1);
writel(val, ®s->actime5);
/* report actual ram base and size to kernel */
sdrammc->info.base = CFG_SYS_SDRAM_BASE;
sdrammc->info.size = ddr_capacity[sz + 1].size;
/* reserve the VGA memory */
sdrammc->info.size -= ast2700_sdrammc_get_vga_mem_size(sdrammc);
return 0;
}
static int sdrammc_bist(struct sdrammc *sdrammc, u32 addr, u32 size, u32 cfg, u32 timeout)
{
struct sdrammc_regs *regs = sdrammc->regs;
u32 val;
u32 err = 0;
writel(0, ®s->bistcfg);
writel(cfg, ®s->bistcfg);
writel(addr >> 4, ®s->bist_addr);
writel(size >> 4, ®s->bist_size);
writel(0x89abcdef, ®s->bist_patt);
writel(cfg | DRAMC_BISTCFG_START, ®s->bistcfg);
while (!(readl(®s->intr_status) & DRAMC_IRQSTA_BIST_DONE))
;
writel(DRAMC_IRQSTA_BIST_DONE, ®s->intr_clear);
val = readl(®s->bist_res);
if (val & DRAMC_BISTRES_DONE) {
if (val & DRAMC_BISTRES_FAIL)
err++;
} else {
err++;
}
return err;
}
static void sdrammc_enable_refresh(struct sdrammc *sdrammc)
{
struct sdrammc_regs *regs = sdrammc->regs;
/* refresh update */
clrbits_le32(®s->refctl, 0x8000);
}
static void sdrammc_mr_send(struct sdrammc *sdrammc, u32 ctrl, u32 op)
{
struct sdrammc_regs *regs = sdrammc->regs;
writel(op, ®s->mrwr);
writel(ctrl | DRAMC_MRCTL_CMD_START, ®s->mrctl);
while (!(readl(®s->intr_status) & DRAMC_IRQSTA_MR_DONE))
;
writel(DRAMC_IRQSTA_MR_DONE, ®s->intr_clear);
}
static void sdrammc_config_mrs(struct sdrammc *sdrammc)
{
const struct sdrammc_ac_timing *ac = sdrammc->ac;
struct sdrammc_regs *regs = sdrammc->regs;
u32 mr0_cas, mr0_rtp, mr0_val;
u32 mr6_tccd_l, mr6_val;
u32 mr2_cwl, mr2_val;
u32 mr1_val;
u32 mr3_val;
u32 mr4_val;
u32 mr5_val;
if (!IS_DDR4(sdrammc->type))
return;
//-------------------------------------------------------------------
// CAS Latency (Table-15)
//-------------------------------------------------------------------
switch (ac->t_cl) {
case 9:
mr0_cas = 0x00; //5'b00000;
break;
case 10:
mr0_cas = 0x01; //5'b00001;
break;
case 11:
mr0_cas = 0x02; //5'b00010;
break;
case 12:
mr0_cas = 0x03; //5'b00011;
break;
case 13:
mr0_cas = 0x04; //5'b00100;
break;
case 14:
mr0_cas = 0x05; //5'b00101;
break;
case 15:
mr0_cas = 0x06; //5'b00110;
break;
case 16:
mr0_cas = 0x07; //5'b00111;
break;
case 18:
mr0_cas = 0x08; //5'b01000;
break;
case 20:
mr0_cas = 0x09; //5'b01001;
break;
case 22:
mr0_cas = 0x0a; //5'b01010;
break;
case 24:
mr0_cas = 0x0b; //5'b01011;
break;
case 23:
mr0_cas = 0x0c; //5'b01100;
break;
case 17:
mr0_cas = 0x0d; //5'b01101;
break;
case 19:
mr0_cas = 0x0e; //5'b01110;
break;
case 21:
mr0_cas = 0x0f; //5'b01111;
break;
case 25:
mr0_cas = 0x10; //5'b10000;
break;
case 26:
mr0_cas = 0x11; //5'b10001;
break;
case 27:
mr0_cas = 0x12; //5'b10010;
break;
case 28:
mr0_cas = 0x13; //5'b10011;
break;
case 30:
mr0_cas = 0x15; //5'b10101;
break;
case 32:
mr0_cas = 0x17; //5'b10111;
break;
}
//-------------------------------------------------------------------
// WR and RTP (Table-14)
//-------------------------------------------------------------------
switch (ac->t_rtp) {
case 5:
mr0_rtp = 0x0; //4'b0000;
break;
case 6:
mr0_rtp = 0x1; //4'b0001;
break;
case 7:
mr0_rtp = 0x2; //4'b0010;
break;
case 8:
mr0_rtp = 0x3; //4'b0011;
break;
case 9:
mr0_rtp = 0x4; //4'b0100;
break;
case 10:
mr0_rtp = 0x5; //4'b0101;
break;
case 12:
mr0_rtp = 0x6; //4'b0110;
break;
case 11:
mr0_rtp = 0x7; //4'b0111;
break;
case 13:
mr0_rtp = 0x8; //4'b1000;
break;
}
//-------------------------------------------------------------------
// CAS Write Latency (Table-21)
//-------------------------------------------------------------------
switch (ac->t_cwl) {
case 9:
mr2_cwl = 0x0; // 3'b000; // 1600
break;
case 10:
mr2_cwl = 0x1; // 3'b001; // 1866
break;
case 11:
mr2_cwl = 0x2; // 3'b010; // 2133
break;
case 12:
mr2_cwl = 0x3; // 3'b011; // 2400
break;
case 14:
mr2_cwl = 0x4; // 3'b100; // 2666
break;
case 16:
mr2_cwl = 0x5; // 3'b101; // 2933/3200
break;
case 18:
mr2_cwl = 0x6; // 3'b110;
break;
case 20:
mr2_cwl = 0x7; // 3'b111;
break;
}
//-------------------------------------------------------------------
// tCCD_L and tDLLK
//-------------------------------------------------------------------
switch (ac->t_ccd_l) {
case 4:
mr6_tccd_l = 0x0; //3'b000; // rate <= 1333
break;
case 5:
mr6_tccd_l = 0x1; //3'b001; // 1333 < rate <= 1866
break;
case 6:
mr6_tccd_l = 0x2; //3'b010; // 1866 < rate <= 2400
break;
case 7:
mr6_tccd_l = 0x3; //3'b011; // 2400 < rate <= 2666
break;
case 8:
mr6_tccd_l = 0x4; //3'b100; // 2666 < rate <= 3200
break;
}
/*
* mr0_val =
* mr0_rtp[3], // 13
* mr0_cas[4], // 12
* mr0_rtp[2:0], // 13,11-9: WR and RTP
* 1'b0, // 8: DLL reset
* 1'b0, // 7: TM
* mr0_cas[3:1], // 6-4,2: CAS latency
* 1'b0, // 3: sequential
* mr0_cas[0],
* 2'b00 // 1-0: burst length
*/
mr0_val = ((mr0_cas & 0x1) << 2) |
(((mr0_cas >> 1) & 0x7) << 4) |
(((mr0_cas >> 4) & 0x1) << 12) |
((mr0_rtp & 0x7) << 9) |
(((mr0_rtp >> 3) & 0x1) << 13);
/*
* 3'b2 //[10:8]: rtt_nom, 000:disable,001:rzq/4,010:rzq/2,011:rzq/6,100:rzq/1,101:rzq/5,110:rzq/3,111:rzq/7
* 1'b0 //[7]: write leveling enable
* 2'b0 //[6:5]: reserved
* 2'b0 //[4:3]: additive latency
* 2'b0 //[2:1]: output driver impedance
* 1'b1 //[0]: enable dll
*/
mr1_val = 0x201;
/*
* [10:9]: rtt_wr, 00:dynamic odt off, 01:rzq/2, 10:rzq/1, 11: hi-z
* [8]: 0
*/
mr2_val = ((mr2_cwl & 0x7) << 3) | 0x200;
mr3_val = 0;
mr4_val = 0;
/*
* mr5_val = {
* 1'b0, // 13: RFU
* 1'b0, // 12: read DBI
* 1'b0, // 11: write DBI
* 1'b1, // 10: Data mask
* 1'b0, // 9: C/A parity persistent error
* 3'b000, // 8-6: RTT_PARK (disable)
* 1'b1, // 5: ODT input buffer during power down mode
* 1'b0, // 4: C/A parity status
* 1'b0, // 3: CRC error clear
* 3'b0 // 2-0: C/A parity latency mode
* };
*/
mr5_val = 0x420;
/*
* mr6_val = {
* 1'b0, // 13, 9-8: RFU
* mr6_tccd_l[2:0], // 12-10: tCCD_L
* 2'b0, // 13, 9-8: RFU
* 1'b0, // 7: VrefDQ training enable
* 1'b0, // 6: VrefDQ training range
* 6'b0 // 5-0: VrefDQ training value
* };
*/
mr6_val = ((mr6_tccd_l & 0x7) << 10);
writel((mr1_val << 16) + mr0_val, ®s->mr01);
writel((mr3_val << 16) + mr2_val, ®s->mr23);
writel((mr5_val << 16) + mr4_val, ®s->mr45);
writel(mr6_val, ®s->mr67);
/* Power-up initialization sequence */
sdrammc_mr_send(sdrammc, MR_ADDR(3), 0);
sdrammc_mr_send(sdrammc, MR_ADDR(6), 0);
sdrammc_mr_send(sdrammc, MR_ADDR(5), 0);
sdrammc_mr_send(sdrammc, MR_ADDR(4), 0);
sdrammc_mr_send(sdrammc, MR_ADDR(2), 0);
sdrammc_mr_send(sdrammc, MR_ADDR(1), 0);
sdrammc_mr_send(sdrammc, MR_ADDR(0), 0);
}
static void sdrammc_exit_self_refresh(struct sdrammc *sdrammc)
{
struct sdrammc_regs *regs = sdrammc->regs;
/* exit self-refresh after phy init */
setbits_le32(®s->mctl, DRAMC_MCTL_SELF_REF_START);
/* query if self-ref done */
while (!(readl(®s->intr_status) & DRAMC_IRQSTA_REF_DONE))
;
/* clear status */
writel(DRAMC_IRQSTA_REF_DONE, ®s->intr_clear);
udelay(1);
}
/* user-customized functions for the vendor PHY init code */
#define DWC_PHY_IMEM_OFST 0x50000
#define DWC_PHY_DMEM_OFST 0x58000
#define DWC_PHY_MB_START_STREAM_MSG 0x8
#define DWC_PHY_MB_TRAIN_SUCCESS 0x7
#define DWC_PHY_MB_TRAIN_FAIL 0xff
#define dwc_ddrphy_apb_wr(addr, data) \
writew((data), sdrammc->phy + ((addr) << 1))
#define dwc_ddrphy_apb_rd(addr) \
readw(sdrammc->phy + ((addr) << 1))
#define dwc_ddrphy_apb_wr_32b(addr, data) \
writel((data), sdrammc->phy + ((addr) << 1))
#define dwc_ddrphy_apb_rd_32b(addr) \
readl(sdrammc->phy + ((addr) << 1))
void dwc_get_mailbox(struct sdrammc *sdrammc, const int mode, u32 *mbox)
{
u32 val;
/* 1. Poll the UctWriteProtShadow, looking for a 0 */
while (dwc_ddrphy_apb_rd(0xd0004) & BIT(0))
;
/* 2. When a 0 is seen, read the UctWriteOnlyShadow register to get the major message number. */
*mbox = dwc_ddrphy_apb_rd(0xd0032) & 0xffff;
/* 3. If reading a streaming or SMBus message, also read the UctDatWriteOnlyShadow register. */
if (mode) {
val = (dwc_ddrphy_apb_rd(0xd0034)) & 0xffff;
*mbox |= (val << 16);
}
/* 4. Write the DctWriteProt to 0 to acknowledge the reception of the message */
dwc_ddrphy_apb_wr(0xd0031, 0);
/* 5. Poll the UctWriteProtShadow, looking for a 1 */
while (!(dwc_ddrphy_apb_rd(0xd0004) & BIT(0)))
;
/* 6. When a 1 is seen, write the DctWriteProt to 1 to complete the protocol */
dwc_ddrphy_apb_wr(0xd0031, 1);
}
uint32_t dwc_readMsgBlock(struct sdrammc *sdrammc, const u32 addr_half)
{
u32 data_word;
data_word = dwc_ddrphy_apb_rd_32b((addr_half >> 1) << 1);
if (addr_half & 0x1)
data_word = data_word >> 16;
else
data_word &= 0xffff;
return data_word;
}
int dwc_ddrphy_phyinit_userCustom_H_readMsgBlock(struct sdrammc *sdrammc, int train2D)
{
u32 msg;
if (IS_DDR4(sdrammc->type)) {
/* DWC_PHY_DDR4_MB_RESULT */
msg = dwc_readMsgBlock(sdrammc, 0x5800a);
if (msg & 0xff)
debug("%s: Training Failure index (0x%x)\n", __func__, msg);
else
debug("%s: %dD Training Passed\n", __func__, train2D ? 2 : 1);
} else {
/* DWC_PHY_DDR5_MB_RESULT */
msg = dwc_readMsgBlock(sdrammc, 0x58007);
if (msg & 0xff00)
debug("%s: Training Failure index (0x%x)\n", __func__, msg);
else
debug("%s: DDR5 1D/2D Training Passed\n", __func__);
/* DWC_PHY_DDR5_MB_RESULT_ADR */
msg = dwc_readMsgBlock(sdrammc, 0x5800a);
debug("%s: Result Address Offset (0x%x)\n", __func__, msg);
}
return 0;
}
void dwc_ddrphy_phyinit_userCustom_A_bringupPower(void)
{
/* do nothing */
}
void dwc_ddrphy_phyinit_userCustom_B_startClockResetPhy(struct sdrammc *sdrammc)
{
struct sdrammc_regs *regs = sdrammc->regs;
/*
* 1. Drive PwrOkIn to 0. Note: Reset, DfiClk, and APBCLK can be X.
* 2. Start DfiClk and APBCLK
* 3. Drive Reset to 1 and PRESETn_APB to 0.
* Note: The combination of PwrOkIn=0 and Reset=1 signals a cold reset to the PHY.
*/
writel(DRAMC_MCTL_PHY_RESET, ®s->mctl);
udelay(2);
/*
* 5. Drive PwrOkIn to 1. Once the PwrOkIn is asserted (and Reset is still asserted),
* DfiClk synchronously switches to any legal input frequency.
*/
writel(DRAMC_MCTL_PHY_RESET | DRAMC_MCTL_PHY_POWER_ON, ®s->mctl);
udelay(2);
/*
* 7. Drive Reset to 0. Note: All DFI and APB inputs must be driven at valid reset states
* before the deassertion of Reset.
*/
writel(DRAMC_MCTL_PHY_POWER_ON, ®s->mctl);
udelay(2);
/*
* 9. Drive PRESETn_APB to 1 to de-assert reset on the ABP bus.
* 10. The PHY is now in the reset state and is ready to accept APB transactions.
*/
}
void dwc_ddrphy_phyinit_userCustom_overrideUserInput(void)
{
/* do nothing */
}
void dwc_ddrphy_phyinit_userCustom_customPostTrain(void)
{
/* do nothing */
}
void dwc_ddrphy_phyinit_userCustom_E_setDfiClk(struct sdrammc *sdrammc)
{
dwc_ddrphy_apb_wr(0xd0031, 1); /* DWC_DCTWRITEPROT */
dwc_ddrphy_apb_wr(0xd0033, 1); /* DWC_UCTWRITEPROT */
}
void dwc_ddrphy_phyinit_userCustom_G_waitFwDone(struct sdrammc *sdrammc)
{
u32 mbox, msg = 0;
while (msg != DWC_PHY_MB_TRAIN_SUCCESS && msg != DWC_PHY_MB_TRAIN_FAIL) {
dwc_get_mailbox(sdrammc, 0, &mbox);
msg = mbox & 0xffff;
}
}
void dwc_ddrphy_phyinit_userCustom_J_enterMissionMode(struct sdrammc *sdrammc)
{
struct sdrammc_regs *regs = sdrammc->regs;
u32 val;
/*
* 1. Set the PHY input clocks to the desired frequency.
* 2. Initialize the PHY to mission mode by performing DFI Initialization.
* Please see the DFI specification for more information. See the DFI frequency bus encoding in section <XXX>.
* Note: The PHY training firmware initializes the DRAM state. if skip
* training is used, the DRAM state is not initialized.
*/
writel(0xffffffff, (void *)®s->intr_mask);
writel(0x0, (void *)®s->dcfg);
if (!IS_DDR4(sdrammc->type)) {
dwc_ddrphy_apb_wr(0xd0000, 0); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */
dwc_ddrphy_apb_wr(0x20240, 0x3900); /* DWC_DDRPHYA_MASTER0_base0_D5ACSMPtr0lat0 */
dwc_ddrphy_apb_wr(0x900da, 8); /* DWC_DDRPHYA_INITENG0_base0_SequenceReg0b59s0 */
dwc_ddrphy_apb_wr(0xd0000, 1); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */
}
/* phy init start */
val = readl((void *)®s->mctl);
val = val | DRAMC_MCTL_PHY_INIT_START;
writel(val, (void *)®s->mctl);
/* wait phy complete */
while (1) {
val = readl(®s->intr_status) & DRAMC_IRQSTA_PHY_INIT_DONE;
if (val == DRAMC_IRQSTA_PHY_INIT_DONE)
break;
}
writel(0xffff, (void *)®s->intr_clear);
while (readl((void *)®s->intr_status))
;
if (!IS_DDR4(sdrammc->type)) {
dwc_ddrphy_apb_wr(0xd0000, 0); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */
dwc_ddrphy_apb_wr(0x20240, 0x4300); /* DWC_DDRPHYA_MASTER0_base0_D5ACSMPtr0lat0 */
dwc_ddrphy_apb_wr(0x900da, 0); /* DWC_DDRPHYA_INITENG0_base0_SequenceReg0b59s0 */
dwc_ddrphy_apb_wr(0xd0000, 1); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */
}
}
int dwc_ddrphy_phyinit_userCustom_D_loadIMEM(struct sdrammc *sdrammc, const int train2D)
{
u32 imem_ofst, imem_size;
u32 pb_type;
if (IS_DDR4(sdrammc->type))
pb_type = (train2D) ? PBT_DDR4_2D_PMU_TRAIN_IMEM : PBT_DDR4_PMU_TRAIN_IMEM;
else
pb_type = PBT_DDR5_PMU_TRAIN_IMEM;
fmc_hdr_get_prebuilt(pb_type, &imem_ofst, &imem_size);
memcpy(sdrammc->phy + (DWC_PHY_IMEM_OFST << 1),
(void *)(0x20000000 + imem_ofst), imem_size);
return 0;
}
int dwc_ddrphy_phyinit_userCustom_F_loadDMEM(struct sdrammc *sdrammc,
const int pState, const int train2D)
{
u32 dmem_ofst, dmem_size;
u32 pb_type;
if (IS_DDR4(sdrammc->type))
pb_type = (train2D) ? PBT_DDR4_2D_PMU_TRAIN_DMEM : PBT_DDR4_PMU_TRAIN_DMEM;
else
pb_type = PBT_DDR5_PMU_TRAIN_DMEM;
fmc_hdr_get_prebuilt(pb_type, &dmem_ofst, &dmem_size);
memcpy(sdrammc->phy + (DWC_PHY_DMEM_OFST << 1),
(void *)(0x20000000 + dmem_ofst), dmem_size);
return 0;
}
static void sdrammc_dwc_phy_init(struct sdrammc *sdrammc)
{
/* enable ddr phy free-run clock */
writel(SCU0_CLKGATE1_CLR_DDRPHY, sdrammc->scu0 + SCU0_CLKGATE1_CLR);
/* include the vendor-provided PHY init code */
if (IS_DDR4(sdrammc->type)) {
#include "dwc_ddrphy_phyinit_ddr4-3200-nodimm-train2D.c"
} else {
#include "dwc_ddrphy_phyinit_ddr5-3200-nodimm-train2D.c"
}
}
static void sdrammc_config_ac_timing(struct sdrammc *sdrammc)
{
const struct sdrammc_ac_timing *ac = sdrammc->ac;
struct sdrammc_regs *regs = sdrammc->regs;
u32 actime;
#define ACTIME1(ccd, rrd_l, rrd, mrd) \
(((ccd) << 24) | \
(((rrd_l) >> 1) << 16) | \
(((rrd) >> 1) << 8) | \
((mrd) >> 1))
#define ACTIME2(faw, rp, ras, rcd) \
((((faw) >> 1) << 24) | \
(((rp) >> 1) << 16) | \
(((ras) >> 1) << 8) | \
((rcd) >> 1))
#define ACTIME3(wtr, rtw, wtp, rtp) \
((((wtr) >> 1) << 24) | \
(((rtw) >> 1) << 16) | \
(((wtp) >> 1) << 8) | \
((rtp) >> 1))
#define ACTIME4(wtr_a, wtr_l) \
((((wtr_a) >> 1) << 8) | \
((wtr_l) >> 1))
#define ACTIME5(refsbrd, rfcsb, rfc) \
((((refsbrd) >> 1) << 20) | \
(((rfcsb) >> 1) << 10) | \
((rfc) >> 1))
#define ACTIME6(cshsr, pd, xp, cksre) \
((((cshsr) >> 1) << 24) | \
(((pd) >> 1) << 16) | \
(((xp) >> 1) << 8) | \
((cksre) >> 1))
#define ACTIME7(zqcs, dllk) \
((((zqcs) >> 1) << 10) | \
((dllk) >> 1))
actime = ACTIME1(ac->t_ccd_l, ac->t_rrd_l, ac->t_rrd, ac->t_mrd);
writel(actime, ®s->actime1);
actime = ACTIME2(ac->t_faw, ac->t_rp, ac->t_ras, ac->t_rcd);
writel(actime, ®s->actime2);
actime = ACTIME3(ac->t_cwl + ac->t_bl / 2 + ac->t_wtr,
ac->t_cl - ac->t_cwl + (ac->t_bl / 2) + 2,
ac->t_cwl + ac->t_bl / 2 + ac->t_wtp,
ac->t_rtp);
writel(actime, ®s->actime3);
actime = ACTIME4(ac->t_cwl + ac->t_bl / 2 + ac->t_wtr_a,
ac->t_cwl + ac->t_bl / 2 + ac->t_wtr_l);
writel(actime, ®s->actime4);
actime = ACTIME5(ac->t_refsbrd, ac->t_rfcsb, ac->t_rfc);
writel(actime, ®s->actime5);
actime = ACTIME6(ac->t_cshsr, ac->t_pd, ac->t_xp, ac->t_cksre);
writel(actime, ®s->actime6);
actime = ACTIME7(ac->t_zq, ac->t_dllk);
writel(actime, ®s->actime7);
}
static void sdrammc_config_registers(struct sdrammc *sdrammc)
{
const struct sdrammc_ac_timing *ac = sdrammc->ac;
struct sdrammc_regs *regs = sdrammc->regs;
u32 reg;
u32 dram_size = 5;
u32 t_phy_wrdata;
u32 t_phy_wrlat;
u32 t_phy_rddata_en;
u32 t_phy_odtlat;
u32 t_phy_odtext;
if (IS_DDR4(sdrammc->type)) {
t_phy_wrlat = ac->t_cwl - 5 - 4;
t_phy_rddata_en = ac->t_cl - 5 - 4;
t_phy_wrdata = 2;
t_phy_odtlat = ac->t_cwl - 5 - 4;
t_phy_odtext = 0;
} else {
t_phy_wrlat = ac->t_cwl - 13 - 3;
t_phy_rddata_en = ac->t_cl - 13 - 3;
t_phy_wrdata = 6;
t_phy_odtlat = 0;
t_phy_odtext = 0;
}
writel(0x20 + (dram_size << 2) + !!!IS_DDR4(sdrammc->type), ®s->mcfg);
reg = (t_phy_odtext << 20) + (t_phy_odtlat << 16) +
(t_phy_rddata_en << 10) + (t_phy_wrdata << 6) +
t_phy_wrlat;
writel(reg, ®s->dfi_timing);
writel(0, ®s->dctl);
writel(0x40b48200, ®s->refctl);
writel(0x42aa1800, ®s->zqctl);
writel(0, ®s->arbctl);
if (!IS_DDR4(sdrammc->type))
writel(0, ®s->refmng_ctl);
writel(0xffffffff, ®s->intr_mask);
}
static void sdrammc_init(struct sdrammc *sdrammc)
{
u32 reg;
reg = readl(sdrammc->scu1 + SCU1_HWSTRAP1);
if (reg & SCU1_HWSTRAP1_DDR4) {
if (IS_ENABLED(CONFIG_ASPEED_DDR_1600))
sdrammc->type = DDR4_1600;
else if (IS_ENABLED(CONFIG_ASPEED_DDR_2400))
sdrammc->type = DDR4_2400;
else if (IS_ENABLED(CONFIG_ASPEED_DDR_3200))
sdrammc->type = DDR4_3200;
} else {
sdrammc->type = DDR5_3200;
}
sdrammc->ac = &ac_table[sdrammc->type];
sdrammc_config_ac_timing(sdrammc);
sdrammc_config_registers(sdrammc);
}
static int ast2700_sdrammc_probe(struct udevice *dev)
{
struct sdrammc *sdrammc = dev_get_priv(dev);
struct sdrammc_regs *regs = sdrammc->regs;
u32 bistcfg;
u32 reg;
int rc;
/* skip DRAM init if already done */
reg = readl(sdrammc->scu0 + SCU0_VGA0_SCRATCH);
if (reg & SCU0_VGA0_SCRATCH_DRAM_INIT)
goto out;
/* unlock DRAM controller */
writel(DRAMC_UNLK_KEY, ®s->prot_key);
sdrammc_init(sdrammc);
sdrammc_dwc_phy_init(sdrammc);
sdrammc_exit_self_refresh(sdrammc);
sdrammc_config_mrs(sdrammc);
sdrammc_enable_refresh(sdrammc);
bistcfg = FIELD_PREP(DRAMC_BISTCFG_PMODE, BIST_PMODE_CRC) |
FIELD_PREP(DRAMC_BISTCFG_BMODE, BIST_BMODE_RW_SWITCH) |
DRAMC_BISTCFG_ENABLE;
rc = sdrammc_bist(sdrammc, 0, 0x10000, bistcfg, 0x200000);
if (rc) {
debug("bist test failed, type=%d\n", sdrammc->type);
return rc;
}
/* set DRAM init flag */
reg |= SCU0_VGA0_SCRATCH_DRAM_INIT;
writel(reg, sdrammc->scu0 + SCU0_VGA0_SCRATCH);
out:
sdrammc_calc_size(sdrammc);
return 0;
}
static int ast2700_sdrammc_of_to_plat(struct udevice *dev)
{
struct sdrammc *sdrammc = dev_get_priv(dev);
u32 phandle;
ofnode node;
int rc;
sdrammc->regs = (struct sdrammc_regs *)devfdt_get_addr_index(dev, 0);
if (sdrammc->regs == (void *)FDT_ADDR_T_NONE) {
debug("cannot map DRAM register\n");
return -ENODEV;
}
sdrammc->phy = (void *)devfdt_get_addr_index(dev, 1);
if (sdrammc->phy == (void *)FDT_ADDR_T_NONE) {
debug("cannot map PHY memory\n");
return -ENODEV;
}
rc = ofnode_read_u32(dev_ofnode(dev), "aspeed,scu0", &phandle);
if (rc) {
debug("cannot find SCU0 handle\n");
return -ENODEV;
}
node = ofnode_get_by_phandle(phandle);
if (!ofnode_valid(node)) {
debug("cannot get SCU0 node\n");
return -ENODEV;
}
sdrammc->scu0 = (void *)ofnode_get_addr(node);
if (sdrammc->scu0 == (void *)FDT_ADDR_T_NONE) {
debug("cannot map SCU0 register\n");
return -ENODEV;
}
rc = ofnode_read_u32(dev_ofnode(dev), "aspeed,scu1", &phandle);
if (rc) {
debug("cannot find SCU1 handle\n");
return -ENODEV;
}
node = ofnode_get_by_phandle(phandle);
if (!ofnode_valid(node)) {
debug("cannot get SCU1 node\n");
return -ENODEV;
}
sdrammc->scu1 = (void *)ofnode_get_addr(node);
if (sdrammc->scu1 == (void *)FDT_ADDR_T_NONE) {
debug("cannot map SCU1 register\n");
return -ENODEV;
}
return 0;
}
static int ast2700_sdrammc_get_info(struct udevice *dev, struct ram_info *info)
{
struct sdrammc *sdrammc = dev_get_priv(dev);
*info = sdrammc->info;
return 0;
}
static struct ram_ops ast2700_sdrammc_ops = {
.get_info = ast2700_sdrammc_get_info,
};
static const struct udevice_id ast2700_sdrammc_ids[] = {
{ .compatible = "aspeed,ast2700-sdrammc" },
{ }
};
U_BOOT_DRIVER(sdrammc_ast2700) = {
.name = "aspeed_ast2700_sdrammc",
.id = UCLASS_RAM,
.of_match = ast2700_sdrammc_ids,
.ops = &ast2700_sdrammc_ops,
.of_to_plat = ast2700_sdrammc_of_to_plat,
.probe = ast2700_sdrammc_probe,
.priv_auto = sizeof(struct sdrammc),
};
|